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Abstract

The popularity of embedded positioning technologies in mobile devices and the development of mobile com-
munication technology have paved the way for powerful location-based services (LBSs). To make LBSs useful
and user–friendly, heavy use is made of context information, including patterns in user location data which are
extracted by data mining methods. However, there is a potential conflict of interest: the data mining methods
want as precise data as possible, while the users want to protect their privacy by not disclosing their exact move-
ments. This paper aims to resolve this conflict by proposing a general framework that allows user location data to
be anonymized, thus preserving privacy, while still allowing interesting patterns to be discovered. The framework
allows users to specify individual desired levels of privacy that the data collection and mining system will then
meet. Privacy-preserving methods are proposed for two core data mining tasks, namelyfinding dense spatio–
temporal regionsandfinding frequent routes. An extensive set of experiments evaluate the methods, comparing
them to their non-privacy-preserving equivalents. The experiments show that the framework still allows most
patterns to be found, even when privacy is preserved.

1 Introduction

The efficient management of moving object databases has gained much interest in recent years due to the devel-
opment of mobile communication and positioning technologies. A typical way of representing moving objects is
to use the trajectories. Much work has focused on the topics of indexing, query processing and data mining of
moving object trajectories, but little attention has been paid to the preservation of privacy in this setting. In many
applications such as intelligent transport systems (ITS) and fleet management, floating car data (FCD), i.e., tracked
vehicle locations, are collected, and used for mining traffic patterns. For instance, mining vehicle trajectories in
urban transportation networks over time can easily identify dense areas (roads, junctions, etc.), and use this for
predicting traffic congestion. By data mining the periodic movement patterns (objects follow similar routes at
similar times) for individual drivers, personalized, context-aware services can be delivered. However, exposing
location/trajectory data of moving objects to application servers can cause threats to thelocation privacyof in-
dividual users. For example, a service provider with access to trajectory data can study a user’s personal habits.
It is not enough to keep the user ID secret, since common locations such as the home and office address can be
found by correlating historical trajectories, followed by cross-referencing these locations with, e.g., Yellow Pages,
to reveal user identity. Privacy–preserving data mining of moving object trajectories has not been addressed in the
literature. The challenge of obtaining detailed, accurate patterns from anonymized location and trajectory data is
the motivation for this paper.

This paper makes a number of novel contributions that together constitute an effective method for trajectory
data collection and mining that preserves user location privacy. First, the paper proposes a novelanonymization
modelfor preservation of location privacy on moving object trajectories. Here, the users specify their requirements
of location privacy, based on the notions ofanonymization rectanglesandlocation probabilities, intuitively saying
how precisely they want to be located in which areas. Second, the paper shows acommon problemwith existing
methods based on the notion ofk–anonymity. This problem allows an adversary to infer a commonly occurring
location of a user, e.g., the home address, by correlating several observations. Third, the paper presents an effective
grid-based frameworkfor data collection and mining over the anonymized trajectory data. The framework is based
on the notions ofanonymization gridsandanonymization partitioningswhich allow effective management of both
the user-specified location privacy requirements and the anonymized trajectory data. Along with the framework,
threepoliciesfor constructinganonymization rectangles, calledcommon regular partitioning, individual regular
partitioning, and individual irregular partitioningare presented. These policies avoid the problems in existing
methods. Fourth, the paper presents aclient-server architecturefor an efficient implementation of the system. A
distinguishing feature of the architecture is that anonymization is performed solely on the client, thus removing
the need for trusted middleware. Fifth, the paper presents techniques for solving two basic trajectory data mining
operations, namelyfinding dense spatio–temporal areasandfinding frequent routes. The techniques are based on
probabilistic counting. Finally,extensive experimentswith a prototype implementation show the effectiveness of
the approach, by comparing the presented solutions to their non-privacy-preserving equivalents. The experiments
show that the framework still allows most patterns to be found, even when privacy is preserved. In summary, we
believe this paper to be the first to consider the topic of data mining on anonymized trajectory data.

The rest of this paper is organized as follows. Section 2 explores related work. Section 3 discusses anonymiza-
tion models of trajectory data. Section 4 presents the grid-based framework, while Section 5 presents an empirical
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evaluation. Finally, Section 6 concludes and points out future directions for research.

2 Related Work

Privacy protection in databases has been a core area in the database research community and many related topics
have appeared in the literature, such as access control, inference control and statistical databases. To protect the
privacy of LBSs users, three existing solutions [7, 8, 13] propose to use a trusted middleware (an anonymizer) that
maintains location updates and queries between the LBS users and LBS server. Each time a query request is sent
from a LBS user, the anonymizer, in the spirit ofk–anonymity[14], encloses the query location in a “cloaking”
rectangle that includes both the query location and the locations ofk − 1 other users, and sends the query to the
LBS server with the cloaking rectangle. The LBS server returns a superset of the results and the final results are
filtered by the anonymizer and sent back to each LBS user.

This method for anonymizing locations and trajectories has several problems. First, it requires trusted mid-
dleware. Second, while [13] provides an effective solution for finding locations of the otherk − 1 users in the
presence of such trusted middleware, a solution to the same task in an environment that contains only untrusted
components is unknown and likely to be computationally prohibitive. Third, the notion of location privacy that is
guaranteed byk–anonymitymay not be satisfactory in the case where a large number of moving objects stay in a
small area where users do not want to be observed (such as a red light district). This problem can be eliminated
by requiring cloaking rectangles to have a minimum area [13]. Fourth, the cloaking rectangles calculated for the
same user for the same location at different times depends on locations of the otherk − 1 users, and hence may
vary in extent and location. This, in a sensenon-deterministicor probabilisticnature of cloaking rectangles sacri-
fices location privacy, as demonstrated later. Finally, traditional mining methods cannot be easily and effectively
adapted to the anonymized location or trajectory.

This paper does not considerk-anonymityand doesnotassume the existence of trusted middleware for provid-
ing thek-anonymityrectangles. Instead, we focus on novel ways to conceal the actual moving object trajectories
while still allow the data mining algorithms on the LBS server to extract detailed, accurate traffic patterns and
rules from the anonymized trajectory data. Note that our solution doesnot even aimto providek-anonymity. The
reason is that for some applications, e.g., traffic services in remote areas, even a rather smallk will cause the
reported rectangles to become extremely large, and thus worthless for the purpose of mining. Instead, our solution
will perform aspatial anonymizationthat meets the user’s requirements for location privacy.

Spatio–temporal data mining is an on-going topic in the database community. Approaches have appeared for
finding dense areas of moving objects [11, 12, 15] and extracting spatio–temporal rules and patterns [9, 16]. Our
paper is focused on discovering areas with potential traffic jams and roads that are frequently used by drivers.
Two very related papers [11, 12] study the querying of spatio–temporal regions with a high concentration of
moving objects. The first paper [11] divides the data space into a uniform grid so that the density query is
simplified as reporting cells that satisfy the density conditions. This solution provides fast answers, but can lead
to answer loss(as termed in the second paper [12]), such as regions that cover boundaries of several cells with
a high density of objects (but each individual cell does not contain enough number of objects to be dense). The
second paper [12] provides a new definition of density query that eliminates answer loss and proposes a two-phase
filter-and-refinement algorithm for computing the density queries. A method to provide approximate answers
to distinct spatio-temporal aggregation is proposed in [15], where aggregation is grid–based, and the distinct
criterion is time– and space–effectively solved by combining a spatio–temporal index (aRB-tree) and sketches.
Finding frequently travelled routes taken by moving objects has many applications in telematics, ITS and LBS.
This has been recognized recently in [10], where frequent route mining is mapped to frequent itemset mining, after
trajectories are transformed to a set of spatio–temporal grid cells. We take a similar approach to finding frequent
routes, but focus on the privacy preserving aspect of the data mining.

A lot of recent research work has focused on techniques for privacy–preserving data mining [2]. This topic
has appeared due to the advances in data collection and dissemination technologies which force existing data
mining algorithms to be reconsidered from the point of view of privacy preservation. Various papers have recently
addressed privacy–preserving data mining. Important techniques include perturbation, condensation, and data
hiding with conceptual reconstruction. Paper [17] presents a good review of these techniques. The techniques
proposed in this paper follow the spirit of a common strategy used for privacy–preserving data mining, namely
generalization.
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3 Spatio-Temporal Anonymization

For the simplicity of our discussion, we assume that the time domainT is totally ordered and use the non-negative
numbers as the time domain. We define the trajectory of a moving object in 2-dimensional (2D) space as a
sequence of tuplesS = 〈(loc1, t1), . . . , (locn, tn)〉 where loci ∈ R2 (i = 1, . . . , n) describe locations, and
t1 < t2 < . . . < tn ∈ T are irregularly spaced but temporally ordered time instances, i.e., gaps are allowed.

We consider to anonymize the trajectory by reducing the spatio-temporal resolution of the 2D space. One basic
method is to enclose the trajectory into one or more space-time rectangles, denoted asanonymization rectangles.
A formal definition is as follows:

Definition 3.1. Given an area sizeareasize ∈ R+ and a probability thresholdmaxLocProb ∈ [0, 1], an
anonymization rectanglesatisfying (areasize,maxLocProb) for a moving objecto is a three-tuple(R, ts, te),
wherets < te ∈ T are two time instances, andR is a 2D rectangle such that the maximum probability that can be
inferredabouto being in any subregionA of sizeareasize in R during the period[ts, te] is at mostmaxLocProb .

Definition 3.2. Given an area sizeareasize ∈ R+, we term this maximum probability that can beinferredabout
the whereabouts of objecto insideR as thelocation probability of R and denote it asR.LocProb.

Privacy preservation in spatio-temporal data sets is challenging because spatio-temporal data sets are so
rich in correlations, allowing many “privacy attack” strategies that are difficult to counteract and sometimes
even to anticipate. We believe to protect against a few obvious threats, namely, 1) detection of frequent pri-
vate/personal/individual locations due to self-correlations in historical spatio-temporal (trajectory) data sets, 2)
detection of the current position due to physical mobility constraints on objects (maximum speed, road network,
spatio-temporal restrictions in general).

In our definitions we emphasizeinferred, because the straight-forward, uniform spatio-temporal probability
distribution for the location of an objecto does not hold for any rectangleR ∈ R+. By relating external spatial
and/or temporal data sources, which put limitations on the possible locations ofo, more specific distributions can
be derived that sacrifice the privacy ofo. This is illustrated in Figure 1, where anonymization rectangleR of o
is composed of 4 unit-area cells (c1, c2, c4, c5). Not combining any external data sources,R.LocProb = 1/4.
Knowing that cellsc1 andc4 are covered by water,R.LocProb = 1/2. Finally, knowing about the location and
opening hours of the Nature Resort Park in cellc2 and the current time (8am),R.LocProb = 1. Clearly, relating

Nature Reserve Park
Open: 10am-6pm

C1 C2 C3

C4 C5 C6

R Rextended

o

W
a
t
e
r

Figure 1: Location Privacy

more and more spatio-temporal, external data sources toR raises the location probability of it, and guarantees
less privacy foro. One natural way to guarantee a location probability of at mostmaxLocProb , is to spatially,
or temporally, extendR to Rextended, such thatRextended.LocProb ≤ maxLocProb . In Section 4.2, we will
describe how to do this in practice.

If we denote the currently known spatio-temporal probability distribution for the location of an objecto as
PDo, then any kind of “extra” external spatio-temporal information can be modeled as a functionF (PDo) that
returns a new spatio-temporal probability distributionPD ′

o. If the location probability ofo at certain locations
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is then over the thresholdmaxLocProb with the new distribution, there is a problem that needs to be handled
somehow, most often by enlarging the area partitions.

Intuitively, we can enclose the whole trajectory of a moving object into a single rectangle so that the anonymity
of the trajectory is preserved. However, as the trajectories are often very long, the rectangles can be very big so
that it becomes impossible for the data mining algorithms to return any useful results. Our proposal is to provide
an anonymized format of the trajectory by cutting a long trajectory into pieces and enclosing each piece in an
anonymization rectangle. This format can give opportunities for doing data mining without sacrificing location
privacy.

3.1 Practical “Cut-Enclose” Implementation

The “cut-enclose” procedure splits the whole trajectory of a moving objecto into a set of polylines which cor-
respond to a set of time periods{[t1, t2], [t2, t3], [t3, t4], . . . , [tk−1, tk]}, such that at any time instanceti ∈
{t2, t3, . . . , tk−1} o’s trajectory crosses an edge between two neighboring anonymization rectanglesRi andRi+1.
Since around this instanceti, o is more likely to be close to the edge betweenRi andRi+1, Ri+1.LocProb will
temporarily be higher, which might sacrifice the location privacy ofo. More specifically, from the times spent in the
previous anonymization rectangles, their sizes, and relative locations to each other, a malicious server can easily
maintain a linear movement model ofo. Using this movement model, wheno sends the anonymization rectangle
Ri+1, the malicious server candeduceapossible location rangeR∗ of o, such thatR∗.LocProb > maxLocProb .

i i+1R i

i+1(t    )
δ[i, i+1]i+1(t    +          )

δ[i, i+1]

R *a
b

Ri+1

dc

i+1 i+2: [t   , t    ] :[t    +          ,t    ]

Figure 2: Time Delay Factor

To avoid this situation and preserve the location privacy ofo, we introduce atime delay factor δ[i,i+1] for
delaying the sending of the anonymous rectangleRi+1 after leavingRi. The factorδ[i,i+1] can be calculated as
follows. Objecto can maintain the same linear movement model about its own movement as the malicious server
can. Hence, at any time instancet∗ > ti, having enteredRi+1, o can calculateR∗ andR∗.LocProb. As time
progresses, the size ofR∗ is monotonically increasing andR∗.LocProb is monotonically decreasing. Hence, at
some time pointts > ti, when the associatedR∗.LocProb ≤ maxLocProb it is safefor o to sendRi+1 to the
server. The time delay factor is thenδ[i,i+1] = ts − ti.

Most moving objects are confined to road networks. In the presence of road networks, more sophisticated
movement models are possible. Actual values for the time delay factor have been investigated for a number of
network–based movement models on real–world datasets in [5], but this work had a different aim, namely to aid
tracking.

3.2 Problems with Existing Methods

To construct an anonymization rectangle for a given piece of trajectory, one naive method is to randomly choose
a location in the vicinity of the trajectory and use this location as the center to build the anonymization rectangle
based on a pre-defined size. Another method, motivated from the discussion oflocation k-anonymityin the
literature [7, 8, 13], is to build the anonymization rectangle that enclose this piece with trajectory pieces ofk − 1
other moving objects.

However, these two methods can lead to an undesiredloss of location privacy. Sensitive locations that need
to be kept private, or trajectory pieces that lead to these, are often re-visited by the objects many times, at a
similar time of day. For example, objects (users), in the evening hours return to theirhomeusing the same path
(trajectory piece). If on different occasions the anonymization rectangles for this trajectory piece are constructed
in a non-deterministicway, the location of the trajectory piece can be narrowed down to the intersection of these
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Figure 3: Overlapping Area

anonymization rectangles. This leads to an undesirable loss of privacy. In the example on Figure 3, objecto returns
to its homeb using the same trajectory piece[a, b] on three different occasion at the same time of the day. On the
three occasions, three anonymization rectanglesRA, RB , andRC are constructed, such that they contain both the
trajectory piece[a, b] and the locationb. Based on the multiple visits, the location of[a, b] can be narrowed down
to the small overlapping area of the anonymization rectangles.

In the next section, we present a grid-based solution and several methods for constructing anonymization
rectangles in adeterministicway on this grid, thereby avoiding the privacy loss described above. The grid-based
framework also allows for an efficient implementation of the “cut-enclose” procedure described in Section 3.1.

4 A Grid-Based Solution

A basic method to anonymize location is to reduce the spatial resolution. Thus, instead of randomly constructing
the anonymization rectangles or building the rectangles based on trajectories of other moving objects, we consider
building all moving objects’ anonymization rectangles based on a single, pre-defined 2D grid. We proceed to
discuss the solution in detail.

4.1 Grid-Based Anonymization

We denote the whole 2D Euclidean space asR2 and proceed to define an anonymization grid and anonymization
partitioning as follows.

Definition 4.1. An anonymization grid (briefly, a grid)G is a uniform grid ofR2 with a pre-definedO ∈ R2 as
the starting point and a side lengthl. An anonymization partitioning (briefly, a partitioning) is a set of pairwise
disjoint sets of grid cells covering all ofG.

O
l

l

... ...1 2 3 4 5 6c c c c c c

partition partition partition1
p p2 3

p

Figure 4: Anonymization Grid and Partitioning
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As illustrated in Figure 4, given a starting pointO ∈ R2, the anonymization grid (briefly, the grid)Guniformly
divides the whole space into square-shapedgrid cells, each of which has side lengthl. Each grid cell has an ID
value, such asc1, c2, · · · in Figure 4. Apartition of a partitioning that is defined on the grid is a set of grid cells.

Next, we develop several methods for constructinganonymization partitionings based on the anonymization
grid. All of the partitionings are constructeddeterministically, thereby avoiding the privacy loss due to overlapping
partitions.
Common Regular Partitioning (CRP): The simplest method is to define a single, regular partitioning that is used
by all the objects. We call a partitioningregular if all the partitions are rectangles with side lengthsix × l and
iy × l, whereix andiy are integers.

4p 5p 6p

1t

2t
3t 4t

5t

6t

7t

O

a

b d

e

f
c

g

1

h
p

2p 3p

Figure 5: Anonymized Trajectory

Such a regular partitioning can be seen as a coarser grid on the 2D space. As illustrated in Figure 4, given
the grid (the grid of thin lines), the partitioning (the grid of thick lines) is defined by an originO and ix =
3, iy = 3. In the example the grid cellsc1, c2, c3 belong to the partitionp1. With the grid and partitioning, we
are able to transform a moving object trajectory to a set of non-overlapping anonymization rectangles to preserve
anonymity. For instance, given the trajectory〈(a, t1), (b, t2), · · · , (h, t7)〉 in Figure 5, we build a grid on the 2D
space and make the partitioning on the grid. The partitions are denoted asp1, · · · , p6 in the figure and they are
non-overlapping rectangles. As described in Section 3.1, given the time delay factorδ, the whole trajectory is
cut into several pieces witht4 − t3 = δ andt6 − t5 = δ. Then, the whole trajectory is transformed into a list of
anonymization rectangles〈(p4, t1, t3), (p5, t4, t5), (p2, t6, t7)〉.

The above described partitioning guarantees the same minimal level of privacy for all users in any region of
the space. This method of partitioning is termed Common Regular Partitioning (CRP).

Fundamental spatio–temporal data mining tasks, like finding dense spatio–temporal regions, and frequent
routes, are based on simple counts or identities of the users that are present in a given spatio–temporal region.
Since in the CRP model all users report the same set of grid cells for the same location, the spatio–temporal
granularity of any pattern found is lower bounded by the size of a partition. In the example in Figure 5, the size of
the common partition is 9 grid cells, hence the smallest dense ST-region that can be found will be 9 grid cells.
Individual Regular Partitioning (IRP): Not all objects require the same level of location privacy. This require-
ment of individual objects can easily be accommodated in our anonymization grid-based framework. Objects
requiring higher levels of privacy construct and use a regular partitioning with larger partitions, while objects
requiring lower levels of privacy define and use a regular partitioning with smaller partitions. This method of
partitioning is termed Individual Regular Partitioning (IRP).

Besides being more flexible in terms of the objects’ privacy requirements, the IRP method allows the discovery
of patterns of spatio–temporal granularity that is equal to the size of a single grid cell (if enough data is present).
Individual Irregular Partitioning (IIP): Objects may have different location privacy requirements in different
regions of space. For example, most objects (users) desire a higher level of location privacy when being athome
or thework placethan when being in transition or when being in other general areas of the city. This requirement
of individual objects can again be easily accommodated in our anonymization-grid-based framework. Objects
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can be allowed to individually define privacy levels for regions in space that reflect their needs. The definition of
these regions can be either manual, or can be aided by discovering frequent (presumably sensitive) locations of
individual objects. Since the selection or discovery of these sensitive locations can be accomplished on the client
side, it can be kept private. This method of partitioning is termed as Individual Irregular Partitioning (IIP).

The IIP method also allows the discovery of patterns of spatio–temporal granularity that is equal to the size
of a single grid cell. The additional ability to define spatially varying privacy levels not only adds more privacy
control, but it is also expected to allow the discovery of more patterns with finer spatio–temporal granularity. This
is due to the fact that most objects are expected to require higher levels of location privacy in relatively small
subregions. The more detailed patterns are expected to be more useful for ITS applications.

With our grid-based framework, the knowledge one can infer about the whereabouts of a user does not depend
on the number of samples collected. The certainty of the inference only depends on the amount of external spatio-
temporal information available for the anonymous rectangle.

4.2 System Architecture

We implement the grid-based solution based on a client/server architecture. As illustrated in Figure 6, the server
side has three components, theanonymity componentwhich defines one or more grids and communicates them to
the client, thestorage componentwhich collects the anonymization rectangles sent from the clients and stores the
data on disk, and thedata mining componentwhich discovers certain patterns and rules either directly from the
incoming data stream or from the historical data retrieved from the storage component.

The clients are responsible for accepting an anonymization grid and developing a partitioning based on the
grid. In practice, the partitioning will be made in one of two ways: a) the user selects among a small number of
pre-computed partitionings to find one that meets their privacy requirements, or b) the partitioning is computed by
a dedicated program on the client, based on user input about privacy requirements. Both a) and b) take available
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Figure 6: System Architecture

background knowledge into account. The framework can also handle the presence of road networks. If road
networks are dense compared to the partition size, the framework can be used without modification. If not, the
partitions have to be enlarged so that each partition contains enough road to get a location probability that is
comparable to those of the other partitions.

These client- and grid-specific partitionings are stored on the clients and only anonymization rectangles (in
the form of sets of grid cells), which are computedat the clients, are transmitted to the server. We do assume that
the client has a fair amount of storage and CPU power, but not more than what can be found in most currently
available smartphones or PDAs.

Saving a partitioning at the client side does not take much space. For a regular partitioning, where partitions
form a regular grid, it is enough to store the starting point and the side length of the partitioning. Finding the
partition that corresponds to a location is a matter of simple arithmetic. For a non-regular partitioning, where
partitions do not form a regular grid, i.e., are of different size and/or shape, partitions can be kept in an R-tree.
Finding the partition that corresponds to a location can be done by issuing a stabbing query on the R-tree for the
location. The communication cost between the clients and the server is very low since the grids can be described
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with the starting point and side lengthl of the grid, and the anonymization rectangles only involves a few data
fields (i.e., coordinates of the client’s current partition and the time instances).

The clients always send their current anonymization rectangle, i.e., partition, to the server. When the anonymized
data is transmitted to the server, it is stored it in two places. To be able to perform data mining on historical data,
the data is first stored in a time-interval R-tree (TIR-tree in Figure 6) on disk. The TIR-tree is a 1-dimensional
R-tree that indexes the data on the time intervals. To be able to perform online data mining on the current data,
the data is also stored in acache, with a FIFO replacement policy as follows. According to the size of the cache,
when a new anonymization rectangle of a moving object arrives, either the previous anonymization rectangle of
this moving object (if in the cache) or the oldest data in the cache is deleted.

The system architecture in Figure 6 supports data mining on both historical trajectories and recent data. Each
anonymization grid in the anonymity component corresponds to an in-memory instance of the same grid in the
data mining component. For instance, the anonymization gridGin Figure 6 corresponds to the data mining gridG’
(we assume the data mining component has enough memory to storeG’ ). Based on this architecture, we proceed
to present algorithms for discoveringdense ST-areasandfrequent routeson the anonymized trajectory data.

4.3 Finding Dense Spatio-Temporal Areas

Discovering dense areas is one of the most common topics for spatial and spatio-temporal data mining. Exist-
ing research work has explored density clustering [6], spatio-temporal dense area discovery [16], and density
queries [12]. For dense area discovery on the anonymized trajectory data, the most basic operation is to find those
grid cells that contain a large amount of moving objects during specified time intervals. In the anonymized format,
objects are present in a grid cell with someprobability only. Hence, we propose atime interval probabilistically
dense spatio-temporal area query, or dense ST-area queryfor short, which can be seen as a basic, atomic oper-
ation for advanced dense area mining algorithms over the anonymization grid. Such advanced and complex data
mining algorithms can be made by assembling this operations with other basic query types.

Specifically, suppose a moving objecto corresponds to a partitionP on a given anonymization gridG, a
partition cellp ∈ P containso’s trajectory during time interval[ts, te], andp includes grid cellsc1, c2, . . . , ck.
We usep as the anonymization rectangle foro’s trajectory and each grid cellci ∈ p has the location probabil-
ity co

i .LocProb = 1/k for o at any time instance during[ts, te]. Let Oci be the set of moving objects whose
anonymization rectangles include the grid cellci in at least one time instance during the time interval[ts, te].
Thenci.count = |Oci | andci.prob =

∑
o∈Oci co

i .LocProb/|Oci |. Intuitively, ci.count is themaximumnumber
of objects thatcanbe insideci during [ts, te], while ci.prob is theaveragelocation probability of the objects that
can be insideci during[ts, te]. Consequently,ci.prob×ci.count is theexpectednumber of objects insideci during
[ts, te]. Furthermore, we define thepattern certaintyci.cert =

∏
o∈Oci co

i .LocProb as the probability ofactually
havingci.count number of moving objects inside ofci during[ts, te].

We say that a grid cellci is probabilistically denseduring [ts, te] if ci.count ≥ min count andci.prob ≥
min prob , for some given threshold valuesmin count andmin prob . Thus, we formulate thedense ST-area
query as follows:

Definition 4.2. A dense ST-area queryQ = ([ts, te], min count , min prob ) retrieves all the grid cells whose
correspondingcount andprob values during[ts, te] are greater than or equal tomin count andmin prob ,
respectively.

To process a dense ST-area query, the first step is to compute thecount andprob values for each grid cell
ci for the specified time interval[ts, te]. Based on the system architecture in Figure 6, we need to issue a range
query over the TIR-tree to find all the anonymization rectangles whose time periods have intersections with[ts, te].
Results of the range query are used to fill in thecount andprob values for each cellci of the data mining gridG’ .
Then the set of dense ST-grid cells is:

D = {ci : ci.count ≥ min count ∧ ci.prob ≥ min prob }

During the query time interval[ts, te] a moving object can leave and later reenter a given grid cellci. To avoid
counting such an object multiple times forci, we maintain a hash array of object IDs and only update values for
ci.count andci.prob when an object ID is encountered forci for the first time. If we consider only approximate
counts, these can be more effectively obtained using the methods from [15].
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As we will see in Section 5, the cut-off criteria for dense areas presented above is in some cases not strict
enough, thus generating too many dense areas (false positives). To remedy this, we introduce the alternative
steepest slopecut-off criteria, which is calculated by first sorting the expected counts for dense areas passing the
first criteria in descending order, finding the deltas between any two consecutive values, and making the cut-off
where the (negative) delta is the smallest, i.e., where the “slope” is steepest.

The above method is simple to implement but can not discover all the dense areas that have the size of a single
grid cell. As illustrated in Figure 7(a), grid cellsc1, c2, c3, c4 have several moving objects (big dots in the figure)
and the thresholdcount = 4. None of the four cells are reported as dense since thecount value of each is less
than4.

c

c1 c2

4c3

(a) Loss of Result (b) Using the Second Grid

Figure 7:Multi-Grid to Overcome Answer Loss

To overcome such loss of results, we can let the server provide several anonymization grids with different
starting points (and perhaps side length values) and distribute these grids to the moving objects so that there are
in equal amount of moving objects that build their partitioning based on each of the anonymization grids. This
Multi-Grid approach can capture the answer loss with a single grid. As shown in Figure 7(b), the dense junction
area of the four cells can be captured by the dark cell belonging to another grid. We leave thisMulti-Grid extension
for future work.

The time interval dense ST-area query can be seen as an atomic operation over the anonymized trajectory data.
Advanced and complex data mining functions can be made by assembling this operations with other basic query
types. We proceed to introduce another atomic operation, namely thetime interval probabilistically frequent
route query.

4.4 Frequent Route Mining

Next, we introduce another operation, namely thetime interval probabilistically frequent route query, or fre-
quent route queryfor short, which can again be seen as a basic, atomic operation for advanced frequent route
mining algorithms over the anonymization grid.

Finding frequently travelled routes taken by moving objects has many applications in telematics, ITS and
LBS. One such application, an intelligent rideshare application, was recently proposed in [10]. Here, similar to
our work, trajectories are represented as a set of spatio–temporal grid cells, and the task of finding sharable long
patterns in trajectories is posed as finding closed frequent itemsets, a common task in data mining.

We adopt a similar approach to answer a frequent route query in our anonymization grid based framework.
Similarly to Section 4.3, we assume that for any historical time interval[ts, te] the locations of moving objects can
be retrieved from the server side storage component in form of anonymization rectangles, which are stored as a set
of grid cells, with corresponding location probabilities. To construct a spatio–temporal grid cell representation of
trajectories, we split trajectories inside the query time interval intom sub–trajectories of durationd = (te−te)/m,
by issuingm d–long time interval queries to the server side storage component at time instancests, ts + d, ts +
2d, . . . , te − 2d, te − d. For each query result, we combine the returned grid cell IDs with the starting time of the
query to form spatio-temporal grid cells. As a result of this transformation, a trajectory that falls inside the query
time interval is represented as a set of spatio-temporal grid cell IDs, each of which is associated with a location
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probability. After this transformation, we modify the traditional frequent itemset framework in [1] and map the
problem of finding frequent routes to the problem of finding maximal frequent itemsets as follows.

Conforming to the naming convention used in the traditional frequent itemset mining framework, a spatio–
temporal grid cell ID is equivalently referred to as anitem. Then, atransformed trajectoryt inside the query
time interval, equivalently referred to as atransactionis a two–tuple(X, P ), whereX is anitemsetandP are the
corresponding probabilities of the items inX. For a given transactiont = (X,P ), we denote the probability of
an itemi ∈ X asi.prob. Given a user–defined thresholdmin prob , a transactiont = (X, P ) probabilistically
satisfiesan itemsetY if Y ⊆ X and∀i ∈ Y ∩ X, i.prob ≥ min prob . Given a set of transactions, the
probabilistic supportof an itemi, denoted asi.count is the number of transactions that probabilistically satisfy
the itemsetY = {i}. Similarly, the probabilistic support of an itemsetY , denoted asY.count is the number of
transactions that probabilistically satisfy all itemsi ∈ Y . Given a user–defined thresholdmin count , an item
i is probabilistically frequentif i.count ≥ min count . Similarly, an itemsetY is probabilistically frequent if
Y.count ≥ min count . An itemsetY is amaximal probabilistically frequent itemsetif there does not exists a
probabilistically frequent itemsetX such thatY ⊂ X.

Using this modified frequent itemset framework, referred to as theprobabilistically frequent itemset frame-
work, we define afrequent route to be a maximal probabilistically frequent itemset. Consequently, we formulate
thefrequent route query as follows:

Definition 4.3. A frequent route query Q = ([ts, te], min count , min prob ) retrieves all the maximal
probabilistically frequent itemsets during[ts, te] .

It is important to note that frequent routes returned by the query are not necessarily continuous in space or time.
For example, a large set of objects may share the beginning and end of a route, but may make different detours in
the middle of their trajectories. Such discontinuous, frequent routes can still be of great interest to telematics and
ITS.

We adopt a prominent itemset mining algorithm, MAFIA [4], to our probabilistic frequent itemset framework
as follows. A transactiont can probabilistically satisfy an itemsetY = {ik} iff ik ∈ t andik.prob ≥ min prob .
Hence, before the mining, items having a location probability less thanmin prob are deleted from transactions.
This preprocessing guarantees that all maximal frequent items mined in the traditional framework, will be max-
imal probabilistically frequent itemsets. Such a preprocessing of transformed transactions is a straight forward,
linear time operation, which not only allows a simple, but also an efficient mapping between the two frameworks
and tasks. Since items that have location probabilities less thanmin prob cannot appear in a maximal proba-
bilistically frequent itemset, eliminating them from the transactions before mining, reduces the search lattice and
ultimately computation cost.

5 Evaluation

To evaluate the algorithms, we use Brinkhoff’s network-based generator of moving objects [3] to generate trajec-
tories on the Oldenburg network. We use integer as unit time instance and set the whole time period from0 to 100,
and generate600 to 3000 trajectories. To capture the real world time span between two consecutive time instances,
we calculate, for all the trajectories, the average distance between every two subsequent reported locations. The
average distance is234.96m, which is about14 seconds travel time for a60km/hour moving object. Thus, the
actual time span between two consecutive time instances is about14 seconds. The default time span for all the
queries are50 time instances.

To implement the grid-based solution, the anonymization grid is generated based on the minimum bounding
rectangle (MBR) of the Oldenburg network. We assign each generated trajectory a randomly-chosen anonymiza-
tion partitioning based on the grid.

The default grid is a40 × 40 partitioning on the MBR of the Oldenburg network. Based on the Oldenburg
network data, the size of each grid cell is589m× 672.9m. In the experiments, we also tune the grid partitioning
from 20 × 20 to 50 × 50 to observe the performance. We apply the three policies on the trajectories with the
anonymization grid. To implement the CRP policy, we make two fixed partitionings, where each user has2× 2 or
4× 4 grid cells. In the IRP policy, every user partition contains at most4× 4 grid cells. In the IIP policy, we set
each moving object to use the anonymization partition (each partition contains at most4×4 grid cells) that covers
the start location of the moving object. After the object is out of this partition, it uses the lowest level of privacy
so that each partition equals to a grid cell.
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In the experiments, we are focused on evaluating the accuracy of the algorithms, i.e., the amount of false
positives and false negatives. A false negative, is the error of not finding a pattern that does exist in the data. A
false positive, is the error of finding a “pattern” that does not exist in the data. To compare the algorithms, we also
apply the algorithms on an ideal case, where the partitioning of every user equals the anonymization grid, and use
the results of this case as the evaluation target. Suppose the actual amount of dense grid cells or frequent routes is
D, we collect the number of false positivesP , false negativesN for every algorithm and report the ratio between
these values andD, called thefalse positive rate(FPR) andfalse negative rate(FNR), respectively. The choice
of these measures over the precision and recall measures used in information retrieval is because of conceptual
simplicity. We relate different kinds of errors to the same reference set (D), as opposed to relating the same set
of correctly retrieved patterns to the set of all true patterns (recall) and to the set of retrieved patterns (precision).
Hence, more accurate results are characterized by lower error rates rather than by higher recall and precision.
However, it holds that Recall=1-FNR and Precision=(1-FNR)/(1-FNR+FPR).

(a) Effect of Count (b) Effect of Prob

(c) Effect of Grid Size (d) Effect of Time Span

(e) Effect of Trajectory Amount (f) Effect of Count with Steepest Cut-Off

(g) Effect of Prob with Steepest Slope Cut-Off Criteria (h) Optimized Results of Different Policies

Figure 8:Experiments on Dense ST-area Query
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5.1 Dense ST-area Query

In the experiments ofdense ST-areasquery, we tuned thecountandprob values to observe the amount of false
positives and false negatives. Experiments have also been conducted to test the effect of grid size, time span and
amount of trajectories on the accuracy. As seen in Figure 8(a) to Figure 8(e), there are very few false negatives
and the amount of false positives grows in certain cases. In particular, based on Figure 8(a), with the growth of
countvalues, more false positives appear. With the experiment on theprob value (Figure 8(b)), it is possible to
reach an optimal situation by tuning thisprob value for each policy. For instance, the IRP policy has fewer false
positives whenprob= 0.1 and so has IIP whenprob= 0.3. An observation from Figure 8(c) is that the amount
of false positives grows with the grid size. Our explanation is that when the grid becomes denser, there are fewer
really dense grid cells but the amount of dense cells found through the three policies does not decrease very much
so that the reported ratio value becomes larger. In Figure 8(d) and Figure 8(e), we observe that increase of the time
span and the amount of trajectories reduces the amount of false positives for all the policies.

To test how the steepest slope cut-off criteria influences the algorithms, we tune thecountandprob values to
observe the amount of false positives and false negatives on the different policies. As illustrated in Figure 8(f)
and Figure 8(g), the cut-off criteria decreases the amount of false positives but, compared to the same settings
in Figure 8(a) and Figure 8(b), brings more false negatives. Thus, considering all the parameters for the three
policies, we have the followingrecommendationsettings for the dense ST-area query:

The IIP is the most effective policy for doing dense ST-area query with privacy protection. The second and
third best choice is the CRP policy with2× 2 partitioning and the IRP policy. For all the policies, certain optimal
situation on the amount of false positives and false negatives can be reached by tuning the prob value. To increase
the time span and amount of trajectories will improve the performance of all approaches.

Based on therecommendation, we have an experiment to compare the different policies with their optimal
settings. We increase the amount of trajectories to1000 and use optimalprob values for each policy. Figure 8(h)
presents the results. The CRP policy with each partition containing2 × 2 cells and the IIP policy shows the
most promising performance. These two policies guarantee a precision level that makes them useful for most
applications.

5.2 Frequent Route Query

In the simulated moving object data sets, objects move between a source and a destination location, obeying the
limitations of the road network and traffic conditions. However, there is little regularity in the selection choice
for the source and destination locations. Hence, we expect to find longer frequent routes, only if there are a large
number of objects on the road network at the same time. Thus in the frequent route query experiments we use the
data sets that contain 3000 objects, and a query time span of 120.

For a frequent route query, a pattern is a maximal set of spatio-temporal grid cells. Since two patterns are very
unlikely to be exactly ythe same, to be able to evaluate false positive and false negative errors, we first need to
define an approximate matching criteria between two patterns. We say that a patternp1 is f-containedin a pattern
p2, if at leastf fraction of the items inp1 are also inp2.

In the experiments, formin count = 5, we evaluate the accuracy of the three anonymization policies for
various prob values and f-containment. The results of the experiments for the IRP and IIP policies are shown in
Figure 9. Results for the CRP (2 x 2) policy have been excluded from the figure, because the varied parameters
had little to no effect on the results. For all f-containments formin prob ≥ 0.3 the false positive rate was0,
while the false negative rate was 1. Formin prob < 3, the opposite was true. The reason for this behavior is
that in the CRP (2 x 2) policy all grid cells have a location probability of0.25. The false positive rate of0 for
min prob ≥ 0.3 is due to the fact that under this setting no patterns (out of which none are false) are found in the
anonymized data. A similar behavior is observable for the IRC policy, except the false positive rate, for sufficiently
low min prob values, is between 3 and 3.5. This is due to the fact the the average partition size for the IRP policy
is 9 cells, which gives rise to a lot more patterns. As expected, the best performance is obtained by the IIR policy,
where formin prob = 0.3 false negative is0.37 and the false positive rate is0.47. The experiments show that
for low min prob values the IRP policy, but even more so, the IIR policy provides accurate and useful frequent
route mining results.
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(a) IRP: False Negative Rate
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(b) IRP: False Positive Rate
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(c) IIP: False Negative Rate
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(d) IIP: False Positive Rate

Figure 9: Experiments on Frequent Route Query

6 Conclusions and Future Work

Motivated by the possible loss of location privacy for LBS users, this paper proposed a general grid-based frame-
work that allowed user location data to be anonymized. Thus, privacy is preserved, but interesting patterns could
still be discovered. The framework allowed users to specify individual desired levels of privacy and developed
three policies for implementing that. Privacy-preserving methods were proposed for two core data mining tasks,
namelyfinding dense spatio–temporal regionsandfinding frequent routes. An extensive set of experiments evalu-
ated the methods and showed that the framework still allowed most patterns to be found, even when privacy was
preserved.

Future work will be along three paths. First, we will further investigate theMulti-Grid approach as it offers
a direction for getting more detailed data mining results without violating the privacy. Second, in addition to the
CRP, IRP and IIP policies, it is possible to develop more policies for creating anonymization rectangles suitable for
different real world situations. Third, since the grid-based solution can be seen as a simple and general framework
for privacy preserving data mining on moving object trajectories, we will extend this framework to support more
kinds of spatio-temporal data mining algorithms.
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