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Abstract

In today’s OLAP systems, integrating fast changing data, e.g., stock quotes, physically into a cube
is complex and time-consuming. The widespread use of XML makes it very possible that this data is
available in XML format on the WWW; thus, making XML data logically federated with OLAP sys-
tems is desirable. This report presents a complete foundation for such OLAP-XML federations. This
includes a prototypical query engine, a simplified query semantics based on previous work, and a com-
plete physical algebra which enables precise modeling of the execution tasks of an OLAP-XML query.
Effective algebra-based and cost-based query optimization and implementation are also proposed, as
well as the execution techniques. Finally, experiments with the prototypical query engine w.r.t. fed-
eration performance, optimization effectiveness, and feasibility suggest that our approach, unlike the
physical integration, is a practical solution for integrating fast changing data into OLAP systems.

1 Introduction

On-line Analytical Processing (OLAP) technology enables data warehouses to be used effectively for on-
line analysis, providing rapid responses to iterative complex analytical queries. Usually an OLAP system
contains a large amount of data, but dynamic data, e.g., stock prices, is not handled well in current OLAP
systems. To an OLAP system, a well designed dimensional hierarchy and a large quantity of pre-aggregated
data are the keys. However, trying to maintain these two factors when integrating fast changing data physi-
cally into a cube is complex and time-consuming, or even impossible. However, the advent of XML makes
it very possible that this data is available in XML format on the WWW; thus, making XML data accessible
to OLAP systems is greatly needed.

Our overall solution is to logically federate the OLAP and XML data sources. This approach decorates
the OLAP cube with ”virtual” dimensions using XML data, allowing selections and aggregations to be
performed over the decorated cube. In this report, we describe a robust federation query engine in detail
with query plan generation, optimization and evaluation techniques. First, a query semantics that simplifies
earlier definitions [32] is proposed. Here, redundant and repeated logical operators are removed and a
concise and compact logical query plan can be generated after a federation query is analyzed. Next, a
physical query algebra that, unlike the previous logical algebra, is able to model the real execution tasks
of a federation query, is described. Here, all concrete data retrieval and manipulation operations in the
federation are integrated, meaning that we obtain a much more precise foundation for performing efficient
query optimization and cost estimation. Third, the process that transforms logical plans to physical plans is
introduced. During this process, the novel logical-to-physical conversion rules are used to turn the plans in
the logical algebraic form into the executable forms expressed in the physical algebra. The query evaluator
then retrieves and manipulates data from/in the federation components, according to tasks scheduled by
the physical plans. Fourth, to improve the performance of the query engine, the full set of rule-based
and cost-based query optimization techniques is introduced. This includes a query rewriter that generates
equivalent logical plans, as opposed to physical plans in relational systems [36], a set of transformation
rules specialized for OLAP-XML federations, a predicate rewriting technique, inlining, a cost model and
cost functions specialized for the federation components, and a functioning query engine implemented with
all above techniques. Finally, experimental results are introduced with respect to federation performance,
optimization effectiveness and federation feasibility, suggesting that the logical OLAP-XML federation is
comparable to a physical integration of OLAP and XML data in terms of performance, and therefore can be
the practical solution to gaining flexible access to fast changing data in XML format from OLAP systems.

We believe that we are the first to propose a practical solution for logical OLAP-XML federations. Also,
we believe to be the first to implement a robust query engine with the proposed optimization and evaluation
techniques to enable OLAP-XML federation queries. More specifically, the novel contributions are as
following. First, a simplified query semantics (compared to [32]) is proposed. Second, a physical query
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algebra is defined. Third, novel algebra-based query optimization and evaluation techniques are introduced.
Fourth, a robust federation query engine is implemented with all the above techniques and experiments are
performed with it.

The rest of the report is organized as follows. Section 2 includes a general introduction of the case study,
the OLAP-XML federation, the overall architecture, and the data model. Section 3 presents the OLAP-XML
query semantics and formal definitions of the physical operators. Section 4 describes how logical plans are
converted to physical plans and therefore how they are executed. Section 5 consists of the descriptions of
the query optimizer and its components, as well as their implementations. Next, Section 6 describes in detail
the performance study with different respects. Section 7 introduces previous work and the novelties of this
report. Finally, Section 8 concludes the report and points to future work.

2 Background

2.1 Case Study

Nation

Supplier

Customer

AllSuppliers

Measure: ExtPriceQuantity,

Region

Part Order

AllOrders

AllTime

Year

Day

Month

Manufacturer

AllParts

Brand

Dimensions: Suppliers Parts Orders Time

Figure 1: Cube Schema

<Nations>
<Nation>

<NationName>Denmark</NationName>
<Population>5.3</Population>

</Nation>
<Nation>

<NationName>China</NationName>
<Population>1264.5</Population>

</Nation>
<Nation>

<NationName>United Kingdom</NationName>
<Population>19.1</Population>

</Nation>
. . .

</Nations>

Figure 2: Part of the XML data

Quantity ExtPrice Supplier Part Order Day
17 17954 S1 P3 11 2/12/1996
36 73638 S2 P5 18 5/2/1992
28 29983 S2 P4 42 30/3/1994

2 2388 S3 P3 4 8/12/1996
26 26374 S4 P2 20 10/11/1993

Figure 3: The fact table

The TPC-H-based [42] database used in the experiments and descriptions is shown in Figure 1. The
OLAP database, called TC, is characterized by a Supplier dimension, a Parts dimension, an Order dimen-
sion, and a Time dimension. For each line item, Quantity and ExtendedPrice are measured. An example fact
table is shown in Figure 3. The XML document is composed of the nation names and public population data
about nations in millions. An example of the document is illustrated in Figure 2, where each Nation element
contains two sub-elements, NationName and Population. We use the listed three lines as the example data
in this report.
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2.2 OLAP-XML Federations

A federation contains an OLAP cube and the XML documents. OLAP data is often organized in multi-
dimensional cubes. A cube contains measured values (measures) that are characterized by dimensions. A
dimension is structured using levels of different details. The fundamental part of an XML document is the
element node, which can contain other element nodes. Another component of a federation is links. Links are
created by users or DBAs between existing dimensions and XML data, allowing external data to character-
ize the OLAP measures as extra dimensions. The fundamental linking mechanism is a relation between one
dimension value in a cube and one node in an XML document. Figure 4 shows an example link, Nation link
(Nlink), that connects the dimension values of Nations to the Nation nodes that have the same text values
in the sub-nodes, NationName, in the XML document. The plus/minus symbol in a box indicates whether
the element is folded/unfolded. With Nlink, the population information about nations can be referenced in
OLAP queries.

XML

<Nation>

All

OLAP

<Nation>

Nation
link

<Nations>
<Nation>

</Nation>

<NationName>Denmark</NationName
<Population>5.3</Population>

. . .. . .. . .

</Nations>

Nation

Supplier

Region

Suppliers
Dimension

Figure 4: Linking OLAP and XML

The federation query language is called “XML-extended Multidimensional SQL” (SQLXM), which has
basic clauses similar to SQL, i.e., SELECT, FROM, WHERE, GROUP BY, and HAVING, and uses level
expressions (defined below) for referencing external XML data. Based on the cube schema in Figure 1, the
example SQLXM query shown in Figure 5 shows the total quantity of the parts of each brand sold by each
nation, where a nation is decorated with its population. Brand(Part) is a roll-up expression, which rolls up
the cube to the Brand level from the Part level in the Parts dimension. Nation[ANY]/Nlink/Population is
a level expression, where Population is a relative XPath expression applied to the XML nodes in Nlink to
identify new nodes. A level expression allows decoration of dimension values (e.g., nation names) with
XML values (e.g., populations) in the context defined through links.

SELECT SUM(Quantity),Brand(Part),
Nation[ANY]/Nlink/Population

FROM TC
WHERE Nation[ANY]/Nlink/Population<30
GROUP BY Brand(Part),Nation[ANY]/Nlink/Population

Figure 5: An example SQLXM query

2.3 The OLAP-XML System

In this section, we give an overview of the OLAP-XML federation system, the federation query language
and the basic query evaluation process. The overall architecture of the prototype is shown in Figure 6.
Besides the OLAP and the XML components, three auxiliary components have been introduced to hold
meta data, link data, and temporary data. Queries are posed to the query engine, which coordinates the
execution of queries in the data components. In the prototype, Microsoft SQL Server 2000 Enterprise
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Edition with SP3 is used. More specifically, the temporary component is the temporary database on SQL
Server, and the OLAP component uses MS Analysis Services, and is queried with SQL [24]. The XML
component is the local file system based on the XML data retrieved from the Web with MS SQLXML [26]
on top.

As shown in Figure 6, the query engine has three components: query analyzer, query optimizer and
query evaluator. Given a query, the query engine parses and analyzes the query, and generates the initial
logical plan. The plan is expressed in the logical algebra (see Section 3.1). The query optimizer generates
a plan space for the initial plan, where all the logical plans produce the same output as the original one.
Furthermore, the optimizer converts all the logical plans into physical plans by converting the composing
logical operators into physical operators. Then, costs of the plans can be estimated. Finally, the optimizer
searches for the best execution plan which has the least execution time and passes the plan on to the query
evaluator. The evaluator executes the operators in the given plan and generates the final result. Generally, the
component queries are evaluated in the OLAP and XML components in parallel and the data is transferred
to the temporary component. Sometimes, the selection predicates on level expressions can be rewritten to
new predicates with only references to dimension values and constants, therefore can be evaluated in the
OLAP component. We term this technique inlining (see Section 3.3). Therefore, in such a situation, some
XML queries have to be evaluated before the construction of OLAP queries so as to rewrite the predicates.
Moreover, the underlying OLAP cube may be sliced and aggregated, which leads to less inter-component
data transfer. There are also physical operators in the execution plan that model the processing of the
temporary data in the temporary component. There, SQL operations are used to calculate the final result on
the gathered data. Finally, the final result is produced in the temporary component.

Metadata

Query Engine

Data

DataData

Initial Plan

Execution Plan

Data Data

query

User Interface

Query Analyzer

Query Optimizer

Query Evaluator

Temp DB

XML DB

Link data

OLAP DB

Figure 6: Architecture of the query engine

2.4 Data Models

The cube model is defined in terms of a multidimensional cube consisting of a cube name, dimensions and
a fact table. Each dimension comprises two partially ordered sets (posets) representing hierarchies of levels
and the ordering of dimension values. Each level is associated with a set of dimension values. That is, a
dimension Di is a two-tuple (LDi , EDi), where LDi is a poset of levels and EDi is a poset of dimension
values. More specifically, LDi is the four-tuple (LSi,�i,�i,⊥i), where LSi = {li1, . . . , lik} is a set of
levels, �i is a partial order on these levels. ⊥i is the bottom level, while �i is the unique “ALL” level.
We shall use lij ∈ Di as a shorthand meaning that the level lij belongs to the poset of levels in dimension
Di. Each pair of levels has a containment relationship, that is, the partial order of two levels, li1 �i li2,
which holds if elements in Li2 can be said to contain the elements in Li1. Furthermore, li1 �i li2 holds
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if li1 �i li2 ∧ li1 	= li2. Here, Lik is the dimension values of level lik, that is, Lik = {eik1 , . . . , eiklik
}.

Similarly, we say that e1 �Di e2 if e1 is logically contained in e2 and lij �i lik for e1 ∈ Lij and e2 ∈ Lik.
EDi is a poset (

⋃
j Lij ,�Di), consisting of the set of all dimension values in the dimension and a partial

ordering defined on these. For each level l we assume a function Roll-upl : L × LSi 
→ P(Di), which
given a dimension value in L and a level in LSi returns the value’s ancestor in the level. That is, Roll-
upl(eikh

, lij) = {e′|eikh
�Di e′ ∧ e′ ∈ Lij}. In the federation query, a roll-up expression lij(lik) uses the

Roll-up function to aggregate the cube from a lower level lik to a higher level lij , i.e. lik �i lij .
A fact table F is a relation containing one attribute for each dimension and one attribute for each

measure; thus, F = {(e⊥1 , . . . , e⊥n , v1, . . . , vm)|(e⊥1 , . . . , e⊥n) ∈ ⊥1 × ⊥n ∧ (v1, . . . , vm) ∈ M ⊆
T1 × . . . × Tm}, where n ≥ 1, m ≥ 1 and Tj is the domain value for the j’th measure. We will also
refer to the j’th measure as Mj = {(e⊥1 , . . . , e⊥n , vj)}. Each measure Mj is associated with a default
aggregate function fj : P(Tj) 
→ Tj , where the input is a multi-set. Aggregate functions ignore NULL
values as in SQL. There may be NULL values for measures in the logical definition, but in a physical
implementation only the non-empty tuples would be stored in the fact table. An n-dimensional cube, C , is
given as: C = (N,D,F ), where N is the cube name, D = {D1, . . . ,Dn} is a set of dimensions, and F
is the fact table. A federation is the data structure on which we perform logical federation operations, e.g.
selections, aggregations and decorations. A federation F is a three-tuple: F = (C,Links,X), where C is
an OLAP cube, X are the referenced XML documents, and Links is a set of links (defined below) between
levels in C and documents in X.

A link is a relation that connects dimension values with nodes in XML documents. For example, a
link Nlink = {(Denmark, n1), (China, n2), (UnitedKingdom,n3)} maps each dimension value to a
node in the example XML document, here, n1 is the Nation node with the sub-node NationName having
the string value “Denmark,” n2 is the Nation node with the sub-node NationName having the string value
“China,” and similarly for n3.

An XPath expression [5] is a path that selects a set of nodes in an XML document. To allow references
to XML data in SQLXM queries, links are used with XPath expressions to define level expressions. A level
expression l[SEM ]/link/xp consists of a starting level l, i.e., the dimension level to be decorated, a deco-
ration semantic modifier SEM , a link link from l to nodes in one or more XML documents, and a relative
XPath expression xp which is applied to these nodes to identify new nodes. For example, Nation[ANY]/N-
link/Population connects the dimension value “Denmark” with its population data “5.3” (million) which is
the string value of the node Population in the context of n1. SEM represents the decoration semantics,
ALL, ANY, and CONCAT which specify how many decoration values should be used when several of them
are found for a dimension value through link and xp. The ALL semantics connect each dimension value
with all the linked decoration values, and the ANY semantics just use an arbitrary decoration value for each
dimension value, whereas the CONCAT semantics concatenate all the possible decoration values into one.

A hierarchy is strict if no dimension value has more than one parent value from the same level [20].
Non-strict hierarchy can lead to incorrect aggregation over a dimension, e.g., some lower-level values will
be double-counted. Three types of data are distinguished: c, data that may not be aggregated because fact
data is duplicated and may cause incorrect aggregation, α, data that may be averaged but not added, and Σ,
data that may also be added. A function AggType:{M1, . . . ,Mm}×D 
→ {Σ, α, c} returns the aggregation
type of a measure Mj when aggregated in a dimension Di ∈ D. Considering only the standard SQL
functions, we have that Σ = {SUM, AVG, MAX, MIN, COUNT}, α = {AV G,MAX,MIN,COUNT},
and c = ∅.
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3 Query Semantics

3.1 Logical Algebra and Query Semantics

In previous work [32], a logical algebra over federations was proposed which is the basis of our work. In
this section, a brief background introduction to the logical algebra, and the original SQLXM query semantics
are given. We then propose a simplified version of the original query semantics.

Decoration A decoration operator, δlz [SEM]/link/xp, builds a decoration dimension using the XML data refer-
enced by a level expression. The decoration dimension consists of the unique top level, the mid-level which
is also called the decoration level and composed of external XML data, and the bottom level to which the
starting level of the level expression (e.g., Nation for Nation[ANY]/Nlink/Population) belongs is defined as
the bottom level of the decoration dimension. For example, Population is the decoration level of the virtual
dimension yielded by Nation[ANY]/Nlink/Population and Supplier is the bottom level. The mid-level dec-
orates the measures of the OLAP database through the bottom level, whose values and their ancestors in the
mid-level are related using the relationship defined by the level expression. The decoration operator enables
the external XML data to become virtually a part of the cube, thereby allowing the following operations
involving XML data to be performed on the federation.

Federation Selection A federation selection operator, σFed[θ], allows the facts from the cube to be filtered
using the external XML data as well as the regular cube data. The predicate can reference any dimension
levels in the federation, including decoration levels. After selection, the cube schema is not changed. Only
facts in the fact table are affected. Note that when referenced by a federation selection or generalized pro-
jection (see below) operator, a decoration level appears in the form of the level expression that yields the
virtual dimension containing the decoration level.

Federation Generalized Projection The generalized federation projection operator, ΠFed[L]<F(M)>, also
lets the federated cube be aggregated over the external XML data. Here, L is a set of levels to which the
federation will be rolled up to, intuitively, the levels in the GROUP BY clause where level expressions
can be present. F(M) is a set of aggregate functions over the specified measures, i.e., the aggregates in the
SELECT clause. Given a set of argument levels, the generalized projection first removes the dimensions in
which no argument levels are present (like the SQL projection), and then each dimension is rolled up to the
specified level, replacing the original dimension values in the facts by their ancestor values in the levels in
L. Finally, facts in the fact table are grouped, the specified measures are aggregated, and other measures not
specified in the arguments are removed.

Semantics of the SQLXM Query Language The semantics of an SQLXM query can be expressed in terms of
the algebra defined above. In the following, suppose: F = (C,Links,X) is a federation. {⊥p, . . . ,⊥q} ⊆
{⊥1, . . . ,⊥n} and {ls, . . . , lt} are levels in C such that ⊥s �s ls, . . . ,⊥t �t lt. le is used to represent
a level expression, l[SEM ]/link/xp, where the decoration semantic modifier is SEM ∈ {ANY,ALL,
CONCAT}, l is a level in C , link ∈ Links is a link from l to documents in X, and xp is an XPath
expression. predwhere represents the predicates in the WHERE clause. predhaving represents the pred-
icates in the HAVING clause. LEΠ = {leuΠ

, . . . , levΠ
} are the level expressions in the SELECT and

GROUP BY clauses. LEσwhere
= {leuσwhere

, . . . , levσwhere
} are the level expressions in the WHERE clause.

LEσhaving
= {leuσhaving

, . . . , levσhaving
} are the level expressions in the HAVING clause. fx, . . . , fy are

the aggregation functions. A sequence of decoration operations is denoted by ∆, that is: ∆{lei,...,lej}(F) =
δlei

(. . . (δlej
(F))). Here is a prototypical SQLXM query: SELECT fx(Mx), . . . , fy(My),⊥p, . . . ,⊥q,

ls(⊥s), . . . , lt(⊥t), leuΠ
, . . . , levΠ

FROM F WHERE predwhere GROUP BY ⊥p, . . . ,⊥q, ls(⊥s), . . . ,
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lt(⊥t), leuΠ
, . . . , levΠ

HAVING predhaving , which can be represented in the logical algebra proposed by
[32] as shown below.

ΠFed[⊥p,...,⊥q,ls(⊥s),...,lt(⊥t),leuΠ
,...,levΠ

]<fx(Mx),...,fy(My)>(
σFed[predhaving](

∆LEσhaving
(

ΠFed[⊥p,...,⊥q,ls(⊥s),...,lt(⊥t),leuΠ
,...,levΠ

]<fx(Mx),...,fy(My)>(
∆LEΠ

(
σFed[predwhere](

∆LEσwhere
(F)))))))

The semantics above implies an SQLXM query can be evaluated in four major steps. First, the cube
is sliced as specified in the WHERE clause, possibly requiring decorations with XML data. Second, the
cube is decorated for the level expressions in the SELECT and GROUP BY clauses which creates a number
of new dimensions in the cube. Then all dimensions, including the new ones, are rolled up to the levels
specified in the GROUP BY clause. Third, the resulting cube is sliced according to the predicate in the
HAVING clause, which may require additional decorations. Fourth, the top generalized projection projects
the decorations not required by the SELECT and GROUP BY clause and gives out the final result cube.

3.2 Simplified Query Semantics

The query semantics have a great impact on generating the initial plan, as the semantics take the form of
a logical query tree in the query engine when an SQLXM query is parsed and analyzed. As the semantics
indicate, duplicate decoration operators are generated when a level expression exists in several sub-clauses,
e.g., the SELECT clause and WHERE clause. As the algebra shows, an operator can take an argument
federation and generate a new one; thus, repeated operators then can be detected by examining the input
and output federations.

The simplified query semantics can be constructed by removing the redundant operators that do not
change the cube semantics. An operator that generates the same federation as the argument federation
is redundant; thus, the plan without redundant operators is more compact, and sometimes considerably
smaller than the unsimplified version. This simplification benefits the performance of the query processing.
First, during the query optimization, the equivalent plans in the plan space can be enumerated much faster.
Intuitively, this process can be looked as the combinations of operators. The less operators a plan has,
the less combinations it results in. Second, smaller plans lead to less logical-to-physical conversion and
cost-estimation time. Third, in the execution phase, no duplicate data is retrieved, thereby leading to high
reusability, and more importantly, less resource consumptions, e.g., CPU, I/O, storage, etc. The simplified
algebraic query representation is shown below.

σFed[predhaving](
ΠFed[⊥p,...,⊥q,ls(⊥s),...,lt(⊥t),leuΠ

,...,levΠ
]<fx(Mx),...,fy(My)>(

∆LEΠ,δ
(

σFed[predwhere](
∆LEσwhere

(F)))))

Here, LEΠ,δ is a set of the decoration operators that are referenced by the SELECT and GROUP BY
clauses only, that is: LEΠ,δ ⊆ LEΠ ∧ LEΠ,δ ∩ LEσwhere

= ∅. Moreover, an instance of a decoration
operator for a specific level expression is unique. In other words, when a virtual dimension for a level
expression already exists in the federation, no decoration operator building the same dimension is needed
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again; therefore, some of the decoration operators for the WHERE clause may build the virtual dimensions
required by the SELECT and GROUP BY clauses as well, that is: LEΠ\LEΠ,δ ⊆ LEσwhere

. ∆predhaving
is

removed because predicates on level expressions in the HAVING clause can be put in the WHERE clause.
The original top generalized projection is also removed, because the HAVING clause does not change the
cube schema. An example query and the corresponding simplified logical plan tree is shown in Figure 7,
where only one decoration, δN [ANY ]/Nl/P , exists below the federation selection, although referenced by
two federation operators.

σF ed[N[ANY ]/Nl/P<30]

Nl=Nlink,N=Nation

ΠF ed[B(P ),N[ANY ]/Nl/P ]<SUM(Q)>

δ[N[ANY ]/Nl/P ]

FTC

B=Brand, P=Part, Q=Quantity,

Figure 7: The initial logical plan

3.3 Introduction to the Physical Algebra

As shown in Figure 6, an execution plan is produced by the query optimizer which is used to guide the
evaluator about when, where, and how the data retrieval and manipulation operations should be performed.
An execution plan is an SQLXM query tree expressed in the physical algebra. The logical semantics of
a query implies the main phases of the query evaluation, whereas a physical query tree is integrated and
extended with more detailed evaluation operations. In the following sections, we introduce the new physical
algebra operators and the new semantics of the existing federation operators, and show an example of a
logical plan and its corresponding physical plan.

In the process of OLAP and XML federation, OLAP data is always put into a temporary component to
be decorated by the decoration data loaded from XML documents. Selections and aggregations then can be
performed in the temporary component over the decorated cube; therefore, the temporary component plays
an important role in the practical query evaluation. Before we describe the physical operators, we extend
the original federation to an extended form, on which our physical algebra is based. An extended federation
is Fext = (C,Links,X, T ), where C is a cube, Links is a set of links between levels in C and documents
in X, and T is a set of temporary tables.

3.4 Querying the OLAP component

Cube operators include cube selection and cube generalized projection. They are used to model the OLAP
component query which is used to retrieve the cube data from the OLAP database.
Cube Selection The cube selection operator σCube is much like a logical federation selection operator, but
has no references to level expressions in the predicates. A cube selection only affects the tuples in the fact
table, thereby returning a cube with the same fact type and the same set of dimensions.

Example 3.1 Suppose the extended federation FTC,ext has the cube schema and the fact table in Sec-
tion 2.1. The cube selection operator σCube[Supplier=′S1 ′ OR Supplier=′S2 ′](FTC ,ext) = F ′

TC ,ext slices the
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TC cube so that only the data for the suppliers S1 and S2 are retained. Nothing but the fact table is affected
in the resulting extended federation. The resulting fact table is shown in Table 1.

Quantity ExtPrice Supplier Part Order Day
17 17954 S1 P3 11 2/12/1996
36 73638 S2 P5 18 5/2/1992
28 29983 S2 P4 42 30/3/1994

Table 1: The fact table after selection

Definition 3.1 (Cube Selection) Let Fext = (C ,Links,X ,T ) be an extended federation, and θ be a predi-
cate over the set of levels {l1, . . . , lk} and measures M1, . . . ,Mm. A cube selection is defined as:
σCube[θ](Fext) = (C ′, Links,X, T ), where C ′ = (N,D,F ′), and F ′ = {t′1, . . . , t′l}. If ti = (e⊥1 , . . . , e⊥n ,

v1, . . . , vm) ∈ F then t′i =
{

ti if θ(ti) = tt
(e⊥1 , . . . , e⊥n , NULL, . . . , NULL) otherwise.

Cube Generalized Projection The cube generalized projection operator ΠCube rolls up the cube, aggregates
measures over the specified levels and at the same time removes unspecified dimensions and measures from
a cube. Intuitively, it can be looked as a SELECT statement with a GROUP BY clause in SQL. The
difference between a cube and a federation generalized projection operator is that the first one does not
involve external XML data or level expressions and is executed in the OLAP component. Intuitively, the
levels specified as parameters to the operator becomes the new bottom levels of their dimensions and all
other dimensions are rolled up to the top level and removed. Each new measure value is calculated by
applying the given aggregate function to the corresponding value for all tuples in the fact table containing
old bottom values that roll up to the new bottom values. To ensure safe aggregation in case of non-strict
hierarchies, we explicitly check for this in each dimension. If a roll-up along some dimension duplicates
facts we disallow further aggregation along that dimension by setting the aggregation type to c.

Example 3.2 Suppose the extended federation FTC,ext has the cube schema and the fact table in Sec-
tion 2.1. The operator ΠCube[Supplier]<SUM(Quantity)>(FTC,ext) = F ′

TC,ext rolls up the cube to the level
Supplier and calculates the Quantity per Supplier. After the projection, only the measure Quantity and the
dimension Suppliers are retained, of which the bottom level is Supplier. The resulting fact table is shown in
Table 2.

Quantity Supplier
17 S1
64 S2
2 S3

26 S4

Table 2: The resulting fact table after the cube generalized projection

Definition 3.2 (Cube Generalized Projection) Let Fext = (C,Links,X, T ) be an extended federa-
tion. li1 , . . . , lik be levels in C such that at most one level from each dimension occurs. The mea-
sure {Mj1 , . . . ,Mjl

} ⊆ {M1, . . . ,Mm} are kept in the cube and fj1, . . . , fjl
are the given aggregate

functions for the specified measures, such that ∀D′
g ∈ {Dg|Dg ∈ D ∧ ⊥g /∈ {li1 , . . . , lik}}∀fjh

∈
{fj1, . . . , fjl

}(fjh
∈ AggType(Mjh

,D′
g)), meaning that the specified aggregate functions are allowed to be

applied. The generalized cube projection operator ΠCube over a cube C is then defined as: ΠCube[li1 ,...,lik ]<

fj1
(Mj1

),...,fjl
(Mjl

)>(Fext) = (C ′, Links,X, T ), where C ′ = (N,D′, F ′), and D′
ih

= (L′
Dih

, E′
Dih

) for

h ∈ {1, . . . , k}. The new poset of levels in the remaining dimensions is L′Dih
= (LS′

ih
,�′

ih
,�ih , lih),
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where LS′
ih

= {lihP |lihP ∈ LSih ∧ lih �ih lihP }, and �′
ih

=�ih|LS′
ih

. Moreover, E′
Dih

= (
⋃

lih∈LS′
ih

Lih ,

�Dih
| ⋃
lih

∈LS′
ih

Lih
), where Lih is the set of dimension values of the level lih . The new fact table is given

by : F ′ = {(e′⊥i1
, . . . , e′⊥ik

, v′j1 , . . . , v
′
jl
)|e′⊥ig

∈ Lig ∧ v′jh
= fMjh

({v|(e⊥1 , . . . , e⊥n , v) ∈ Mjh
∧

(e′⊥i1
, . . . , e′⊥ik

) ∈ Roll-up⊥i1
(e⊥i1

, li1)× . . .×Roll-up⊥ik
(e⊥ik

, lik)})}. Furthermore, if ∃(e⊥1 , . . . , e⊥n ,

vj) ∈ Mjh
∃e ∈ {e⊥1 , . . . , e⊥n}(||Roll-up⊥ig

(e, lig )|| > 1 ∧ vj 	= NULL) then AggType(Mjh
,D′

ig
)=c.

3.5 Data Transfer Between Components

This section presents the definitions of fact-, dimension-, and XML-transfer operators. These operators are
used to transfer data between components. The fact-transfer operator transfers fact data from the OLAP to
the temporary component, whereas a dimension-transfer operator only transfers dimension data. An XML-
transfer operator connects the temporary and XML components, transferring the referenced XML data into
a temporary table.
Fact-Transfer In a physical execution plan, the fact-transfer operator is above the cube operators. The
resulting fact data from the cube operators is transferred to the temporary component through the fact-
transfer operator. Then, SQL operations, e.g., selections and joins, can be performed over the temporary
fact table; therefore, the fact-transfer operator separates the cube operators from the other operators, e.g.
federation selection and generalized projection.

Definition 3.3 (Fact-Transfer) Let Fext = (C,Links,X, T ) be an extended federation. The fact-transfer
operator is φ(Fext) = (C,Links,X, T ′), where T ′ = T ∪ {RF }, RF is the copy of the fact table in the
temporary component.

Dimension-Transfer When a non-bottom level is referred by the federation operations in the temporary
component, dimension values of the non-bottom level are required. The dimension transfer operator ω is
used at this time to load the dimension values for the given dimension levels into a table in the temporary
component, which then can be used by federation selection and generalized projection operators.

Example 3.3 A roll-up expression, Nation(Supplier), yields a dimension transfer. The two input parameters
are Nation and Supplier. The dimension values for the two levels are loaded into a temporary table R1 shown
in Table 3.

Nation Supplier
Denmark S1
Denmark S2

China S3
United Kingdom S4

Table 3: The temporary table R1 for Nation and Supplier

Definition 3.4 (Dimension-Transfer) Let Fext = (C,Links,X, T ) be an extended federation, where the
cube is C = (N,D,F ). Let lix, liy be two levels in dimension Di, and lix �i liy . The dimension-transfer
operator is defined as: ω[lix,liy ](Fext) = (C,Links,X, T ′), where T ′ = T ∪ {R}, R =

{
(eix, eiy)|eix ∈

Lix ∧ eiy ∈ Liy ∧ eix �Di eiy

}
,

In the following, a temporary table for lix and liy by a dimension-transfer operator is denoted as:
Rω[lix,liy ]

. In Example 3.3, the temporary table R1 can be denoted as Rω[Supplier,Nation]
. According to

the definition, the temporary component T′ has a new element, Rω[Supplier,Nation]
.
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XML-Transfer At query execution time, XML data is required in the temporary component to allow group-
ing, decoration, or selection on the cube according to the referenced level expressions. Intuitively, the XML-
transfer operator connects the temporary component and the XML component, transferring the XML data
into the temporary component. The input parameter is a level expression, which specifies the dimension val-
ues to be decorated and the corresponding decoration XML values selected by the relative XPath expression
and the link in the level expression. The operator yields a new table in the temporary component.

Definition 3.5 (XML-Transfer) Let Fext = (C ,Links,X ,T ) be an extended federation, where C = (N ,
D ,F ). Let lz [SEM ]/link/xp be a level expression, where lz ∈ Dz , link ∈ Links is a link from lz to X
and xp is an XPath expression over X. The XML-transfer operator is defined as: τlz[SEM ]/link/xp(Fext) =
(C,Links,X, T ′), where T ′ = T ∪{R}, here R is the temporary table containing the dimension values and
the decoration XML values found through the XML documents with the decoration semantics, ALL, ANY
or CONCAT, specified by the semantic modifier SEM . At query execution time, the ALL semantics yield
the temporary table having multiple rows with the same dimension value but different decoration values,
whereas the table for the ANY semantics has only one row for a dimension value and an arbitrary decora-
tion value linked through the level expression. Similarly, a dimension value decorated with the CONCAT
semantics also takes up one row, but the decoration column is the concatenation of all the decoration values.
In the following descriptions, R is denoted as Rτlz [SEM ]/link/xp

and formally Rτlz [SEM]/link/xp
=

• {(ez, exp)|∀(ez, s) ∈ link(∀s′ ∈ xp(s)(exp = StrV al(s′)))}, if SEM = ALL.

• {(ez, exp)|∃(ez, s) ∈ link(exp = StrV al(s′)for some s′ ∈ xp(s))}, if SEM = ANY .

• {(ez, exp)|(ez, s) ∈ link ∧ exp = Concat(StrV al(s1), . . . , StrV al(sk)) ∧ si ∈ Sez}, where Sez =
{s|∀(e, s′) ∈ link(s ∈ xp(s′))}, for each ez ∈ Lz , if SEM = CONCAT .

Example 3.4 The operator τNation[ANY ]/Nlink/Population (FTC,ext) generates a new extended federation
F ′

TC,ext = (C,Links,X, T ′), where T ′ contains a new temporary table RτNation[ANY ]/Nlink/Population
. The

table has two columns, one for the dimension values of Nation and the other for the decoration values Pop-
ulation. A decoration value is the string value of a Population node in the context of the nodes in Nlink.
Each nation has one population as specified by the decoration semantics, ANY. The resulting temporary
table RτNation[ANY ]/Nlink/Population

using the XML data from Figure 2 is shown in Table 4.

Nation Population
Denmark 5.3

China 1264.5
United Kingdom 19.1

Table 4: The temporary table for Nation and Population

3.6 Querying the Temporary Component

This section presents the definitions of the operators that are performed in the temporary component. They
are the decoration, federation selection and generalized projection operators, which allow the OLAP data to
be decorated, selected and grouped by the external XML data.
Decoration The cube is decorated in the temporary component using the decoration operator δ, which has
a level expression as the parameter. The operator generates a decoration dimension. The new dimension
has the unique top level, the middle decoration level, and the bottom level of the dimension containing the
starting level of the parameter level expression; therefore, the new dimension has the same aggregation type
as the referred dimension with each measure. Values of the levels are derived from a temporary table, which
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is composed of the decoration values and the bottom values of the referred dimension. The decoration
dimension is derived according to the cube semantics, that the fact table contains the bottom levels of
all dimensions. Moreover, since the cube definition does not allow duplicate dimensions, no changes are
made if an identical dimension already exists in the cube. In the evaluation of the decoration operator,
the temporary table created by the XML-transfer operator having the same parameter level expression is
used. The new dimension follows the same decoration semantics specified by the level expression. Correct
aggregations on such a decoration dimension is ensured by the federation generalized projection operator
in Definition 3.8. A physical decoration operator may have more than one child operator. For example, one
child operator could be an XML-transfer operator with the same level expression as the input parameter,
thereby providing the XML data in a temporary table. The formal definition is below.

Example 3.5 The decoration operator for Nation[ANY]/Nlink/Population generates a decoration dimen-
sion containing the top level �, the middle level Population, and the bottom level Supplier which is the
bottom level of the dimension having the starting level Nation. The dimension values are derived from the
result of a SQL inner join on the temporary tables of Examples 3.3 and 3.4. The dimension hierarchy is strict
since a supplier in a nation only has one corresponding population number. Figure 8 shows the dimension
and the temporary table.

19.1

S1 S2 S3 S4

5.35.3 1264.5

Supplier Population

S2
S3
S4

S1 5.3
5.3

1264.5
19.1

�
Nation[ANY]/NLink/Population

Figure 8: The decoration dimension and the temporary table Nation/Population

Definition 3.6 (Decoration) Let Op1 , . . . ,Opn be the child operators of a decoration operator
δlz [SEM ]/link/xp. Let (C ,Links,X ,T1 ), . . . , (C ,Links,X ,Tn ) be their output federations, where C =
(N,D,F ). Let lz[SEM ]/link/xp be a level expression, where lz ∈ Dz , link ∈ Links is a link from lz to
X and xp is an XPath expression over X. The physical decoration operator is defined as: δlz [SEM ]/link/xp(
Fext) = (C ′, Links,X, T ′) where Fext = (C,Links,X, T ) is the input, T = T1 ∪ . . .∪Tn is the union of
the temporary tables from the child operators. In the output federation, T′ = T ∪{RDn+1}, RDn+1 is a tem-
porary table holding the dimension values of the bottom level ⊥z, and the XML level lxp, n is the number of
the existing dimensions before the decoration. More precisely, suppose Rτlz [SEM]/link/xp

∈ T is a temporary
table loaded by an XML-transfer operator, Rω[⊥z,lz ]

is a temporary table loaded by a dimension-transfer op-
erator, then RDn+1 = π⊥z ,lxp(Rτlz [SEM]/link/xp

) if lz = ⊥z, otherwise, RDn+1 = π⊥z ,lxp (Rτlz [SEM ]/link/xp
�

Rω[⊥z ,lz ]
)if ⊥z �z lz , where π is the regular SQL projection, and � is the natural join. The resulting cube

is given by: C′ = (N,D′, F ), where D′ = {D1, . . . ,Dn} ∪ {Dn+1} and Dn+1 = {LDn+1 , EDn+1}. Here,
LDn+1 = (LSn+1 ,�n+1 ,�n+1 ,⊥n+1), where LSn+1 = {�n+1 , lxp ,⊥n+1}, �n+1= {(⊥n+1, lxp), (lxp,
�n+1), (⊥n+1,�n+1)}, and ⊥n+1 = ⊥z. The poset of dimension values is EDn+1 = (

⋃
(ei,ej)∈RDn+1

{ei, ej}∪

{�n+1},�Dn+1), where �Dn+1= {(e⊥n+1 , exp)|(e1, e2) ∈ RDn+1 ∧ e⊥n+1 = e1 ∧ exp = e2} ∪ {(e⊥n+1 ,
�n+1)|(e1, e2) ∈ RDn+1 ∧ e⊥n+1 = e1} ∪ {(exp,�n+1)|(e1, e2) ∈ RDn+1 ∧ exp = e2}. For each measure
Mh in M the aggregation type of Dn+1 is: AggType(Mh,Dz).

Federation Selection Intuitively, the physical federation selection operator σFed is a SQL selection over
the join of several tables, including the fact table, decoration dimension tables and temporary dimension
tables for non-bottom levels referenced by the predicates. Similarly to the cube selection, the federation
selection returns a cube with the same fact types and the same set of dimensions, and only affects the tuples
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of the fact table, however, in the temporary component. A federation selection operator may have several
child operators, e.g., dimension-transfer and decoration operators, to provide the values required by the
predicates. The temporary tables produced by the child operators are collected and will be used in the join.

Example 3.6 Suppose the temporary fact table in FTC,ext is the copy of the fact table in Figure 3. For the
federation selection σFed[Nation[ANY ]/Nlink/Population<30](FTC,ext), the decoration values Population are
needed to filter the fact data; therefore, a SQL SELECT statement is issued against the join of the temporary
table in Figure 8 and the temporary fact table, with the predicate on the decoration level and all the columns
from the fact table in the SELECT clause. See Figure 9 for the query and the fact table.

SELECT Fact.*
FROM Fact F,

Nation[ANY]/Nlink/Population P
WHERE F. Supplier=P. Supplier

AND P.Population<30

Quantity ExtPrice Supplier Part Order Day
17 17954 S1 P3 11 2/12/1996
36 73638 S2 P5 18 5/2/1992
28 29983 S2 P4 42 30/3/1994
26 26374 S4 P2 20 10/11/1993

Figure 9: The SQL query and the resulting fact table

Definition 3.7 (Federation Selection) Let Op1 , . . . ,Opn be the child operators of a federation selection
operator, (C,Links,X ,T1 ), . . . , (C ,Links,X ,Tn ) be their output federations, where C = (N,D,F ). Let
θ be a predicate over the levels in C . The federation selection operator is defined as: σFed [θ](Fext) = (C ′,
Links,X ,T ′), where the input is Fext = (C ,Links ,X, T ), and T = T1 ∪ . . . ∪ Tn is the union of the
temporary tables from the child operators. In the output federation, T′ = T\{RF} ∪ {R′

F} means the
temporary fact table RF is replaced by R′

F . The resulting cube is C′ = (N,D,F ′), where the new
fact table is F ′ = {ti|ti ∈ R′

F}. Suppose Sθ is the set of levels referenced by θ. The new tem-
porary fact table is R′

F = σθ(RF ), if Sθ = {⊥1 , . . . ,⊥l} meaning the predicates only contain the bot-
tom levels. Otherwise, if Sθ has roll-up or level expressions, that is, {lx (⊥x ), . . . , ly(⊥y)} ⊆ Sθ, and
{lu [SEMj ]/linkj /xpj , . . . ,lv [SEMk ]/linkk/xpk ) ⊆ Sθ, then R′

F = πRF .∗(σθ(RF � Rω[⊥x,lx]
� . . . �

Rω[⊥y,ly ]
� Rτlu[SEMj ]/linkj/xpj

� . . . � Rτlv [SEM]/linkk/xpk
)).

Federation Generalized Projection Similar to the federation selection, the federation generalized projec-
tion operator ΠFed is also implemented as a SQL SELECT statement over a set of temporary tables. More
specifically, a roll-up is a join between the fact table and the temporary table containing the bottom level
and the target level, where the common bottom level is taken as the key of the join. Likewise, showing the
decoration values together with OLAP values in the result also can be implemented as a roll-up from the
bottom level to the decoration level of a decoration dimension. Finally, a SQL aggregation calculates the
given aggregate functions of the measures over the grouped facts according to the SELECT and GROUP
BY arguments. Note that when performing roll-ups, correct aggregation must be ensured by detecting hier-
archy strictness explicitly, e.g., the dimension values of the two levels. If a roll-up along some dimension
duplicates facts we disallow further aggregation along that dimension by setting the aggregation type to not
available.
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Example 3.7 Suppose the temporary fact table in FTC ,ext is the copy of the fact table in Figure 3. For
the operator ΠFed [Nation[ANY ]/Nlink/Population]<SUM (Quantity)>(FTC,ext), the temporary decoration table
containing values of Population and Supplier is needed to perform the roll-up, while the other dimensions
and measures (not specified in the SELECT clause) will be removed from the cube; therefore, a SQL query
is issued against the temporary table from Figure 8 and the temporary fact table with only Population and
SUM(Quantity) in the SELECT and GROUP BY clauses. Table Nation/Population is strict, therefore further
aggregation is allowed along this decoration dimension. See Figure 10 for the query and the fact table.

SELECT SUM(Quantity), Population
FROM Fact F,

Nation[ANY]/Nlink/Population P
WHERE F.Supplier=P. Supplier
GROUP BY Population

Quantity Population
81 5.3
2 1264.5

26 19.1

Figure 10: The SQL query and the resulting fact table

Definition 3.8 (Federation Generalized Projection) Let Op1 , . . . ,Opn be the child operators of a fed-
eration generalized projection operator, (C ,Links,X ,T1 ), . . . , (C ,Links,X ,Tn) be their output federa-
tions, where the cube is C = (N ,D ,F ). Let lu [SEMj ]/linkj /xpj , . . . ,lv [SEMk ]/linkk/xpk be level ex-
pressions, ⊥p, . . . ,⊥q be bottom levels, ls(⊥s), . . . , lt (⊥t) be roll-up expressions, and Dj , . . . ,Dk be the
dimensions built for the preceding level expressions containing the decoration levels lxpj , . . . , lxpk

. Fur-
thermore, let fx, . . . , fy be aggregate functions over the levels {Mx, . . . ,My} ⊆ {M1, . . . ,Mm} such that
∀fz ∈ {fx, . . . , fy}∀Dg ∈ {Ds, . . . ,Dt,Dj , . . . ,Dk}(fz ∈ AggType(Mz ,Dg)}. The ΠFed operator is
defined as: ΠFed[⊥p,...,⊥q,ls(⊥s),...,lt(⊥t), lu[SEMj]/linkj/xpj ,...,lv[SEMk]/linkk/xpk]<fx(Mx),...,fy(My)>(Fext) =
(C ′,Links,X ,T ′), where Fext = (C ,Links,X ,T ) is the input, T = T1 ∪ . . . ∪ Tn is the union of the
temporary tables from the child operators. In the output federation, C′ = (N,D′, F ′) is the updated
cube. After the projection, only the temporary table containing the values required by the federation
projection are retained, that is, T′ = {R′

F , Rω[⊥s,ls]
, . . . , Rω[⊥t,lt]

, RDj , . . . , RDk
}, where RDj , . . . , RDk

are built by the decoration operators for lu [SEMj ]linkj /xpj , . . . , lv [SEMk ]linkk/xpk . Unspecified dimen-
sions are also rolled up to the top level and projected away; therefore, the set of dimensions is given as:
D′ = {Dp , . . . ,Dq ,D ′

s , . . . ,D ′
t ,D ′

j , . . . ,D
′
k}, where the ordering of dimension values, the hierarchies

of levels and the aggregation types are updated in the same way as for the cube generalized projection
operator. Moreover, the fact table is given as: F′ = {ti|ti ∈ R′

F }, where the temporary fact table is
R′

F = {ti|ti ∈ ⊥p,...,⊥q,ls,...,lt,lxpj ,...,lxpk
Gfx(Mx),...,fy(My)(RF,intermediate)}, where RF,intermediate = RF �

Rω[⊥s,ls]
� . . . � Rω[⊥t,lt]

� RDj � . . . � RDk
, G is the SQL aggregation.

3.7 Inlining XML Data

The inlining operator ι is used to rewrite the selection predicates such that a referenced level expression
can be integrated into a predicate by creating a more complex predicate that contains only references to
regular dimension levels and constants. Without inlining, the OLAP and XML components can be accessed
in parallel, followed by computation of the final result in the temporary component, e.g., selection of the
OLAP data according to XML data; therefore, when selection predicates refer to decoration values, a large
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amount of OLAP data has to be transferred into the temporary component before it could be filtered. In
this situation, it is often advantageous to make the OLAP query dependent on the XML queries. That is,
for the predicates referring to level expressions, the XML data and the decorated dimension values are first
retrieved. After this, the level expressions are inlined into the predicates which then only refer to dimension
levels and constants but have the identical effects as the original ones; thus, the selection can be performed
over the cube, and thereby reducing the cube size effectively before the data is transferred to the temporary
component.

Example 3.8 Consider the predicate: Nation[ANY ]/Nlink/Population < 30 . The decoration data and
the decorated dimension values are retrieved from the XML-transfer operator in Example 3.4. Using the
result, the predicate is transformed to: Nation =’Denmark’ OR Nation =’United Kingdom’ .

Definition 3.9 (Inlining) Let θ1, . . . , θn be predicates referencing level expressions. θi has the following
possible formations:

θi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1. lz [SEM ]/link/xp po K , where K is a constant
2. lz [SEM ]/link/xp po lw , where lw is a level
3. lz [SEM ]/link/xp po M , where M is a measure
4. lz [SEM1 ]/link1/xp1 po lw [SEM2 ]/link2/xp2

5. lz [SEM ]/link/xp IN (K1 , . . . ,Kn), where Ki

is a constant value.
6. NOT (θi1 )
7. θi1 bo θi2

where, the binary operator bo is AND or OR, the predicate operator po is one of : =, <,>,<>,>=
, <=, and LIKE. Let F = (C,Links,X) be a federation, where C = (N,D,F ) is the original cube.
lj/link1/xp1, . . . , lk/linkm/xpm are the level expressions referenced by θ1, . . . , θn. The ι operator is de-
fined as: ι[θ1,...,θn](τlj/link1/xp1

(Fext,1), . . . , τlk/linkm/xpm
(Fext ,m)) = (C ,Links,X ,T ′), where Fext,i =

{C,Links,X, Ti} is an extended federation with a temporary component Ti which is an empty set, and
τlj/link1/xp1

(Fext,1), . . . , τlk/linkm/xpm
(Fext,m) are the XML-transfer operators used to load decoration

values referenced by the level expressions into Ti, 1 ≤ i ≤ m . The resulting temporary component
T ′ has new temporary tables, that is: T′ = T ∪ {Rτlj/link1/xp1

, . . . , Rτlk/linkm/xpm
}. The inlining operator

is positioned at the bottom of a physical plan above the XML-transfer operators and rewrites the predicates
in its parameter list to θ′1, . . . , θ′n. As a consequence, the other occurrences of these predicates in the plan
change accordingly. To provide the decoration values required by the inlining operator, the child XML-
transfer operators are always executed first, the rest part of the plan is executed after the inlining processes
are finished. The transforming function T (θi) rewrites θi to θ′i, which returns the rewritten predicate for
each listed formation, respectively. That is, θ′i =

1. lz IN (t1, . . . , tn), where ti ∈ {ez|(ez , exp) ∈ Rτlz [SEM]/link/xp
∧ exp po K = true}.

2. lz = ez1 AND exp1 po lw OR . . . OR lz = ezn ANDexpn po lw, where (ezi, expi) ∈ Rτlz [SEM]/link/xp
.

3. lz = ez1 AND exp1 po M OR . . . OR lz = ezn ANDexpn po M , where (ezi, expi) ∈ Rτlz [SEM]/link/xp
.

4. (lz = ez1 AND lw = ew1 AND exp11 po exp21 OR . . . OR lz = ez1 AND lw = ewn AND
exp11 po exp2n) OR . . . OR (lz = ezm AND lw = ew1 AND exp1m po exp21 OR . . . OR
lz = ezm AND lw = ewn AND exp1m po exp2n), where (ezi, exp1i) ∈ Rτlz [SEM]/link1/xp1

,
(ewi, exp2i) ∈ Rτlw[SEM]/link2/xp2

.

5. T (lz[SEM ]/link/xp = K1) OR . . . OR T (lz [SEM ]/link/xp = Kn).
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δ[N[ANY ]/Nl/P ]

Nl=Nlink,N=Nation

ΠF ed[B(P ),N ]<SUM(Q)>

σF ed[(N[ANY ]/Nl/P<30)′]

FTC

ΠF ed[B(P ),N[ANY ]/Nl/P ]<SUM(Q)>

B=Brand, P=Part, Q=Quantity,

(a) Logical plan

FTC,ext

φ

δ[N[ANY ]/Nl/P ]

σCube[(N[ANY ]/Nl/P<30)′]

ι[N[ANY ]/Nl/P<30]

τN[ANY ]/Nl/P

ΠCube[B,N ]<SUM(Q)>

ΠF ed[B(P ),N[ANY ]/Nl/P ]<SUM(Q)>

(b) Physical plan

Figure 11: A logical plan and its corresponding physical plan

6. NOT (T (θi1)).

7. T (θi1) bo T (θi2).

Example 3.9 In this example, we show a logical plan and its corresponding physical plan. The plan is
enumerated by the query optimizer for the query in Figure 5. The plan is selected so that it is possible to
show more physical operators. The logical plan always yields a unique physical plan. A logical operator in
a certain context can only be converted to one corresponding physical operator accompanied by other oper-
ators that provide data or construct new predicates; thus, a logical plan can be deterministically converted
to a physical plan.

In Figure 11(a), the predicate “N/Nl/P < 30” is marked to be rewritten and no longer refers to the
level expression at execution time. It means the federation selection can then be executed directly in the
OLAP component. The bottom two federation operators perform the selection and partial aggregation on
the federation before the cube is decorated. Besides the measure Quantity, only the dimensions Part and
Suppliers are retained after the projection, but it still allows the decoration afterwards. The top federation
generalized projection rolls up the dimensions to the specified levels and calculates the aggregate functions
over the specified measure.

The corresponding physical plan is shown in Figure 11(b). The plan is executed in a bottom-up fashion.
The XML-transfer operator retrieves the dimension values and their decoration data, followed by the inlin-
ing operator which is required by the predicate in the logical plan which is marked to be rewritten. After the
predicate is rewritten by the inlining operator, the cube selection slices the cube using the new predicates,
followed by the cube generalized projection operator which rolls up the cube to levels Brand and Nation. As
an optimized plan, it aggregates the cube as much as possible, therefore unspecified dimensions are rolled
up to the top level and removed. The dimension Part is rolled up to Brand as it is required in the SELECT
clause. The dimension Suppliers is rolled up to Nation and it is still possible to perform the decoration after-
wards. The two cube operators are converted from the two corresponding federation operators at the bottom
of the logical plan, which do not refer to external data and can be executed in the OLAP component to re-
duce the data transferred between components. The fact-transfer operator is responsible for transferring the
returned OLAP data to the temporary component after the cube operators process the cube. The decoration
and the federation generalized projection operators are performed in the temporary component. Since the
starting level Nation is the current bottom level of Suppliers and Nation[ANY]/Nlink/Population is already
evaluated by the bottom XML-transfer operator, the decoration operator directly uses the dimension values
for Nation from Nlink and the corresponding population data to generate the decoration dimension. If the
bottom level is Supplier, a dimension-transfer is required as a child operator of δ to create a table for Nation

16



and Supplier which is then joined with the table for the level expression to create the decoration dimension
linking the facts and the decoration data. The top federation generalized projection operator utilizes SQL
operations to roll up the cube furthermore to the decoration level Population. Also, the dimension Orders is
rolled up to the top level and removed.

4 Query Evaluation

This section describes the topics related to the physical algebra in the following sequence. First, the logical-
to-physical plan conversion is introduced, where the conversion rules transforming logical operators to
physical operators and the conversion algorithm manipulating the rules and building the full corresponding
physical plans are described. Second, how a physical plan is executed is introduced. There, the evaluation
algorithm describes the execution of a whole plan, whereas the following part describes how each operator
is evaluated.

4.1 Conversion to Physical Plans

This section describes the conversion of logical query plans into query plans expressed in the physical
algebra. A logical query plan is composed of logical operators, where tasks are described on an abstract
level. The conversion uses physical operators to replace the logical operators in order to integrate more
concrete operational details, e.g., predicate rewriting and intermediate table generations.

Algorithms for Converting Logical Query Plans The algorithm for converting logical plans is shown
in Figure 12 in pseudo-code with C-like “// ” for comments. Operators in the algorithm are manipulated
through memory references. The convert function takes the root operator of a logical query plan and returns
the root operator of the resulting physical query plan. Given the root, convert builds a physical query plan
in a bottom-up fashion, after first recursively descending to bottom. The bottom federation is first turned
into an extended federation with a temporary component to store the temporary data. The algorithm then
converts the operator above to a physical operator by first examining the context and then applying the
suitable rules. The context refers to the current operator type, the operator’s position, the parameters and
the existence of certain operators in the plan. New operators can also be generated to accomplish the desired
effect. For example, an operator which applies the inlining technique is needed if a predicate is marked to
be rewritten. This process goes on until the root logical operator is converted. The algorithm also partitions
the physical plan into different parts so as to schedule the execution tasks in different components. For
example, the lower cube operators select and aggregate the cube, whereas the top federation selections and
generalized projections generate the final result based on the temporary data. The fact-transfer operator
in between connects the two partitions, allowing the data from the OLAP component to be used in the
temporary component.

In the following descriptions, child operators will be expressed as arguments of the parent operator and
an extended federation produced by an operator can be used to represent a sub-plan. For example, the plan
rooted at the decoration operator in Figure 11(b) is represented as: δNation[ANY ]/Nlink/Population (FTC ,ext ,φ),
where FTC,ext,φ is the output extended federation by the fact-transfer φ below, representing the sub-plan
with the fact-transfer operator as the root.

Expanding Logical Decoration According to Definition 3.6, a temporary table or a join of two temporary
tables is needed to generate a decoration dimension having the decoration level and the bottom level which
will be used as the key to join the temporary fact table; therefore, transfer operators, i.e., XML-transfer and
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operator convert(operator op)
1) {
2) ifop is a federation
3) turn op into an extended federation and return op;
4) else
5) get the child operator op child of op;
6) operator op ′

child = convert(opchild);
7) put op ′

child below op;
8) if op is a federation selection operator
9) if the predicates of op should be rewritten to reference only dimension values
10) replace op with a cube selection using Rule 4; // to select from the cube in the OLAP component.
11) generate an inlining operator using Rule 5; // to inline XML data at execution time.
12) else
13) if op does not reference any level expressions and is below all decorations
14) replace op with a cube selection using Rule 4; // to select the cube in the OLAP component.
15) else
16) expand op using Rule 3; // add dimension-transfer operators as children
17) // of op to load required temporary values.
18) else
19) if op is a federation generalized projection operator
20) if op does not reference any level expressions and is below all decorations
21) replace op with a cube generalized projection using Rule 4; // to aggregate the cube
22) // in the OLAP component.
23) else
24) expand op using Rule 2; // add dimension-transfer operators as children
25) // of op to load required temporary values.
26) else
27) if op is a decoration operator
28) expand op using Rule 1; // add XML-transfer and dimension-transfer operators as children
29) // of op to load required temporary values.
30) if op is the lowest decoration operator
31) generate a fact-transfer operator below op using Rule 6; // put a fact-transfer operator in
32) //the plan to transfer the result of the cube operators to the temporary component.
33) if op is the root operator and no fact-transfer exists in the tree // when no fact-transfer operator is
34) //created because no decoration operators are present.
35) generate a fact-transfer operator using Rule 6; // execute all the operators in the OLAP component.
36) return the root operator of this sub-plan;
37) }

Figure 12: Transforming the logical query tree
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dimension-transfer operators, are generated as child operators below a decoration operator, when temporary
tables containing the desired values are not present.

Rule 1 (Expanding Logical Decoration) The logical decoration operator over F = (C,Links,X) is
δlz [SEM ]/link/xp(F) = F ′, where F ′ = (C ′, Links,X) is the logical federation generated by the logical
decoration operator. During conversion, the extended federation generated by the lower physical operator
is Fext = (C,Links,X, T ). The corresponding physical operator has the following formations according
to different contexts.

• If the values used to construct the bottom level and the decoration level of the decoration dimension
are not pre-sent in the temporary component, that is if ⊥z 	= lz∧Rω[⊥z,lz ]

/∈ T∧Rτlz [SEM]/link/xp
/∈ T ,

the physical decoration operator is δlz [SEM ]/link/xp(τlz [SEM ]/link/xp(Fext ,1 ), ω[⊥z ,lz ](Fext ,2 ),Fext)
= (C ′,Links,X ,T ′), where Fext ,1 = (C ,Links,X ,T1 ) and Fext ,2 = (C ,Links,X ,T2 ), here T1

and T2 are the empty sets to store temporary tables, and T′ = T ∪ {Rτlz [SEM]/linki/xp
, Rω[⊥⊥z,lz

]
}.

• If the values of the bottom level are already present or the values can be retrieved by evaluating the
level expression, i.e., if (⊥z = lz ∨ Rω[⊥z ,lz ]

∈ T )∧Rτlz [SEM ]/link/xp
/∈T , the physical decoration op-

erator is δlz [SEM ]/link/xp(τlz [SEM ]/link/xp(Fext ,1 ),Fext ) = (C ′,Links,X ,T ′), where Fext,1 = (C,
Links,X, T1), T1 is an empty set for temporary tables, and T′ = T ∪ {Rτlz [SEM]/linki/xp

}.

• If only the values of the bottom level are not present, i.e., if ⊥z 	= lz ∧ Rω[⊥z ,lz ]
/∈ T ∧ Rτlz [SEM ]/link/xp

∈ T , the physical decoration operator is δlz [SEM ]/link/xp(ω[⊥z ,lz ](Fext ,1 ),Fext ) = (C ′,Links,X ,T ′),
where Fext ,1 = (C ,Links,X ,T1 ), T1 is an empty set used to store the temporary tables, and T′ =
T ∪ {Rω[⊥z,lz ]

}.

• Otherwise, the physical decoration operator has no new child operators, because the values for
building the decoration dimension are already present in T . The physical decoration operator is:
δlz [SEM ]/link/xp(Fext) = (C ′,Links,X ,T ′), where no temporary tables is built, that is, T′ = T .

Example 4.1 According to the rule, the logical decoration operator in Figure 11(a) yields the decoration
operator in the corresponding physical plan in Figure 11(b). The dimension-transfer operator is not needed
because the starting level Nation of the level expression is now the bottom level of the dimension Suppliers
and the values for Nation can be retrieved from the link data. Since the required XML-transfer operator
τNation[ANY ]/Nlink/Population is already present at the bottom of the physical plan tree (see Rule 5), the
temporary table it generates can be directly used by the decoration operator.

Converting Logical Federation Generalized Projection and Selection to Physical Operators The physi-
cal federation generalized projection and selection operators need to join the fact table with temporary tables
to roll up the cube to, or evaluate the predicate on higher levels, i.e., the levels whose values do not exist in
the temporary fact table; therefore, in the process of converting a logical federation generalized projection
operator, new dimension-transfer operators are created as child operators to load the dimension values for
the non-bottom levels in the logical federation projection’s parameters, if the required temporary values do
not exist in the temporary component.

Rule 2 (Converting Logical Federation Generalized Projection) The logical federation generalized pro-
jection operator (FGP) over F = (C ,Links,X ) is ΠFed[⊥p,...,⊥q,ls(⊥s), ...,lt(⊥t),leu,...,lev]<fx(Mx),...,fy(My)>

(F) = F ′, where F ′ = (C ′, Links,X) is the output federation, {ls(⊥s), . . . , lt(⊥t)} is a set of roll-
up expressions, and leu, . . . , lev are level expressions which yields the decoration operators below in the
logical plan. During conversion, Fext = (C,Links,X, T ) is the output of the lower sub-tree, where
logical operators are transformed to physical operators. The corresponding physical FGP operator is
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ΠFed [⊥p ,...,⊥q ,ls(⊥s),...,lt (⊥t ),leu ,...,lev ] <fx (Mx ),...,fy(My )>(ω[⊥i ,li ](Fext ,1 ), . . . , ω[⊥j ,lj ](Fext ,n),Fext) = (C ′,
Links,X, T ′), where, the roll-up expressions {li(⊥i), . . . , lj(⊥j)} ⊆ {ls(⊥s), . . . , lt(⊥t)} yield the pa-
rameters for the dimension-transfer operators, which are then used to load the values not existing in T , that
is, ∀lk(⊥k) ∈ {li(⊥i), . . . , lj(⊥j)}(Rω[⊥k,lk]

/∈ T ). Moreover, Fext,1 = (C,Links,X, T1), . . . ,Fext,n =
(C,Links,X, Tn), where T1, . . . , Tn are empty sets and n = |{li(⊥i), . . . , lj(⊥j)}|. In the output extended
federation, C′ is the same as in F′. And T ′ = T ∪ {Rω[⊥i,li]

, . . . , Rω[⊥j,lj ]
}.

Similarly, when converting a logical federation selection operator, new dimension-transfer operators are
created as child operators to load the dimension values for the non-bottom levels referred by the predicates,
if the required temporary values are not loaded in the temporary database.

Rule 3 (Converting Logical Federation Selection) The logical federation selection operator over F = (C ,
Links,X ) is σFed [θ](F) = F ′, where F ′ = (C ′,Links,X ) is the output federation. Let Sθ be the set of
levels in θ and {lx (⊥x ),. . . , ly(⊥y)} ⊆ Sθ be a set of roll-up expressions. During conversion, Fext = (C ,
Links,X ,T ) is the output of the lower sub-tree, where logical operators are transformed to physical opera-
tors. The corresponding physical federation selection is: σFed [θ](ω[⊥i ,li ](Fext ,1 ), . . . , ω[⊥j ,lj ](Fext ,n),Fext))
= (C ′, Links,X, T ′), where, the roll-up expressions {li (⊥i), . . . , lj (⊥j )} ⊆ {lx (⊥x ), . . . , ly(⊥y)} yield
the parameter levels for the new dimension-transfer operators, which are then used to load values not exist-
ing in T, that is, ∀lk(⊥k) ∈ {li(⊥i), . . . , lj(⊥j)}(Rω[⊥k,lk]

/∈ T ). Moreover, Fext ,1 = (C ,Links,X ,T1 ),
. . . ,Fext ,n = (C ,Links,X ,Tn), where T1, . . . , Tn are empty sets and n = |{li(⊥i), . . . , lj(⊥j)}|. In the
output extended federation, C′ is the same as in F′. And T ′ = T ∪ {Rω[⊥i,li]

, . . . , Rω[⊥j,lj ]
}.

Example 4.2 The top federation generalized projection operator in Figure 11(a) is converted to the oper-
ator at the top of the corresponding physical plan in Figure 11(b). Because the lower federation gener-
alized projection operator in the logical plan has rolled up the dimension Parts to the level Brand, there
is no dimension-transfer operators below the physical federation generalized projection. Otherwise, ΠFed[

Brand(Part),Nation[ANY]/Nlink/Population](FTC) is converted to ΠFed [Brand(Part),Nation[ANY ]/Nlink/Population](
ω[Part,Brand](FTC,ext,δ,1),FTC,ext,δ), if Parts has Part as the bottom level. Here FTC,ext,δ is the output
extended federation of the lower decoration operator, FTC,ext,δ,1 is the same as FTC,ext,δ except that the set
of temporary tables is empty.

Replacing Federation Generalized Projection and Federation with Cube Operators A logical federa-
tion selection can be replaced by a cube selection if the federation selection operator does not reference level
expressions, i.e., selection can be performed directly in the OLAP component when no external XML data
is required. A logical federation selection can also be replaced if the predicate is rewritten at execution time
to reference only dimension values. Using cube operators can reduce the amount of data being transferred
between the OLAP and the temporary components. Similarly, a logical federation generalized projection
can be replaced by a cube generalized projection when no level expressions are referred by the projection.

Rule 4 (Replacing Logical Operators by Cube Operators) Suppose the logical federation selection over
F = (C ,Links,X ) is σFed[θ](F) = (C ′, Links,X). Let Sθ be the set of levels in θ and has no references
to level expressions. During conversion, Fext = (C,Links,X, T ) is the output of the lower sub-tree, where
operators are transformed to physical. The cube selection operator, σCube[θ](Fext) = (C ′,Links,X ,T ), is
used to replace the logical federation selection.

Suppose the logical federation generalized projection operator over F = (C ,Links,X ) is ΠFed [⊥p ,...,⊥q ,

ls(⊥s ),...,lt(⊥t )]<fx (Mx ),...,fy (My )>(F) = (C ′,Links,X ) which does not refer to level expressions. During
conversion, Fext = (C ,Links,X ,T ) is the output of the lower sub-tree, where operators are physical. The
cube generalized projection operator, ΠCube[⊥p ,...,⊥q ,ls ,...,lt ]<fx (Mx ),...,fy(My )>(Fext) = (C ′,Links,X ,T ), is
used to replace the logical federation generalized projection.
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Example 4.3 According to the rule, the federation selection and generalized projection operators in Fig-
ure 11(a) are replaced by the cube selection and generalized projection operators in Figure 11(b), respec-
tively. The cube selection inherits the same parameter, whereas the parameters of the other operator are the
highest levels that the cube can be rolled up to. At execution time, when the marked predicate is rewritten,
the two cube operators are executed in the OLAP component.

Generating an Inlining Operator An inlining operator is needed to rewrite a predicate of a federation
selection to reference only dimension levels and constants at execution time.

Rule 5 (Generating an Inlining Operator) Suppose in the process of conversion that θp is the predicate
of a logical federation selection σFed to be rewritten by inlining the level expressions, lj /link1j /xp1j , . . . ,
lk/linkmk

/xpmk
. The logical federation selection is first replaced by a cube selection σCube and outputs

Fext ,σCube
= {CσCube

,Links,X ,TσCube
}. An inlining operator and required XML-transfer operators are

generated at the bottom of the query plan as ι[θp ](τlj /link1j /xp1j
(Fext ,1j ), . . . , τlk/linkmk

/xpmk
(Fext ,mk

)) =
(C ,Links,X ,T ′), where the components are described in Definition 3.9. Moreover, the temporary tables
in T ′ propagate upwards along the plan tree and add themselves into the sets of temporary tables in the
output extended federations of the operators passed by, until σCube is reached and the output extended fed-
eration is changed to Fext,σCube

= (CσCube
, Links,X, T ′

σCube
), where T ′

σCube
= TσCube

∪ T ′, meaning the
new temporary tables can be used by other operators afterwards. If an lining operator is already gener-
ated at the bottom, then θp is added into the parameters of the existing inlining operator and the required
XML-transfer operators are added as children operators, that is, ι[θ1 ,...,θn ,θp ](τlu/link1u /xp1u

(Fext ,1u ), . . . ,
τlv/linkmv /xpmv (Fext,mv ),τlj /link1j

/xp1j
(Fext ,1j ), . . . , τlk/linkmk

/xpmk
(Fext ,mk

)), where θ1, . . . , θn are the exist-

ing predicates of the inlining operator and τlu/link1u /xp1u
(Fext ,1u ), . . . , τlv/linkmv /xpmv

(Fext,mv ) are the ex-
isting XML-transfer operators at the bottom of the plan. The new temporary tables will propagate upwards
in the same way as explained above.

Example 4.4 The federation selection operator in Figure 11(a) is first replaced by the cube selection oper-
ator in Figure 11(b). Then, the inlining operator is generated below to instantiate the inlining process. The
bottom XML-transfer operator loads the dimension values for the starting level and the decoration XML
data into the table RτNation[ANY ]/Nlink/Population

, which becomes a member of the sets of temporary tables in
the extended federations produced by the above cube selection and the inlining operator, and later used by
the decoration operator δNation[ANY ]/Nlink/Population to build the decoration dimension. At execution time,
the inlining operator will first load the linked values and rewrite the marked predicate. The cube selection
then can be executed in the OLAP component.

Partitioning Physical Plans We partition a query plan into three parts. The lowest part includes the inlining
operator and the lower XML-transfer operators, which are the first to be executed to enable the following
cube selections to be performed in the OLAP component. The middle part is constructed in such a way
that the OLAP cube will be aggregated as much as possible, while still allowing the decorations to be
performed. This part is evaluated in the OLAP component using the OLAP component queries. The top
part is mainly composed of operations performed in the temporary component and implemented in SQL
operations, e.g., decoration, federation selection and generalized projection. The federation selection and
generalized projection operators depend on the result set of the OLAP component queries, therefore can
only be executed after the middle part. A special case of partitioning is that when no level expressions
needs inlining, the plan only has the top two parts.

In a physical query tree, the fact-transfer operator is used to separate the operations in the OLAP com-
ponent and the temporary component. Facts are copied to the temporary component after the OLAP cube
is sliced or aggregated, which enables further operations, e.g., decoration, to be performed in the temporary
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component. When no decoration operators exists in the plan, it means the cube data does not need to fed-
erate with external data and the plan can be executed entirely in the OLAP component. The fact-transfer
operator in this case is used to generate the final query result in the temporary database.

Rule 6 (Generation of Fact-transfer Operator) After the above rules are applied, a fact-transfer is then
generated below the lowest decoration operator. If no decoration operators exist in the plan, a fact-transfer
operator is generated below the lowest federation selection operator referring to measures if such selection
operators exist in the plan, otherwise a fact-transfer operator is generated above all the operators.

Note that the federation selection operators with predicates referring to measures cannot be executed in the
OLAP component by the current query engine (due to a limitation in MS SQL Server, see Section 4.2),
therefore they cannot be put below the fact-transfer operator.

Example 4.5 According to the rule, a fact-transfer operator is generated below the decoration operator in
the plan in Figure 11(b) to separate the operations in the temporary component from the lower two cube
operations. At execution time, the fact-transfer operator transfers the result of the lower operators to the
temporary component, thereby enabling the above operations.

4.2 Physical Plan Evaluation

In this section, we first describe the evaluation algorithm for a physical execution plan and then the evalua-
tion methods for the physical operators.

Evaluation Algorithm The evaluation algorithm is shown in pseudo-code below.

void OpEvaluation(Operator Op)
1) {
2) if Op is a Fext

3) return;
4) get all the child operators Op1 , . . . ,Opn below Op;
5) perform each OpEvaluation(Opi) in separate threads;
6) wait until all threads return;
7) find the required tables in TempTable ;
8) execute Op;
9) add an entry for the output in TempTable ;
10) return;
11) }

Figure 11(b) shows an execution plan, where a leaf is an extended federation. In lines 2 and 3, the algorithm
just returns when it reaches the bottom of a plan tree (which always consists of a federation) as no operations
need to be performed on these. When the algorithm returns from the bottom, the real execution starts;
therefore, the algorithm follows the idea of the conventional pull-based iterator model [12], where the lower
part of the plan tree provides data for higher operators. However, data is not directly transferred between
operators through pipes or shared memory. Instead, temporary tables are used. A hashtable, TempTable , is
used to record the temporary tables, where the creator information composes the key to identify each entry.
Sibling operators in the plan tree can be executed in parallel, therefore a multi-threaded technique is adopted
in implementation, as line 5 shows. After all the sub-threads are finished, the real execution of Op begins.
Here, queries may be constructed for different components, and furthermore could be evaluated. Data can
also be transformed into temporary tables. After the execution, the output is registered in TempTable . For
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some operators, e.g., a dimension-transfer, the result might be a real table. But for a federation selection or
generalized projection, it is a SQL query string, e.g., as in Example 3.7, which then can be nested into the
query string of a higher operator and evaluated later at some point in batch-mode.

Evaluation of Operators Queries on the OLAP component is dependent to a large extent on the under-
lying OLAP server, in our case, Microsoft Analysis Services (AS). We use the SQL SELECT statement
supported by AS [24] instead of Microsoft Multidimensional Expressions (MDX), because it is easier and
faster to build up the temporary fact table in relational form. Based on the supported SQL syntax definition,
the part below the fact-transfer operator in the general form ΠCube[L]<F (M)>(σCube[θ](Fext)) constructs a
query: SELECT F(M ), L FROM N WHERE θ GROUP BY L, where, θ is a predicate, L represents levels
that the cube is rolled up to, F (M) stands for the aggregate functions over the measures, and N is the cube
name. A dimension-transfer also constructs an OLAP query. For example, for a dimension-transfer operator
ω[⊥z,lz](Fext), the following query is used, SELECT DISTINCT ⊥z, lz FROM N . Note that the HAVING
clause is not supported in the syntax definition, therefore selections on measures can only be performed in
the temporary database. This leads to the restriction in Rule 6 which then can be ignored when an OLAP
component fully supporting the HAVING clause is used.

Fact-transfer is implemented with Microsoft Transact-SQL function OPENQUERY. As pointed out by
[25], the OPENQUERY function provides the best results for pass-through queries from SQL Server to
Analysis Services. In our early stage of looking for data loading techniques, experiments showed that the
function is the stablest with the highest transfer speed, compared with BULK INSERT [27] and prepared
statements. Other efficient inter-process communication techniques for programmers, e.g., pipes, have not
been found available for data transferring between Microsoft Analysis Services and SQL Server. Similar to
OPENXML, the OPENQUERY function can also be used in a SQL SELECT INTO statement, where the
result set returned by the Analysis Services are taken as a table in the FROM clause.

Federation selection and generalized projection operators construct regular SQL queries. For a feder-
ation selection operator, σFed[θ](Fext), this SQL query is constructed: SELECT * FROM F WHERE θ,
where F is the temporary fact table. If θ references levels not in F , a join table of the fact table and sev-
eral tables built by dimension-transfer or decoration operators are used instead. Similarly, the SQL query
constructed for a federation generalized projection ΠFed[L]<F (M)>(Fext) is: SELECT F (M),L FROM F
GROUP BY L, where F can be the fact table or a join table. Following Definition 3.6, the decoration
δlz [SEM ]/link/xp(Fext) which decorates the non-bottom level lz with the XML values referenced by xp leads
to the SQL query: SELECT DISTINCT lz , lxp INTO Rδlz [SEM]/link/xp

FROM R1 INNER JOIN R2 ON
R1.lz =R2.lz , where lz 	= ⊥z, and R1 and R2 are the tables containing the dimension values of lz and
decoration values. If lz is a bottom level, then the decoration dimension can be built directly from link and
the XML values pointed at by xp in the XML documents; therefore, only one table needs to be present in
the FROM clause, which is Rτlz [SEM]/link/xp

.
The XML-transfer operator is implemented using Microsoft’s OPENXML technique [23]. The refer-

enced XML documents referenced by level expressions are loaded directly into the temporary component.
The XML component query is a SQL INSERT INTO statement with a nested SELECT statement which
maps an XML document into a table through a schema definition by the function OPENXML.

The inlining operator uses the Recordset objects from Microsoft Active Data Objects (ADO) to load the
required values into memory. To select these values, SQL queries like: SELECT * FROM Rlz [SEM ]/link/xp

are evaluated on the tables built by the XML-transfer operators. The new predicate string is composed
as in Definition 3.9. In our implementation, the SQL queries are executed in SQL Server through ADO
Connection or Command objects synchronously.
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5 Query Optimization

This section presents the topics related to query optimization. First, the whole optimization process is
explained and illustrated with a figure showing the structure of the optimizer. Then, the transformation
rules used in plan rewriting are introduced with examples. The third part part describes the cost model for a
physical plan and the cost components. The last part presents how the main functions of the query optimizer
are implemented with a concrete example and algorithms in pseudo-code.

5.1 Architecture of the Optimizer

Estimation

Plan Space

Pruning

Logical

Plan
Conversion

Cost

Plan Rewriting

Ql1, . . . , Qljl

(Ql1, PQl1), . . . , (Qljl
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: Tlml
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: Tlnl

)
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: Tljl
)

Execution plan, PQ

Initial plan, Q

Figure 13: Inner structure of the query optimizer

As the architecture of the query engine in Figure 6 shows, the query optimizer takes the initial plan and
generates the final execution plan. The query optimization is a Volcano-like [13], rule-based process. How-
ever, the optimizer is a totally different implementation specialized for OLAP-XML federations, including:
1) faster logical plan enumeration (by a factor of five or more), because the logical plans are consider-
ably smaller than physical plans without integrating the detailed data retrieval and manipulation algorithms,
2) novel transformation rules (see below) specialized for OLAP-XML federations, 3) a novel cost-model
for the federation components (see below), which have a high degree of autonomy , and 4) the inlining
technique that rewrites selection predicates as introduced above.

Figure 13 shows the structure of the optimizer. There are four main phases. First, plan rewriting,
where the logical plans generating the equivalent federations are enumerated for the input logical plan, we
call these equivalent plans. Transformation rules are applied to enumerate equivalent plans (see below).
A typical transformation rule inspects adjacent operators in a query tree and checks if a plan with the
same output federation can be constructed by switching operators and adjusting corresponding parameters.
In Figure 13, Ql1, . . . , Qljl

are the equivalent plans for query plan Ql. At the second phase, a physical
query plan is generated for each logical plan. Physical query plans have more concrete query evaluation
information, therefore they are generated in order to estimate the evaluation costs. In Figure 13, after
conversion, each logical plan Qli is accompanied by a physical plan PQli, i ∈ {1, . . . , jl}. At the cost
estimation phase, the optimizer traverses through each physical plan, estimates the cost of the operators,
and generates the overall cost using cost functions. Now, in the same figure, each physical plan PQlil is
labeled with the estimated execution time. Usually, the equivalent plans of an original plan are generated on
the basis of the equivalent plans of its sub-plans; therefore, it is necessary to prune the plan space when more
and more plans are being generated as the process going on. The fourth phase, plan space pruning, removes
the expensive and meaningless plans using cost-based pruning techniques (see below). In Figure 13, after
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pruning, some plans are removed from the plan space, and only a subset of the original plans are kept, that
is, {Qlml

, . . . , Qlnl
} ⊆ {Ql1, . . . , Qljl

}.
The optimization for the initial plan is performed operator by operator through a bottom-up fashion;

therefore the process iterates through the four phases several times. The plan rewriting process first starts
from the bottom operator of the initial plan, generates the equivalent plans which are then processed through
the remaining three phases. The higher operator, which is just above the bottom one, constructs new trees
on top of the result plans from the first iteration. The second iteration then starts from generating equivalent
plans for these new plans, and proceeds until the pruning phase is finished; therefore, the process of iter-
ations goes on until it reaches the top. When the pruned plan space for the root operator is generated, the
physical plan with the least cost is selected as the execution plan. In Figure 13, l stands for the index of the
operators in the initial plan tree, Q, starting from the bottom. It is 1 for the first iteration.

5.2 Transformation Rules

In this section, we present a collection of transformation rules for the logical federation algebra. Although
some rules are variants of existing rules in relational systems [36], all the rules are specialized for OLAP-
XML federation with the hierarchical structure and the virtual dimensions taken into consideration. Follow-
ing this, Rules 7, 8, 13, and 14 can be thought of as being developed from well-known relational rules on
select and group-by. Rules 9, 11, and 12 aim to optimize cases when the special OLAP-XML decoration
operator is involved, and thereby are novel. Rule 10 which concerns inlining, is also novel.

The transformation rules are given as equivalences that express that two plans in logical algebraic ex-
pressions generate exactly the same federation semantics, i.e. given the same federation, the output federa-
tions are equivalent. That is, they have the identical XML documents, links, measures and the dimensions
rolled up to the same levels. Also, the fact data are filtered by the predicates with identical effects (but not
necessarily identical specifications). Heuristics are also used in the rules to construct new plans. A typical
heuristics is to reduce the size of the intermediate cube to the largest possible extent, which will at execution
time lead to less usage of temporary space and less data being transferred, and also less operator execution
time. For example, selection and generalized projection operations are performed to the maximum possible
extent in the OLAP component rather than the temporary component. Another example is, redundant op-
erators are always to be removed. In the formal presentation, a left-to-right rule (denoted by →) can only
reconstruct the plan expression on the left into the form of the right side, while each side in a bidirectional
rule (denoted by ↔) can be reconstructed to the other side.

In the rules, we use the following denotations. Let:

• MaxStrict: P(Levels) → Levels be a function that given a set of levels from the same dimension
returns the uppermost such level (max-strict) that do not introduce non-strictness when rolled up
to from the bottom level. A hierarchy of levels is strict if no dimension value has more than one
parent value from the same level [20, 33]. When a dimension is rolled up to the level returned by
MaxStrict from the bottom level, safe aggregation is secured, that is, no values from the lower levels
are duplicated; therefore, further aggregation is still allowed along that hierarchy.

• Sθ be the levels referenced by the predicate θ.

• F be a federation or a placeholder representing the sub-query tree below the current operator. For ex-
ample, during transformation, the logical query tree in Figure 11(a) can be written as: ΠFed [Brand(part),

Nation[ANY ]/Nlink/Population]<SUM (Quantity)>(FTC ), where FTC is the output of the lower decora-
tion operator and used to represent the lower sub-query tree when the detail information of the lower
operators is not as important as the top federation generalized projection operator.
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5.2.1 Rules Involving Federation Selection and Generalized Projection

In some relational optimization systems, heuristics like “perform selection operations as early as possible”
and “perform projections early” [40] are used to reduce intermediate tuples. Such ideas can still be applied
on our federation system to reduce the intermediate cube. However, the hierarchical structure of the data
must be taken into consideration during repositioning of the operators, e.g., a federation generalized projec-
tion cannot roll up the cube higher than the levels referenced by the federation selection executed afterwards
because these levels would no longer exist after the roll-up.

The commutativity rule of the federation selection and generalized projection operators holds if such
requirement for the hierarchical data is fulfilled. However, the rule brings in the uncertainty of which
operator should actually be executed first since both of them can reduce the cube’s size. The decisions
can be made through cost-based strategies, where estimated costs of the two plans are compared on the
basis of the factors, e.g., the selectivities of the predicates and the size of multidimensional aggregates (see
Section 5.3).

Rule 7 (Commutativity of Federation Generalized Projection and Selection) A federation generalized
projection operator and a selection operator are commutative if the levels referred by the selection are not
projected away by the projection, that is, if θ does not reference measures, and for each level li in θ there
exists a level l′i ∈ L such that l′i �i li, the following rule holds:

ΠFed [L]<F (M )>(σFed [θ](F)) ↔ σFed [θ](ΠFed [L]<F (M )>(F))

Proof sketch: Since a single fact in the fact table will satisfy the selection predicate both before and after
grouping, exactly the same facts will be selected by the selection operation in the two cases. However,
measure values are very possibly changed by the generalized projection, thereby providing a different level
of numerical summary.

Example 5.1 ΠFed [Order ]<SUM (Quantity)>(σFed [Customer= “Customer�01”](FTC )) is equivalent to
σFed [Customer= “Customer�01”](ΠFed [Order ]<SUM (Quantity)>(FTC )), as the orders belonging to a customer
do not change before and after grouping.

Rule 7 does not apply for the special cases where a federation selection cannot be pulled above a pro-
jection as the referred levels no longer exist after the cube is aggregated. However, part of the projection
can still be pushed down to allow aggregation of the cube to some extent such that the predicate must still
be able to be evaluated. In addition, it must still be possible to roll up the cube to the levels specified in
the original generalized projection, therefore the new generalized projection can only roll up along a strict
hierarchy, otherwise further aggregation to the original projection is prohibited.

Rule 8 (Pushing Federation Generalized Projection Below Selection) A part of a federation generalized
projection can be performed prior to the federation selection below if the original projection rolls up the
cube to the levels higher than those referred by the selection’s predicate, meaning that the cube can be rolled
up to certain levels without interfering the selection afterwards. That is, if θ does not reference measures,
and for a level li in θ there exists a level l′i ∈ L such that li �i l′i, the following rule holds:

ΠFed [L]<F (M )>(σFed [θ](F)) → ΠFed [L]<F (M )>(σFed [θ](ΠFed [L′]<F (M )>(F))

where, L′ = {lj |lj ∈ L∧∃l′j ∈ Sθ\Lθ(lj �j l′j)}∪{MaxStrict({l})|l ∈ Lθ}, and Lθ = {li|li ∈ Sθ ∧∃l′i ∈
L(li �i l′i)}, representing the levels in the predicate that are lower than the levels in the GROUP BY clause.
Here, the levels that the cube is going to be rolled up to prior to the federation selection are divided into
two subsets: the levels that roll up the cube to the maximum possible extent and those that allow federation
selection to be performed afterwards.
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Proof sketch: If a dimension value in a fact aggregated by the new projection satisfies the selection pred-
icate then all facts in the original cube that correspond to children of that dimension value will also satisfy
the predicate. However, measure values associated with different set of levels will possibly be aggregated to
different results.

Example 5.2 ΠFed [Customer ,Brand ]<SUM (Quantity)>(σFed [ Order=“Order�01”](FTC )) is equivalent to
ΠFed [Customer , Brand ]<SUM (Quantity)>(σFed [Order=“Order�01”](ΠFed [Order , Brand ]<SUM (Quantity)>(FTC ))).
In the TC cube, each order is supposed to belong to one customer. The new generalized projection rolls up
the cube to Order and Brand, making it possible to perform the selection on Order and roll up to Customer
afterwards.

5.2.2 Rules Involving Federation Selection and Decoration

A federation selection operator slices the cube so that only the facts satisfying the given predicate are
retained; therefore, moving federation selections down leads to, at execution time, less temporary space and
less data transfer between the OLAP component and the temporary component.

Rule 9 (Pushing Federation Selection Below Decoration ) A federation selection operator can be pushed
below a decoration operator if the predicate does not refer to the decoration level, i.e., if lz [SEM ]/link/xp /∈
Sθ, the following rule holds:

σFed [θ](δlz [SEM ]/link/xp(F)) → δlz [SEM ]/link/xp(σFed [θ](F))

Proof sketch: If no level expression is involved in the selection, the predicate will only be evaluated on the
existing data. Moreover, selections do not change the federation schema nor the dimension data, thus the
decoration can be moved inside or outside of the selection’s argument. The right to left transformation is
not introduced because we want to push the federation selection as low as possible so it can be evaluated
in the OLAP component to reduce inter-component data transfer.

Example 5.3 σFed [Customer=“Customer�01”](δNation[ANY ]/ Nlink/Population (FT )) is equivalent to δNation

[ANY ]/Nlink/Population (σFed [Customer=“Customer�01”](FT )). The second plan first filters the facts before it is
decorated and the same decoration dimension can still created using the unchanged dimension values and
linked data.

As Rule 9 implies, a federation selection operator cannot be pushed below a decoration operator if the
predicate references the decoration level. However, the rule can still be applied if there is a way to rewrite
the predicate to fulfill the requirement. The inlining technique is therefore used. The new predicate no
longer references the level expression but still has the same effect on the facts. The following rule applies
inlining and then uses Rule 9 to push the selection down.

Rule 10 (Inlining of Decoration in Federation Selection) A federation selection on a decoration level
can be pushed below the decoration operator which builds the decoration dimension, while the predicate is
assigned with a special mark and will be rewritten at execution time to a new one with the same effect and
only references to regular dimension levels and values. That is, if the predicate θ contains references to the
level expression lz[SEM ]/link/xp, the following rule holds:

σFed [θ](δlz [SEM ]/link/xp(F)) → δlz [SEM ]/link/xp(σFed [θ′](F))

where, θ′ no longer refers to XML data, and is a placeholder at optimization time for the real predicate
having the same filtering effects as θ, with references only to regular dimension levels and constants.

Proof sketch: This is possible because the modified predicate is expressed in terms of constant values
resulting from evaluating the level expressions instead of referring to the level expressions directly.
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Example 5.4 σFed [Nation[ANY ]/Nlink/Population=1017645163 ] (δNation[ANY ]/Nlink/Population (FT )) is equiva-
lent to δNation[ANY ]/Nlink/Population (σFed [(Nation[ANY ]/Nlink/ Population=1017645163 )′ ](FT )). The predicate
Nation[ANY ] /Nlink/Population = 1017645163 becomes a placeholder in the second plan and will be
rewritten to Nation = “India” by inlining at execution time. The two predicates have the same effect on
the facts because India, and only India has exactly a population of 1017645163. The marked predicate is
at optimization time considered to no longer reference decoration values; therefore, the federation selection
can be pushed down and performed on the OLAP cube, which at execution time leads to less fact data
transfer between components.

5.2.3 Rules Involving Federation Generalized Projection and Decoration

A logical federation generalized projection removes all dimensions that are not present in the parameters,
and rolls up the remaining dimensions to the specified levels. A decoration dimension is considered as a
regular dimension and would therefore be projected away by a federation generalized projection that does
not reference the decoration level of that dimension using a level expression. This could happen if the
decoration level is only used in a predicate to select the cube. Moreover, if the decoration operator which
generates the decoration dimension is right below such a federation generalized projection operator, the
decoration operator itself can be removed. For example, after Rule 10 is applied, the decoration operator is
moved above the federation selection operator. If the query plan only uses the XML data which is inlined
in the new predicate for selecting in the cube, then the decoration operator and its resulting dimension are
no longer valuable to the above operators and thus considered redundant.

Rule 11 (Redundant Decoration Below Federation Generalized Projection) A decoration operator can
be removed if the federation generalized projection above does not include the level expression referring to
the decoration level. That is, If l[SEM ]/link/xp /∈ L the following holds:

ΠFed [L]<F (M )>(δl [SEM ]/link/xp(F)) → ΠFed [L]<F (M )>(F)

Proof sketch: If the decoration dimension does not occur in the federation generalized projection it is
projected away before it is used and therefore it is not necessary to decorate the cube.

Example 5.5 ΠFed [Customer ,Brand ]<SUM (Quantity)>(δNation [ANY ]/Nlink/Population (FTC )) is equivalent to
ΠFed [Customer ,Brand ]<SUM (Quantity)>(FTC ), because the projection operator removes all the dimensions
except for those containing Customer and Brand.

There are situations where the federation projection operator above a decoration operator contains the level
expression which refers to the decoration level of the dimension produced by the decoration operator be-
low. In that case, the equivalent plan has a new federation generalized projection below the decoration.
Intuitively, this means that instead of decorating a cube and then aggregating it, the cube is first aggregated
to yield an intermediate cube. After this, the cube is decorated and then further aggregated to produce the
final result. The new projection aggregates the cube as much as possible, while still allowing the decoration
operator to be applied.

Rule 12 (Pushing Federation Generalized Projection Below Decoration) If the federation generalized
projection operator above a decoration operator rolls up the decoration dimension to the decoration level,
that is, if the level expression referring to the decoration level is a projection parameter, i.e., lz [SEM ]/link/
xp ∈ L, the following holds:

ΠFed [L]<F (M )>(δlz [SEM ]/link/xp(F)) ↔ ΠFed [L]<F (M )>(δlz [SEM ]/link/xp(ΠFed [L′]<F (M )>(F)))
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where L′ = {l|l ∈ L ∧ l /∈ Dz ∧ l 	= lxp} ∪ {MaxStrict({lz} ∪ {l|l ∈ L ∧ l ∈ Dz})}. L′ is identical
to L except for one level from the dimension Dz containing the starting level lz . The level is selected in
such a way that further aggregation by the original projection must be allowed and the starting level used
to build the decoration dimension must be present in the hierarchy; therefore, the destination level is a level
below or equal to the starting level and does not introduce non-strictness over the bottom level in the new
hierarchy.

Proof sketch: The extra projection introduced on the right side, aggregates the cube to the same levels as
the original projection, except for the dimension Dz which is rolled up to such a level that it is always pos-
sible to apply the decoration operator afterwards. Furthermore, L′ is always possible to construct, because
there is only a one-level difference from L and it could be the bottom level of Dz since a bottom level does
not introduce non-strictness over itself. Note that although the rule is explained in the left to right direction
it also holds in the opposite direction because of the way L′ is constructed.

Example 5.6 ΠFed [Customer ,Brand ,Nation[ANY ]/Nlink/Population]<SUM (Quantity )>(δNation[ANY ]/Nlink/

Population (FTC)) is equivalent to ΠFed [Customer ,Brand ,Nation[ANY ]/Nlink/Population]<SUM (Quantity )>

(δNation[ANY ]/Nlink/ Population (ΠFed [Customer ,Brand ,Nation ]<SUM (Quantity)>(FTC)). The new projection
operator also has the levels Customer and Brand. But the level expression is replaced by Nation. To al-
low the decoration and the final roll-up to the top level, Nation is used as it is both the starting level of
the level expression and the level that can be rolled up from without introducing non-strictness. Note, we
assume that each supplier has only one country, thus, the relationship between Nation and Supplier is strict.

5.2.4 Rules Involving a Single Operator

In our federation system, similar to relational selections, a conjunctive federation selection can be split up
into two selections and vice versa. For example, when a predicate is a conjunction of two predicates, where
only one predicate references external XML data. In this case, the left to right transformation can be applied
to split the conjunctive predicate, thereby enabling the selection with references only to dimension levels
to be possibly evaluated in the OLAP component. The other direction of the rule can be used to combine
federation selection operators, e.g., two federation selection operators with predicates applied with inlining.

Rule 13 (Cascade of Federation Selections) Let θ1 and θ2 be predicates. Then the following holds:

σFed[θ1∧θ2](F) ↔ σFed[θ1](σFed[θ2](F))

Proof sketch: Selection only affects tuples in the fact table. Such a tuple satisfies the conjunctive predicate
exactly when it satisfies the first predicate and then the second predicate.

Example 5.7 σFed [Nation[ANY ]/Nlink/Population=1017645163∧Nation=“Denmark”](FT ) is equivalent to
σFed [Nation[ANY ]/ Nlink/Population=1017645163 ](σFed [Nation=“Denmark”]((FT )).

As a deduction of Rule 13 and the relational algebra equivalence θ1 ∧ θ2 = θ2 ∧ θ1, federation selection
operators also commute. The following rule can be used to swap two federation selection operators to enable
other rules, e.g., Rule 10.

Rule 14 (Commutativity of Federation Selections) Let θ1 and θ2 be predicates. Then the following holds:

σFed[θ1](σ[θ2](F)) ↔ σFed[θ2](σ[θ1](F))

Proof sketch: Follows from Rule 13 and commutativity of conjunction.

Example 5.8 σFed [Nation[ANY ]/Nlink/Population=1017645163 ]( σFed [Nation=“India”](FT )) is equivalent to
σFed [Nation= “India”](σFed [Nation[ANY ]/Nlink/Population=1017645163 ](FT )).
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5.3 Query Cost Estimation

In this section, the cost model and the cost functions of physical operators will be introduced. The cost
model which expresses generally the cost of evaluating an execution plan for a federation query. The cost
functions determine the costs of the physical operators, which are dependent on the limited and varying
cost information of the federation components. Moreover, the current cost functions only provide approx-
imate estimations, but have been proved capable of supporting the choice of good plans effectively by the
experiments. For example, the constant overhead of evaluating an OLAP component query is not taken into
account, because we are not aiming to calculate the correct absolute cost of a plan, but only what is enough
to differentiate the relative performance of candidate plans.

A Cost Model for Federation Query Plans Basically, a physical plan for a federation query and the
evaluation algorithm suggest how the cost can be estimated. That is, the cost of a query plan is the cost of
the root operator plus the maximal execution time of the sub-plans. However, to give an intuitive overview,
we divide the total cost according to the three partitions of a typical physical plan, i.e., the time for inlining,
OLAP query evaluation and data transfer, and producing the final result in the temporary component. For
a query plan on which the inlining technique is applied, references to level expressions can be inlined into
the selection predicates and therefore can be evaluated in the OLAP component; therefore, the first period
of the execution time is spent on the inlining process, i.e., XML query evaluation, XML data transfer and
predicate rewriting. The second period of the total time starts from query evaluation in the OLAP component
until the data is transferred into the temporary component. However, for queries not inlining all the level
expressions in the selection predicates, it is the time for the slowest retrieval of data from the OLAP and
XML components. Finally, the sum of the previous two periods plus the time for producing the final result
in the temporary component gives the total time. However, when expressed in a practical cost formula, the
cost model consists of two parts, that is:

tP lan = tinlining + tOLAP,Temp

where, tOLAP ,Temp expresses the time for the last two periods as a whole. Because the evaluation algorithm
executes the OLAP operators as a sub-plan in parallel with dimension- or XML-transfer operators, it is
convenient to estimate the OLAP operators as part of the cost of a larger plan which may be rooted at an
operator performed in the temporary component, i.e., a decoration, a federation selection, or a generalized
projection operator. More specifically,

• tInlining includes the maximal time for loading the required XML data into the temporary component
and the time for inlining this XML data. The process is started by the XML-transfer operators that
load the dimension values and referred XML data for the involved level expressions into the temporary
component. Then, this data is loaded into main memory and integrated into the new predicate string.
The two tasks are executed sequentially, thereby yielding tInlining as the sum of the time spent on
each phase.

• tOLAP ,Temp is the time of evaluating the rest of the plan. The root operator for a (sub)plan can have
several child operators which execute in parallel; therefore, the cost of this (sub)plan is the time
for evaluating the root operator plus the maximum time for evaluating the sub-branches. Let Opi
be the root operator of a query tree, Opi1 , . . . ,Opin be the child operators and tOpi be the time for
evaluating a single operator, then tOLAP ,Temp for the query tree rooted at Opi is: tOverall ,Opi

= tOpi+
MAX (tOverall ,Opi1

, . . . , tOverall ,Opin
). If Opi = φ, then tOverall,φ = tOLAP , where tOLAP (see

below) is the time for retrieving the temporary fact data, i.e., evaluating the cube operators and the
fact-transfer operator.

How the cost of each component is evaluated in the cost model is introduced in more detail below.
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Estimating tσF ed
As defined by Definition 3.7, the federation selection operator σFed is implemented

by relational operators, that is, it is a regular SQL selection if the fact table contains all the levels and
measures referenced in the predicates, otherwise the tables containing the values of the referenced attributes
are joined, selected and finally projected again to retain only the attributes from the fact table; therefore the
cost of a federation selection operator is also estimated through the SQL operations. That is, tσF ed[θ](F) =

1. tσθ(F ), if Sθ ⊆ attrs(F ).

2. tπattrs(F)(σθ(F�T1 �...�Tn ), if ∃l ∈ Sθi
(l ∈attrs(Ti) ∧ l /∈ attrs(F )).

Here, θ, pi, � are SQL selection, projection and inner natural join respectively, F is the fact table, Sθ is a
the set of the attributes referred by θ, and attrs(T ) is a function that returns the attributes in T . Traces of
the execution plans have shown that the tables are accessed through table scans and the join methods are
usually hash joins. Here, the temporary fact table is the probe table of the multi-table hash join, since it has
all the common columns and it is usually larger than the other tables which are hashed and later probed by
the fact table.

Based on the methods in [8, 12, 40] and traces of executions in the temporary component, we approx-
imate the costs in the following manner. The cost of the relational operator σθ is estimated as: tσθ

=
bF

ScanningRate + selectivity(θ,F )×|F |
fF×WritingRate , where bF is the number of blocks containing tuples of F , fF is the block-

ing factor of F , i.e., the number of tuples of F that fit into one block, |F | is the cardinality of F and
selectivity(θ,F ) is the predicate selectivity of θ against F . Moreover, ScanningRate and WritingRate
are the constant factors for the speed of reading and writing blocks of tuples from/to secondary memory.
The first part of the cost function is the time for reading the tuples of F into memory and the second part
is the time for writing the result to disk. For the second case, where the temporary fact table is hash joined
with other temporary tables as in-memory operations, the cost is estimated as: tπattrs(F )(σθ(F�T1�...�Tn)) =
bF+bT1

+...+bTn

ScanningRate + thashT1
+ . . . + thashTn

+ n × thashF
+ selectivity(θ,F )×|F |

fF×WritingRate , where bTi is the number of
blocks of table Ti and thashTi

is the time for creating the hash table for the tuples in Ti, i.e., suppose
HashCostPerTuple is a constant factor representing the time for hashing a tuple, then hashing Ti costs
thashTi

= HashCostPerTuple × |Ti |. Moreover, n × thashF
is the time for probing the hash tables for

T1, . . . , Tn using the tuples from F . The last part is still the same as in the cost function for the first case,
because the cardinality of the resulting table is decided by the temporary fact table. More specifically, the
temporary fact table F contains all the join attributes (which are also the bottom levels containing dis-
tinct dimension values) for the inner joins, and the temporary tables T1, . . . , Tn are assumed to have strict
hierarchies, thus, the join result has the same number of tuples as the temporary fact table.

Estimating tΠF ed
A federation generalized projection operator is a regular SQL projection and aggrega-

tion if the fact table contains all the levels and measures referenced in the SELECT clause, otherwise the
tables containing the specified levels in the SELECT and GROUP BY clause is first needed to be joined
with the fact table. tΠF ed[L]<F (M)>(F) =

1. tLGF <M>(F ), if L ⊆ attrs(F ).

2. tLGF<M>(F�T1 �...�Tn), if ∃l ∈ L(l ∈ attrs(Ti) ∧ l /∈ (attrs(F )).

Here G is the relational aggregation operator. Similar to the federation selection operator, the tables are also
assumed to be hash-joined and accessed through table scan.

The cost of the first case is: tLGF<M>(F ) = bF
ScanningRate + thashF

+ numDistinct(F )
fF×WritingRate , where thashF

is the
time for building the in-memory hash table on the grouping attributes, and numDistinct(F ) is used to
return the number of distinct tuples of F because after aggregation there is only one tuple for each group.
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For the second case, the cost is estimated as: tLGF <M>(F�T1�...�Tn) = bF+bT1
+...+bTn

ScanningRate + thashT1
+ . . . +

thashTn
+ n × thashF

+k × bF × log2 bF + numDistinct(F )
fF×WritingRate , where, in addition to the cost of multi-table hash

join and writing the aggregation result to disk, k × bF × log2bf is the cost of sorting the join result on the
grouping attributes according to [8] and k is a constant factor.

Estimating tω The dimension-transfer operator ω copies dimension values of specified levels from the
OLAP to the temporary component; therefore, the time it takes is the size of the dimension values divided
by a constant fact transfer rate. That is,

tω[lix,liy ]
=

size(Rω[lix,liy ]
)

FactTransRate

where, the function size(R) returns the table size and the constant FactTransRate is the rate with which
data can be transferred from the OLAP component to the temporary component.

Estimating tInlining As discussed above, tInlining is the total time spent on XML data retrieving and pred-
icate rewriting, i.e., tInlining = MAX (tτlj/link1/xp1

, . . . , tτlk/linkm/xpm
)+tι[θ1,...,θn]

, where tτlj/link1/xp1
, . . . ,

tτlk/linkm/xpm
represent the time spent on each child operator of ι[θ1,...,θn] (see below), and lj/link1/xp1, . . . ,

lk/linkm/xpm are the level expressions referenced by θ1, . . . , θn. To rewrite a predicate, the inlining opera-
tor ι first loads the tables Rτlj/link1/xp1

, . . . , Rτlk/linkm/xpm
which are the temporary tables built by the child

XML-transfer operators into the main memory, then generates the new predicate string using the values.
Considering that the in-memory string processing is trivial compared with the expensive I/O readings and
writings, the cost of an inlining operator is mainly composed of the time for loading the XML data. The

cost function for the inlining operator is: tι[θ1,...,θn]
=

bRτlj/link1/xp1

ScanningRate + . . . +
bRτlk/linkm/xpm

ScanningRate where bRi is
the number of blocks containing tuples of the table Ri and ScanningRate is the constant speed for loading
records from a temporary table into the main memory. The cost function implicates that the more level
expressions inlined, the more time the rewriting process takes.

Estimating tτ The cost function for XML-transfer operators is dependent on the XML access method.
Currently, the XML component query engine maps XML attributes to table columns through a schema
definition; therefore, an XML document is represented as a table, and can be selected by the SQL SE-
LECT statement, which then can be incorporated into the INSERT INTO statement to transfer the XML
data into the temporary component. The cost function for the XML-transfer operators comprises the time
to perform table scans over the XML documents and the time for the table insertion. That is, tτlz/link/xp

=
size(X1)+...+size(Xn)

XMLScanRate + size(X1)+...+size(Xn)
RecordInsertionRate where X1, . . . ,Xn are the referenced XML documents in link ,

size(Xi) returns the size of the XML document Xi, XMLScanRate is the rate of scanning the XML docu-
ments and RecordInsertionRate is the rate of inserting the scanned data into a temporary table.

Estimating tOLAP The fact data is retrieved in two steps: first, the OLAP component query is evaluated,
then the data is transferred from the OLAP to the temporary component. Here, only the last factor is
considered since evaluations of SQLXM queries have shown that it is mainly the transfer time that differs
the performance in retrieving fact data using different OLAP queries; therefore, the cost is the size of
the cube after it is aggregated and selected divided by a constant fact transfer rate. That is, tOLAP =
size(F )×selectivity(θ,C)×rollupFraction(L,C)

FactTransferRate , where, C represents the cube, F is the fact table, θ is the predicate
used to select the cube and L represents the specified levels to which the cube is rolled up. Moreover,
size(F ) returns the size of the cube, which is approximately the size of the fact table since the fact data
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takes most of the space of a cube. Selectivity(θ,C) returns the fraction of the total size of C that is selected
by θ. This is estimated using the standard methods from [8]. The function rollupFraction(L, C) returns
the fraction to which C is reduced in size, when it is rolled up to the levels L. According to the method
proposed by [39], where the facts are assumed to be uniformly distributed in the cube, the fraction is the
number of the distinct facts after the cube is rolled up to L divided by the number of the original facts.

Estimating Relational Operator Cost and Statistical Information The temporary component is used as
a scratch-pad by the OLAP-XML query engine which is assumed to have full access to its meta data, such
as cardinalities, attribute domains and histograms; therefore, existing query optimization techniques can
be adopted to provide statistical information and cost estimates. More specifically, we use the simplified
variants of the methods from [6, 8, 40] to estimate, e.g., selectivities and cardinalities of physical opera-
tors. In the current implementation, the statistical information, e.g., FactTransRate, ScanningRate and
WritingRate , are retrieved by probing queries [48] and stored as constants in meta data. For example, to
approximate FactTransRate , a simple query to retrieve the fact table can be used. The transfer time is mea-
sured from the moment query is sent until the temporary fact table is built; therefore, FactTransRate is the
size of the fact table divided by the transfer time. In our future implementations, the statistical information
will be collected by a Statistics Manager dynamically.

5.4 Implementing Query Optimization

oset rewrite(operator op)
1) {
2) oset plansop = ∅;
3) operator opchild = the child of op;

// rewrite the sub-plan of op first
4) oset planschild = rewrite(opchild);
5) for each plan with root op′child in planschild

6) construct a new plan with root op′ by putting
a copy of op on top of op′child;
// generate the plan space for the new plan

7) oset planstmp = matchAndApplyRules(op′);
// add the new plans into the plan space for op

8) merge planstmp into plansop;
9) prune(plansop);
10) return plansop;
11) }

Figure 14: The rewrite function

Similar to the Volcano optimizer, the plan space for a given plan is represented by a number of equiva-
lence classes. The elements of an equivalence class are the logical operators that generate the same fed-
erations in different plans. For example, the three operators in the initial logical plan in Figure 7 are
categorized into three classes 1, 2 and 3 in Figure 16. More specifically, class 1 initially contains the
decoration operator δNation[ANY ]/Nlink/Population (in short, δ), class 2 contains the federation selection op-
erator σFed[Nation[ANY ]/Nlink/Population] (in short, σFed) and class 3 contains the federation generalized
projection operator ΠFed [Brand(Part),Nation[ANY ]/Nlink/Population]<SUM ( Quantity)> (in short, ΠFed). The
operators in classes 1 and 2 generate partial results of the query, whereas class 3 contains the root operators
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of the equivalent plans that generate the same final result federations. Note that to compress the plan space,
no duplicate plans are allowed, and to prevent plans having redundant operators, no operator is allowed to
point to another operator from the same equivalence class (see below for more discussion).

oset matchAndApplyRules (operator op)
1) {
2) oset planstmp = ∅;
3) oset plansop = ∅;
4) for each rulei

5) if rulei is applicable
// this may generate new operators and classes

6) apply rulei;
// op′ is the root operator of the new plan

7) planstmp = rewrite(op′);
// add the new plans into the plan space for op

8) merge planstmp into plansop;
9) return plansop;
10) }

Figure 15: The matchAndApplyRules function

Figures 14 and 15 outline the pseudo-code with C-like “// ” for comments for the two main functions
for the plan space generation, rewrite and matchAndApplyRules . Ordered sets (osets) are used to hold
plans and preserve orders, for example, the first element in an ordered set is always the original plan and
the others are the enumerated equivalent plans. Initially, the operators from the original initial plan are
created in the plan space for different classes, and then rewrite is invoked on the root operator. The rewrite
function recursively invokes itself on the child operator of the current input operator, meaning the plan
space for the current plan is always based on the returned equivalent plans for the lower operator. When the
bottom of the plan is reached, transformation rules are applied using the function matchAndApplyRules ,
which may yield new alternative operators generating the same federation. After this, new plans can be
constructed by putting the operator from a higher class of the original plan on top of the operators, including
the new ones, in the current class. Then the transformation rules are applied again on the new plans. The
matchAndApplyRules function goes through all the rules, uses the rule condition to identify an applicable
rule and then performs the transformation. This may trigger the creation of new operators and new classes.
For each of the new plans that contains these newly generated operators, rewrite is invoked to generate
other equivalent plans. Note that the new operators must not violate the two restrictions on the plan space,
otherwise the corresponding rule is not applicable.

We first show how all the equivalent plans are generated for an initial logical plan in Figure 7 without
plan pruning. Figure 16 shows the plan space, which is generated as follows. Initially, three operators
representing the three query tree operators are created, with arrows going from the parent to the child
operators. Then, the rewrite function is invoked for the first elment of class 3, which, in turn, invokes
rewrite for the first element in class 2, and then again for the first element in class 1. The last call does
not do anything because no rules apply to δ on its own. For the first element in class 2, however, Rule 10
is applied, which switches the decoration and the federation selection operators and marks the selection
predicate for inlining at execution time; therefore, two new operators are generated, one of which is added
as the second element of class 2 and the other as the second element of class 1. Then as Line 7 indicates,
rewrite is invoked on the new operator δ in class 2, but for this sup-plan, no applicable rules are found,
thereby yielding no new operators. After this, the rewrite function for the first element σFed in class 2
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returns planschild = (σFed(δ), δ(σ′
Fed)), matchAndApplyRules is then invoked for ΠFed in class 3 to

generate equivalent plans for the initial plan, ΠFed(σFed(δ)), and ΠFed(δ(σ′
Fed)) which is constructed by

putting ΠFed on top of the new decoration operator in class 2. Note that the dotted line between two
operators means the connected operators in different plans have the identical parent operator. For the first
plan, Rule 7 is applied on ΠFed and σFed to switch their positions, which adds σFed to class 3 and ΠFed

to class 2. The bottom decoration operator δ remains the same. According to Line 7 , rewrite is invoked
again for the new operator σFed in class 3. But the next rule applied is Rule 12 on ΠFed in class 2 and a
new federation generalized projection operator ΠFed[Brand(Part), Nation] (in short, Π′

Fed) is generated in a
new class, class 4, below class 1. Moreover, the new operators also include the new ΠFed in class 2 and δ in
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Figure 16: A logical query plan and its plan space

class 1. After this, Line 7 invokes rewrite for ΠFed but this time no applicable rules are found and Rule 12
cannot be applied again because no operators in the same class are allowed to be connected. Moreover,
Rule 7 cannot be applied on σFed(ΠFed) again, because an identical plan is already present. After the
matchAndApplyRules function for the first plan returns planschild containing plans 1, 3 and 4, two more
plans, plans 3 and 4, are added into the plan space plansop . The rewrite function continues to apply rules
on ΠFed(δ(σ′

Fed)). This time, Rule 12 is applied to generate another federation generalized projection
ΠFed[Brand(Part),Nation] (in short, Π′′

Fed) below δ, which is added to a new class, class 5. Then, Rule 7 is
applied on Π′′

Fed and the lower σFed, which switches the positions and yields a new operator σ′Fed in class
5 and a new class, class 6, with only one operator Π′′

Fed. Like before, Rules 12 and 7 cannot be applied
on the newly generated operators again because of the two restrictions. After matching and applying rules
for plan 2 returns, plansop contains two more plans, i.e., plans 5 and 6. At this point, the full plan space is
generated.

oset prune(oset plans)
1) {
2) for each plan plani in plans
3) estimate the cost ci of the corresponding physical plan

for plani;
4) for each plan plani in plans

// the first plan in the list is the original plan
5) if ci > c0

6) remove plani from plans;
7) return plans;
8) }

Figure 17: Pseudo-code for pruning the plan space
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Figure 17 briefly shows the cost-based pruning process for an initial plan and its corresponding plan
space. The idea is to reduce the plan space by excluding the generated equivalent plans that cannot give
less execution time than the original plan. The prune function first estimates the costs of all the plans.
This is achieved by first generating the physical plans based on the logical plans and then estimating the
cost with the cost model and functions. Lines 4-6 use the cost of the first plan in the plan space (i.e. the
original plan) as an upper bound. All the plans that have larger costs are removed from the plan space. For
example, during the plan space generation for the first plan in Figure 16, if the pruning method is not used,
all the listed plans are included in the final plan space. However, if in addition to the general reasoning that
plans filtering and aggregating the cube before the cube is decorated lead to better performance, we assume
σFed(ΠFed) is more expensive than ΠFed(σFed) when they have the same lower operators, and σ′Fed(Π

′′
Fed)

is more expensive than Π′′
Fed(σ

′
Fed), then plans 3 and 6 would be excluded from the plan space when the

prune function is used.
When all the plans are generated and costs are estimated, the optimizer selects the logical plan and its

corresponding physical plan with the least cost as the final execution plan and passes the execution plan
to query evaluator. For example, plan 5 in Figure 16 filters and aggregates the cube to the largest possible
extent before the cube is decorated, therefore the final execution plan is the physical plan for plan 5.

6 Performance Study

The experiments were performed on a machine with an Intel Pentium III 800Mhz CPU, 512MB of RAM,
30 GB of disk and 4096MB of page file. The OS is Microsoft Windows 2000 server with SP4. In the
prototype, Microsoft SQL Server 2000 Enterprise Edition with SP3 is used. More specifically, the temporary
component is the temporary database on SQL Server, and the OLAP component uses MS Analysis Services,
and is queried with SQL [24]. The XML component is the local file system based on the XML data retrieved
from the Web with MS SQLXML [26] on top. The example cube, TC, used in the experiments is shown in
Figure 1 . The cube is based on about 100MB of data generated using the TPC-H benchmark [42] .

In the following experiments, the query engine and the federation are observed w.r.t. three aspects.
First, the query evaluation performance of the query engine when queries of different complexities are
posed. Second, the effectiveness of the optimization techniques. For this aspect, comparisons are made
between the evaluations of a) straightforward and b) optimized execution plans. Third, the feasibility of
the federation system. There, the external data is put in different components, i.e., XML, OLAP, and the
local relational database, which, at query execution time, are federated, integrated and cached external data,
respectively. Comparisons are made for the queries referencing this data.

To reveal the behavior patterns of the federation and the SQLXM query engine, several choices have
been made on the experimental environment. The selected storage mode is ROLAP for the cubes, which
are queried with the federated or integrated XML data. One of the reasons to do so is that this mode is most
commonly used for large data warehouses. Secondly, for queries on ROLAP cubes the execution plans
can be analyzed (unlike for MOLAP cubes). Thirdly, our initial experiments with MOLAP cubes have
shown that the relative performance of queries over federated versus integrated cubes is the same whether
ROLAP or MOLAP is used. Moreover, our experiences with pre-aggregated cubes have shown that when
pre-computed tables are only used in the evaluation of some queries, the behavioral pattern of the query
engine itself is hard to see; therefore, no aggregates are pre-computed so as to see the general behavior
of the query engine and performance with the least interference. Note that this does not alter the balance
between querying the OLAP component with federated and integrated data. For the same purpose, in all the
experiments, caches existing in the OS and SQL Server are all cleared after each run of the query engine so
as not to affect the next execution.
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type no of dim dim1 dim2 dim1level dim2level
1 1 Suppliers Nation
2 1 Suppliers Supplier
3 1 Parts Brand
4 1 Parts Part
5 2 Suppliers Parts Nation Brand
6 2 Suppliers Parts Supplier Brand
7 2 Suppliers Parts Nation Part
8 2 Suppliers Parts Supplier Part
9 2 Suppliers Orders Nation Customer
10 2 Suppliers Orders Supplier Customer
11 2 Suppliers Orders Nation Order
12 2 Suppliers Orders Supplier Order
13 2 Parts Orders Brand Customer
14 2 Parts Orders Part Customer
15 2 Parts Orders Brand Order
16 2 Parts Orders Part Order

Table 5: Query types and their attribute values

6.1 Query Evaluation Performance

To study the behavior of the query engine, four groups of queries of different types and selectivities were
evaluated. Groups 1 to 4 have selectivities of 0.01%, 0.1%, 1% and 10%, respectively. Each group has
sixteen types of queries. Each query type is formed with the attributes: no of dim for the number of dimen-
sions mentioned in the SELECT clause with a maximum value of two, dim1 and dim2 for the dimension
names, and dim1level and dim2level for the argument levels in the SELECT clause. The query types are
enumerated and numbered according to the sizes of the participating dimensions. In the TC cube, the
dimensions participating in the queries are Suppliers, Parts and Orders, in ascending order by size. For
example, query type 1 selects the middle level of the smallest dimension with the least number of values,
and query type 2 selects the bottom level of the same dimension. Query type 3 selects the middle level of
the second-smallest (smallest not used) dimension, Parts. Likewise, the types having multiple dimensions
are also sorted with combinations of smaller dimensions before larger ones; thus, the query type represents
the expected complexity. Table 5 below shows the different attributes of each query type.

The line charts in Figure 18 illustrate execution performance of queries with different selectivities.
We fix one participating dimension in each chart to show how the performance is affected by the query
types. Moreover, the query types all start from one of the small dimensions, Parts or Suppliers, so that
the performance is more sensitive to size changes. The X axis represents the query type, and the Y axis
represents the execution time in seconds. Each line represents the queries of one particular selectivity. The
top-most line represents the execution of the queries with selectivity of 10%, followed by the lines for
selectivities of 1%, 0.1%, and 0.01%, in the top-down direction. This indicates the more selective a query
is, the less execution time it needs. More specifically, a less selective federation query takes more time in
evaluating the OLAP component query and transfer of the intermediate data. Consequently, the following
step for performing the relational operations in the temporary database also take more time.

In each chart of Figure 18, there is a distinct leap for the queries of selectivity 10% when the largest
dimension, Orders, is involved. That is, along the top line, the query types larger than 10 takes around 40
seconds more than the smaller ones. For these queries, a couple of predicates on a higher dimension level
are joined by “OR” to provide the selectivity, which causes different component execution plans from those
of the same type of queries with different selectivities. Moreover, as [25] and the execution plans point
out, the result set is just a union of the results of the OLAP queries using the predicates individually in the
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Figure 18: Line charts for query execution time of different selectivities

WHERE clause, and thereby causing the same execution plan to be executed repeatedly as many times as
the number of the ORed predicates and yet another aggregation in the temporary component to coalesce
the multiple rows for the duplicate grouping values; therefore, several factors, i.e., repeated executions with
joins on large participating tables (even after filtering), more inter-component data transfer time and the
temporary coalescing for the larger return set, cause the leap.

Nevertheless, in most of the times, the execution time grows slightly when the type number is increased.
The query types are organized in such a way that queries with larger type numbers tend to return more data
than the smaller ones. For example, query type 1 rolls up the smallest dimension to the middle level and
removes all the other dimensions, whereas query type 2 rolls up to a relatively lower level, which leads to
a larger cube for the result values. The dimension Orders is much larger than the other two dimensions,
therefore, queries leaving this dimension in the cube yield a lot more data than the others and take a lot
more execution time. In summary, the more the cube is reduced by selection and aggregation, the better the
query performs.
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Figure 19: Scatter chart for all queries

Figure 19 shows a scatter chart for the execution of all queries. The X axis represents the values of the
selectivities, and the Y axis stands for the execution time in seconds. Both axes are in logarithmic scale. For
each selectivity, there are sixteen data points on the column representing all the query types in Table 5. From
the chart, we can see more selective queries tend to take less execution time. And as the selectivity increases,
the execution time tends to grow more or less linearly. There are points, however, higher than those with
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larger selectivities, because the cube after selection is not sufficiently aggregated and still contains a large
amount of dimension values of bottom levels. This leads to more data transfer and component operation
time. The chart depicts a conclusion consistent with the previous figures, that is, the selective queries are
generally faster.

6.2 Query Optimization Effectiveness

To study the effectiveness of the optimization techniques, comparisons were made for queries evaluated on
the query engines with and without optimizations. The same queries as in Table 5 were used except that the
WHERE clause now refers to external XML data and has a selectivity of 10%. The initial plans of these
queries require selections to be performed over the OLAP data in the temporary component, therefore it is
interesting to see how the optimization can affect the final execution plan. An example query is:

SELECT SUM(Quantity),Brand(Part),Supplier
FROM TC
WHERE Nation/Nlink/Population=45860000 OR

Nation/Nlink/Population=59128187 OR
Nation/Nlink/Population=31787647

GROUP BY Brand(Part),Supplier
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Figure 20: Charts for comparisons between straightforward and optimized executions

Figure 20 presents the executions of the initial plans (straightforward executions) and the optimized
plans (optimized executions). The initial plan first performs the data transfers from the OLAP, and XML
component to the temporary database, copying the fact table with the columns for all the measures and
bottom levels, the dimension values for Brand and Part, and the XML values, which is then followed by
a regular SQL join of the temporary tables with the selection predicates on XML values. The top lines in
Figures 20(a) and 20(b) represent the cost of the straightforward executions, which consists of the fixed
overhead for copying the data and the time for performing SQL operations in the temporary database. The
spikes for queries 9, 10, 13, and 14 indicate that, as 10,000 customers have 150,000 orders, it is expensive to
perform the roll-up from the bottom level Order to the middle level Customers by joining the fact table and
the temporary roll-up table for the two levels. The bottom lines in the chart represent the executions of the
optimized plans. The inlining technique rewrites the predicates so that only OLAP data is referenced. The
transformation rules push the projection and the modified selections below the decoration so that selections
and aggregations can be applied on the cube before OLAP data is transferred. Decoration of the cube is
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Figure 21: Speedup ratios of execution speed between straightforward and optimized executions

then no longer needed as the SQLXM query does not require the XML data to be present together with the
cube values. The line follows the trend described in Section 6.1, that is, selections and aggregations in the
OLAP component boost the query performance.

The charts in Figure 21 show the speedup ratio of query execution when the optimized plan is used.
However, not all the executions are sped up to the same extent. The lines indicate that optimized plans are
executed seven to fifty times faster than the straightforward initial plans. In each chart, the line drops as the
complexity increases. The last four queries are not optimized as effectively as the other queries, as these
queries involve the largest dimension and return larger result sets. The most effective optimization takes
place for the first query, as the query aggregates the smallest dimension to the middle level and the other
dimensions to the top, therefore yielding a small result set. Note that the different aggregation algorithms
for the optimized and straightforward executions lead to opposite evaluation performance. For example,
in Figure 20(a), when the naive plans are executed, query 3 takes more time than query 4 which, on the
contrary, needs more execution time when both queries are optimized. The optimized plans aggregate
the cube in the OLAP component, whereas the naive plans lead to joins in the temporary component on the
fetched OLAP data for roll-ups to higher levels. In need of more data to be transferred and joined, the second
takes more time, therefore the algorithms have opposite effects. In summary, the experiments suggest that
the more the cube is reduced and aggregated in the SQLXM query, the more effective the optimization is.

The time for the optimizer to generate the final execution plan normally varies from less than 1 second
to 2 seconds. From the above discussion, we know the executions take approximately 600-700 seconds
for non-optimized plans and 5-30 seconds for the optimized ones; therefore, the query optimization time is
trivial compared to the speed up and even the execution time for the optimized plans. For this reason, the
optimizer performance is not a focus in this report. However, the optimization takes several seconds more
when a large amount of new XML data (no statistical information ever recorded) is involved in a query and
the statistical information of that data is not present in the meta data. For example, when 11.4MB XML
data was used (see Section 6.3), it took four seconds more. In that case, the optimizer has to scan the XML
documents for statistics, e.g., cardinality and node size. But, again, the optimization time is still fairly small
compared to the plan execution time, because the larger volume of external data increases the execution
time as well (about 140 seconds). In future work, the optimizer will be tuned to be faster by, e.g., using
faster XML access methods, code optimization, etc..

Optimization Case Since the optimized plans are faster, it is interesting to see what happens during the
process of plan rewriting. Motivated by this, we now demonstrate a case study, where the initial query plan
and the equivalent plans optimized to different levels are executed to see the varying performance. The
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SQLXM query is:

SELECT SUM(Quantity),Brand(Part),Supplier,
Nation/NLink/Population

FROM TC
WHERE Nation/NLink/Population<25
GROUP BY Brand(Part),Supplier,Nation/NLink/Population

The first plan is the initial logical plan shown in Figure 22. The last plan is an optimized plan shown in
Figure 24, which yields the physical plan with the least execution cost. The second logical plan is the inter-
mediate plan generated during the optimization process. In the plans, B(P ), S, N/Nl/P and Q represent,
the roll-up expression Brand(Part), the bottom level Supplier, the level expression Nation/Nlink/Population
(the default decoration semantic modifier is ANY) and the measure Quantity, respectively.

FT

ΠF ed[B(P ),S,N/Nl/P ]<SUM(Q)>

σF ed[N/Nl/P<25]

δ[N/Nl/P ]

Rule 10

Figure 22: Initial plan

ΠF ed[B(P ),S,N/Nl/P ]<SUM(Q)>

FT

δ[N/Nl/P ]

Rule 12

σF ed[(N/Nl/P<25)′]

Figure 23: 2nd plan
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Figure 24: 3nd plan

0

100

200

300

400

500

600

700

1 2 3
Plan Sequence

E
xe

cu
tio

n 
T

im
e 

(i
n 

se
c.

)

Figure 25: Execution time for plans during optimization

Figure 25 shows the execution time for each plan. The Y axis represents the time in seconds. The
X axis shows the plan sequence. The initial plan models the execution process in a straightforward way,
yielding the physical execution plan in Figure 26(a). The fact table containing values for all the measures
and bottom levels is first copied into the temporary component. The cube is decorated by the decoration
operator building a new dimension consisting of the XML values. Then selection is performed over the
join of the fact table and the decoration dimension table. The following federation generalized projection
removes the unspecified levels in the fact table and rolls up the cube by joining the temporary dimension
tables for Brand and Part with the fact table. Finally, the regular SQL aggregation operator is performed on
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the fact table. The execution time was 620 seconds for the initial plan, shown by the first point from the left
in Figure 25.

The first rule applied is Rule 10 (Inlining of Decoration in Federation Selection), which yields the
second plan in Figure 23. The predicate N/Nl/P < 25 is marked to be rewritten and no longer refers to the
level expression at execution time. The federation selection can then be pushed down and executed directly
in the OLAP component. The corresponding physical plan is shown in Figure 26(b). The execution starts
from the bottom XML-transfer operator loading the dimension values and the decoration values for the
above inlining operator, which uses the linked data to rewrite the predicate. The decoration and generalized
projection are performed in the temporary component after the filtered fact table is loaded. As above, the
second point from the left in Figure 25 stands for 143 seconds for executing the second plan.

Rule 12 (Pushing Federation Generalized Projection Below Decoration) is applied on the second plan,
which pushes a part of the federation generalized projection below the decoration. The result plan in Fig-
ure 24 performs the selection and partial aggregation on the federation before the cube is decorated. The
top federation generalized projection still performs the same task, rolling up the dimensions to the specified
levels and aggregating the desired measures. The corresponding physical plan is shown in Figure 26(c).
The plan is the same as the previous one except that it now contains a cube generalized projection which
rolls up the cube to the maximum possible levels but still allows the decoration later on. As above, the third
point from the left in Figure 25 stands for 22 seconds for executing the third physical plan.
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Figure 26: The physical plans

The above plans are used to show step by step how execution time for a query can be reduced by query
rewriting. The path from the initial plan to the final execution plan represents the process for applying
transformation rules. Each execution speed is more than five times faster than the previous one, while the
structure above the decoration does not change; therefore, performing selection and aggregate as quick
as possible boosts the performance. Moreover, the inlining technique also improves the performance by
enabling predicates referencing external data to be evaluated in the OLAP component.
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6.3 Federation Versus Integration Performance

In the following two sets of experiments, comparisons are made between the queries on logically federated
and physically integrated XML data in the cube to see the feasibility of the federation. The query engine is
implemented with all the optimization techniques shown above.

For the first set of experiments, the XML document, priorities.xml (see Figure 27), is generated from
TPC-H benchmark [42] about orders and their priorities, with the size of about 11.4MB. As dimensions in
OLAP cubes are not typically very large, we believe the amounts of XML data used for virtual dimensions
are realistic. The structure is shown below. A link Plink is defined, which links the dimension values for
Order to the nodes Orderkey. Meanwhile, a dimension (All-Priority-Order) is built in the cube based on

<Orders>
<Order>

<Orderkey>1</Orderkey>
<Orderpriority>2</Orderpriority>

</Order>
<Order>

<Orderkey>2</Orderkey>
<Orderpriority>6</Orderpriority>

</Order>
<Order>

<Orderkey>3</Orderkey>
<Orderpriority>5</Orderpriority>

</Order>
. . .

</Orders>

Figure 27: The XML document, priorities.xml

the physically integrated Orderpriority in the base relational table. Moreover, the XML data is also cached
in the local relational database, where a table containing two columns for both the linked dimension values
and the XML values. Queries referring to this table are executed to study the performance when the XML
data is retrieved and stored locally in the relational schema. The test queries follow the same criteria as in
Table 5 for constructing the SELECT and the GROUP BY clauses, while the WHERE clause is composed
of one of the predicates, “Order/PLink/Orderpriority=6” or “Priority=6”, each of which has a selectivity of
0.1%.
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Figure 28: The queries referring to federated, cached or integrated 11.4MB XML data

The bar charts in Figure 28 show the comparisons. The bars denoted as “Federated” represent the
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queries using the first predicate, which federate the OLAP and the XML components and use the external
data to select the cube. The “Cached” bars represent the queries using the same predicate but refer to the
XML data cached in a local relational database. The “Integrated” bars show the execution time for the
queries using the integrated data directly to perform the selection. The X axis and the Y axis represent the
query types and the execution time in seconds in logarithmic scale, respectively.

As the charts indicate, the cost of querying the federation exceeds the cost of querying the physical inte-
gration by a factor of ten to twenty. The “Cached” bars stay in between but much closer to the “Integrated”.
The execution process of these federation queries can be divided into three sequential tasks. First, load the
XML data into the temporary component and inline the XML values into the OLAP query. Second, perform
the selection and aggregation in the OLAP component and then load the values into the temporary compo-
nent. Third, generate the final result in the temporary component. Among the tasks, the first one takes much
more time (about 135 seconds) so that the other two are relatively trivial; therefore, in the chart, the queries
on federations seem to take up approximately the same execution time. Since the XML data is already pro-
cessed and stored in the relational database on the same server as where the temporary component resides,
execution of the queries on the cached XML data first rewrite the predicates and then starts the second step,
and therefore boosts the execution speed. The rest of the queries referencing the dimension values which
originate from the integrated XML elements skip the first step entirely. These queries are processed mostly
in the OLAP component. The execution is finished after the query results of the corresponding OLAP com-
ponent queries are returned and transferred to the temporary component. The performance follows the trend
discussed in Section 6.1, that is, the more the size of the cube is reduced, the faster the execution is.
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Figure 29: The queries referring to federated or integrated 2KB XML data

The charts in Figure 29 demonstrate comparisons of queries on two other federated/integrated levels. For
this set of experiments, about 2KB of XML data was used. The XML document is composed of the nations
and public population data of nations. The structure of the document is illustrated in Figure 2. Queries
referencing the XML data now has the WHERE clause as “WHERE Nation[ANY]/Nlink/Population in
(45860000,30205387,29250541)”. Another dimension (All-Population-NationName) is built in the cube
for the queries having the WHERE clause as “WHERE Population in (45860000, 30205387, 29250541)”.
Both predicates have the same selectivity of 10%. The two series of queries are evaluated in the same
manner as the queries in the previous experiments. These two charts suggest that querying the logical
federation with a virtual dimension has almost the same performance as on the physically integrated cube,
when the amount of the XML data is small, i.e., a few kilobytes, and can be retrieved quickly; therefore, a
federation involving such XML data can be queried just as if it was a local cube.

However, when the XML documents grow larger and larger, retrieving XML values is becoming the
bottleneck for processing the federation queries. Experiments have shown that the performance can be
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improved by caching the external data. That is, the XML data can be stored in relational tables, therefore
reducing the time for decorating the cube for the queries using these data. As the charts in Figure 28 suggest,
querying the federation of OLAP and a large amount of cached XML data can be much more efficient than
querying the federation involving directly the XML documents, and thus more practical; therefore, based on
the strategies proposed by [29] in handling external XML data sources under different circumstances, the
cached XML data can be used by queries and provide efficient access to external data for analysis, when,
e.g., the data is not out of date.

6.4 Summary of Performance Study

In summary, the federation performance is dependent on the query complexity and selectivity. The op-
timization strategies are effective. The more the cube is reduced and aggregated, the more effective the
optimization is. Moreover, the federation approach is always good for a small amounts of XML data. For
large amounts of XML data, efficient query performance can be gained by caching the external data locally,
which will be the most common case in the applications of OLAP-XML federations. All in all, the logical
approach to OLAP-XML federation is comparable to physical integration in terms of performance and can,
unlike traditional physical integration, be the only practical solution to flexible on-line analysis involving
external fast-changing data.

7 Related Work

There has been a great deal of previous work on data integration, e.g., on integrating relational data [4,
15, 17, 28, 18], object-oriented data [37], semi-structured data [9, 21, 44], a combination of relational and
unstructured data [22], a combination of relational and semi-structured data [11], and a combination of
object-oriented and semi-structured data [1]. However, none of these handle the advanced issues related to
OLAP systems, e.g., dimensions with hierarchies and the problems related to correct aggregation. This is
also true for the combined relational and XML with the query language xQuery [43], and for nD-SQL [10],
which considers the federation of relational sources providing basic OLAP functionality.

An orthogonal line of work considers the correct and efficient handling of updates of dimensions [7, 16]
or complete cubes [2, 19]. In contrast, we do not need to perform any updates on the underlying cube
structure and data, and thus save the (still) large cost of updating the physical structures. This line of
work can be considered as orthogonal to ours, and one can even imagine a combined approach where our
federation approach is used when external data is first queried, followed by a physical integration of the
most commonly used external data using the techniques mentioned above.

One previous paper [34] has considered the federation of OLAP and object data. In comparison, our
approach is not restricted to object DBs, and their rigid schemas, but can be used on any imaginable data
source as long as it allows XML wrapping. Also, we allow irregularities in the external data and offer a
more general use of external data when performing decoration, selection, and grouping. Pérez et al. [35]
integrated a corporate warehouse with text-rich XML documents, where XML data is always first extracted
into a context warehouse and then maintained by complex Information Retrieval techniques, whereas our
solution provides fast and flexible access to structured XML data, thereby enabling more efficient analysis
on today’s fast changing data. Cabibbo and Torlone [3] proposed the methods of integrating heterogeneous
multidimensional databases, where data is of good quality, structured in a rather uniformed way, and most
importantly, static. Zaman and Schneider [47] also integrated static relational and multidimensional data
and presented SQL to MDX translation algorithms; however, the multidimensional data is viewed in a
rather relational way and the solution does not support OLAP queries. In comparison, using XML as data
source, as we do, enables the federation to be applied on any data as long as the data allows XML wrap-
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ping, greatly enlarging the applicability. Query processing and optimization has been considered for data
warehousing/OLAP systems [41], federated, distributed, and multi-databases [38], heterogeneous databases
[6, 14], and XML and semistructured data [9]. However, previous work does not address the special case of
optimizing OLAP queries in a federated environment.

The present report is a further development of the previous conference papers [30, 31, 32] which pro-
pose a logical federation of OLAP and XML systems, optimization techniques, a cost model and a partial,
straight-forward implementation. In comparison, this report simplifies the query semantics, proposes a
novel physical algebra modeling the actual execution tasks involved in processing an OLAP-XML query,
adapts the cost model and the optimization techniques to the simplified query semantics and the physical
algebra, and presents a full-function, robust query engine. Moreover, this report extends the conference
paper [46] and the journal paper [45] which mainly present the physical algebra and query execution tech-
niques. Specifically, the present paper is the first to present the transformation rules and the optimizer
implementation, the logical-to-physical conversion rules and algorithm, the cost models and functions for
physical plans, the query evaluation algorithm and techniques, and the full details on the experiments, along
with many new examples throughout the report.

8 Conclusion and Future Work

Current OLAP systems have a common problem in handling the situations where changes in data require-
ments are common and data changes frequently. Physical integration of new data into OLAP systems is a
long and time-consuming process, making logical integration, or federation, the better choice in many cases.
The increasing use of XML suggests that the required data will often be available in XML format; therefore,
a logical integration of external XML data and local OLAP databases becomes a desirable solution.

We have presented a novel practical approach to the logical federation of OLAP databases and XML
documents. Our solution enables evaluation of OLAP-XML federation queries on a robust query engine
integrated with optimized query processing techniques, allowing OLAP data to be decorated, selected, and
aggregated by external XML data. We have covered the major issues of the OLAP-XML query engine,
including the simplified query semantics, a physical algebra, query optimization, query evaluation and a se-
ries of experiments evaluating the prototypical query engine. First, the query semantics from previous work
were simplified, thereby leading to a concise and compact logical query plan. Second, a physical query
algebra was introduced to model the execution tasks of a federation query, where the physical operators
were described with algebraic definitions and examples. Third, the process of converting a logical query
plan into a physical plan was introduced. The specific execution tasks, e.g., retrieving data and performing
SQL operations, are integrated into a plan by the conversion rules and algorithm. Fourth, the evaluation
algorithm of a physical plan and the implementation algorithms of the physical operators were introduced.
Fifth, the novel query optimizer for federation queries was described. There, the optimizer components and
the optimization process were also described. Sixth, novel algebra- and heuristic-based query transforma-
tion rules were given. These rules are used to generate equivalent logical plans for the initial logical plan of
a federation query. Seventh, the cost model for a physical query plan and the cost functions of the physical
operators which are used to approximate the execution time of the physical candidate plans were given. Fur-
thermore, the novel optimizer implementation algorithms were described in detail with examples. Finally,
experimental results were given with respect to federation performance, optimization effectiveness and fed-
eration feasibility, suggesting that the logical OLAP-XML federation is comparable to physical integration
of OLAP and XML data, and therefore can be the only practical solution to providing flexible access to fast
changing data in XML format in OLAP systems.

We believe that we are the first to extend logical OLAP-XML federations by robust query optimization
and evaluation techniques. Specifically, we proposed the simplified query semantics and a series of opti-
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mization methods, including the optimizer architecture, the optimizer implementation, the transformation
rules for rewriting logical plans based on the simplified query semantics, logical-to-physical plan conversion
rules, and cost models and functions for physical plans. The query evaluation algorithm and the implemen-
tation methods for the physical operators are also new. Moreover, we believe we are the first to implement
a robust query engine that parses, analyzes, optimizes and executes OLAP-XML federation queries.

Our future work will focus on three major points. First, the implementation of the query engine, includ-
ing the optimization techniques, e.g., more accurate cost estimation of an execution plan, and the evaluation
techniques, e.g., a plan can be evaluated in a pipelined manner as the classic pull-based SQL query eval-
uation. Second, as computers are more and more widely used in our daily life, e.g., in mobile phones.
Integrating traditional OLAP systems with the data streams emitted by these small devices is another in-
teresting issue as this data is increasingly available on the web in XML format. Efforts will be put into
extending our system for business analysis in this area. Third, it could also be interesting to explore how
the logical federation system could be used in a real software product. For example, the ability to quickly
integrate XML data could be incorporated into an existing OLAP querying tool. Other components, e.g.,
user-friendly interface and a tool for linking XML and OLAP data, are required to be developed.
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