
Skyline Ordering: A Flexible Framework for
Efficient Resolution of Size Constraints on

Skyline Queries

Hua Lu, Christian S. Jensen, Zhenjie Zhang

January 26, 2010

TR-27

A DB Technical Report

Title Skyline Ordering: A Flexible Framework for Efficient Resolution of Size
Constraints on Skyline Queries

Copyright c© 2010 Hua Lu, Christian S. Jensen, Zhenjie Zhang. All rights
reserved.

Author(s) Hua Lu, Christian S. Jensen, Zhenjie Zhang

Publication History “January 2010. A DB Technical Report”

For additional information, see the DB TECH REPORTS homepage: 〈dbtr.cs.aau.dk〉.

Any software made available via DB TECH REPORTS is provided “as is” and without any express or
implied warranties, including, without limitation, the implied warranty of merchantability and fitness for a
particular purpose.

The DB TECH REPORTS icon is made from two letters in an early version of the Rune alphabet, which
was used by the Vikings, among others. Runes have angular shapes and lack horizontal lines because the
primary storage medium was wood, although they may also be found on jewelry, tools, and weapons. Runes
were perceived as having magic, hidden powers. The first letter in the logo is “Dagaz,” the rune for day
or daylight and the phonetic equivalent of “d.” Its meanings include happiness, activity, and satisfaction.
The second letter is “Berkano,” which is associated with the birch tree. Its divinatory meanings include
health, new beginnings, growth, plenty, and clearance. It is associated with Idun, goddess of Spring, and
with fertility. It is the phonetic equivalent of “b.”

Abstract

Given a set of multi-dimensional points, a skyline query returns the interesting points that are not
dominated by other points. It has been observed that the actual cardinality (s) of a skyline query result
may differ substantially from the desired result cardinality (k), which has prompted studies on how to
reduce s for the case where k < s.

This paper goes further by addressing the general case where the relationship between k and s is not
known beforehand. Due to their complexity, the existing pointwise ranking and set-wide maximization
techniques are not well suited for this problem. Moreover, the former often incurs too many ties in its
ranking, and the latter is inapplicable for k > s. Based on these observations, the paper proposes a new
approach, called skyline ordering, that forms a skyline-based partitioning of a given data set, such that
an order exists among the partitions. Then set-wide maximization techniques may be applied within
each partition. Efficient algorithms are developed for skyline ordering and for resolving size constraints
using the skyline order. The results of extensive experiments show that skyline ordering yields a flexible
framework for the efficient and scalable resolution of arbitrary size constraints on skyline queries.

1 Introduction

Given a set of d-dimensional points, a skyline query [7] returns a subset of points that are interesting in
that they are not dominated by other points. Point p1 dominates p2 if p1 is better than p2 in at least one
dimension and no worse than p2 in any other dimension. The skyline query is thus fundamental to multi-
criteria decision making, where objects must be retrieved according to multiple criteria [7, 15, 21, 26, 28].

Consider the example shown in Figure 1. Each of the hotels has two attributes: room price and distance
to the beach. For a tourist who prefers a low-cost hotel close to the beach, hotels A, B, C, and D are
interesting—these are exactly the skyline of the hotels in the figure.

50 100 150 200 250 Price ($)

10

20

30

40

Distance to the beach (miles)

A

B

C

D

E

F

H

G

I

Figure 1: Skyline of Hotels

Although skyline queries are effective in identifying interesting points in multi-dimensional data sets,
they also have a well-known weakness—their result cardinalities may vary. The result cardinality can be
very large, especially when the dimensionality is high or the data is anti-correlated.

To contend with large skyline results, four categories of approaches have been proposed. In the first
category, namely pointwise ranking, all d-dimensional points are totally ordered according to some specific
scoring function or mapping function, and only the top points are returned [10, 26]. Such approaches face
the difficulty of reflecting the multiple criteria in the scoring functions. In the second category, namely sub-
space reference, all subspaces of the full d-dimensional space are investigated, and those points preferred
in subspaces are favored in the result [9, 10, 31]. Such approaches incur high computation costs in the
traversal of all subspaces. In the third category of approaches, namely set-wide maximization, a subset of
the skyline is deliberately selected such that a collective quantity based objective, e.g., the number of points

1

dominated by those in that subset, is maximized [25]. The problem has NP-hard computational complexity,
so only approximate results can be computed efficiently. In the fourth category, namely approximate selec-
tion, points are compared approximately with a predefined threshold such that more points are identified as
being dominated [20]. The approach in this category is not able to fully control the result cardinality.

It is meaningful for an approach to belong to different categories. For example, the subspace skyline
frequency method [10] belongs to the first two categories. Section 2.2 offers a more detailed review of
previous approaches.

The above approaches focus on reducing large skylines; however, small skylines can also be a problem.
Consider again the classical example in Figure 1. The tourist now specifies a parameter k—the number of
interesting hotels to be returned in the query result. A conventional skyline query usually, if not always,
fails to return precisely k hotels. If k is 3, the skyline is too big. On the other hand, a large k value can offer
practical convenience. Suppose a large number of hotel rooms are needed to accommodate all participants
to a popular event to take place. To make sure to get enough rooms, the event organizer may specify k to be
5 or even larger, if all hotels in the skyline (namely A, B, C and D) together provide fewer vacant rooms. In
such cases where skylines may be too small, the use of large k values is well motivated.

Another real-life example comes from online shopping. Many online shopping sites, such as eBay,
allow users to specify multiple product dimensions (e.g., price, quality, guarantee, etc.) as criteria for good
bargains. The resulting user requests are well captured by skyline queries against the background product
database. However, if a user only specifies a few dimensions as being important, too few products will be
returned as the skyline query result, which leaves the user with too little choice. In such cases, it makes
practical sense to extend the small skyline to a larger size as expected by the user.

Given an arbitrary d-dimensional data set, its skyline cardinality s can be considerably smaller than a
user-specified number k, and there is no good, straightforward way to increase s to k. We conclude that an
approach is needed that supports skyline querying for arbitrary k.

This paper studies size constrained skyline queries, which takes an arbitrary size constraint k as a param-
eter and retrieves k desirable points from a d-dimensional data set. In contrast to traditional top-k queries, a
size constrained skyline query must be insensitive to dimension scaling and shifting, which is an important
property of a skyline query [7].

The conventional techniques for size constrained skyline queries, pointwise ranking and set-wide max-
imization, are not well suited for size constraints. Pointwise ranking approaches sometimes prefer non-
skyline points to skyline points. Also, pointwise ranking approaches usually prefer points with similar
features, since similar points are likely to get similar ranking scores, which limits the variety found in
query results. With set-wide maximization it is possible to return results with larger variety, but set-wide
maximization is not applicable to arbitrary query size constraints—cases where k > s cannot be handled.
Set-wide maximization is also computationally expensive due to its counting and set-wide optimization
characteristics.

Motivated by these shortcomings, we propose a new approach, called skyline ordering, that supports
arbitrary size constraint over the conventional skyline query. Skyline ordering introduces a skyline-based
partitioning of a given data set, it provides an ordering among the partitions, and it reserves room for the
use of various set-wide maximization techniques within partitions.

Skyline ordering aims to overcome the limitations of pointwise ranking and set-wide maximization by
combining them into a uniform framework. In particular, given the partitions in skyline order, the following
hold: (1) no point can dominate any other point in the same partition or in a previous partition; (2) any point
in a partition, except in the first partition, must be dominated by some point(s) in the previous partition.

When answering a size constrained skyline query with skyline ordering, we start from the first partition
and continue to output partitions until at least k points have been output; the last partition is pruned to
guarantee that the total result size is exactly k. This way, arbitrary size constraints on skyline queries can be
computed efficiently within a flexible framework built upon skyline ordering.

2

Our approach differs from skyband-based ranking[29]. The latter first retrieves from the database a
K-skyband [27], a set of K points dominated by at most K − 1 other ones, that has the smallest K ≥ k.
Then it returns the k best points from the K-skyband. In contrast, the partitioning in our approach neither
counts nor minimizes the numbers of dominators. When selecting k points as the result, our approach may
involve several consecutive partitions rather than a single K-skyband.

The paper makes the following contributions. First, its proposal supports arbitrary size constraints
on skyline queries. Second, it includes a comprehensive review of previous approaches that modify the
cardinality of a skyline, it analyzes their application to arbitrary skyline size constraints, and it proposes
simple yet efficient heuristics for selecting representative skyline points. Third, it proposes the skyline
ordering concept, together with algorithms for computing and maintaining skyline orders. Fourth, it defines
size constrained skyline queries based on skyline order and develops various query processing algorithms.
Fifth, the paper offers results of empirical evaluations of skyline order computation and size constrained
skyline query processing.

The rest of this paper is organized as follows. Section 2 gives a general problem definition of size
constrained skyline queries and briefly reviews related work. Section 3 discusses different approaches for
tuning skyline cardinality. Section 4 covers the skyline order definition and computation. Section 5 applies
skyline ordering to size constrained skyline queries. Section 6 presents the empirical studies. Section 7
concludes the paper.

2 Preliminaries

2.1 Problem Definition

Given a d-dimensional data set P with cardinality N , each data point p represents a choice of interest to a
user. Without loss of generality, we assume that the user interests cover all d dimensions and that smaller
values are preferred in each dimension. For two points p and q in P , we use p ≺ q (p Â q) to represent that
p dominates (is dominated by) q under the conventional skyline definition [7].

We may define a size constrained skyline query Qscs
k (P) informally as a subset S of P consisting of k

points that are good in terms of user interest. In this informal definition, the query parameter k explicitly
specifies the cardinality of the result to be returned. But what it means for a k-point subset of P to be good,
and in what sense one subset of points is better than another, remain to be formalized. Put differently, we
need criteria to determine which skyline points to discard or which non-skyline points to include when nec-
essary. By applying such precise criteria to the result point selection, we are able to give formal definitions.
These issues are covered in Sections 3 and 5.

Table 1 lists the notation used in this paper.

2.2 Related Work

2.2.1 Skyline Algorithms

Algorithms for computing conventional skyline queries can be divided into two categories. One category
contains those algorithms that do not require any indexes on the data set. The theoretical algorithms for
maximal vector computation [3, 5, 22] fall into this category. Borzonyi et al. [7] introduce the skyline query
into database systems, defining Block Nested Loop (BNL) and Divide-and-Conquer (D&C) algorithms.
Chomicki et al. [13] propose a variant of BNL called the Sort-Filter-Skyline (SFS) algorithm. Godfrey et
al. [15] provide a comprehensive analysis of these non-index-based algorithms and propose a hybrid method
with improvements. Bartolini et al. [4] propose a presorting based algorithm that is able to stop dominance

3

Table 1: Table of Notations
Notation Description
P Argument data set
N Cardinality of P
d Dimensionality of P
Rd d-dimensional space
SP Skyline of P
s Size of SP

Qscs
k (P) A k-size constrained skyline query on P

SP Skyline order of P
Si i-th skyline order subset of SP

n Skyline order length
D≺

P (p) All points in P that are dominated by p
D≺

P (S) All points in P \ S dominated by point(s) in S

Table 2: Previous Approaches to Dominance Based Skyline Query Derivatives
Approach Nature Approach Name k < s k > s Remarks
pointwise ranking Top-k dominating query [26] + +

Skyline frequency [10] + + Also a pointwise ranking.
Subspace reference Strong skyline point [31] − ×

K-dominant skyline [9] − ×
Set-wide maximization Top-k RSP [25] + ×
Approximate selection ε-ADR dominance [20] − ×

Thick skyline [19] × −
+: Result of exact k points; −: Result of uncontrolled size; ×: Inapplicable.

tests after accessing specific points. Zhang et al. [32] propose a dynamic indexing tree for skyline points
that helps reduce the CPU costs in dominance tests in skyline computation.

The other category contains algorithms that require the presence of specific indexes. Tan et al. [28]
propose two progressive algorithms: Bitmap and Index. The former represents points in bit vectors and
employs bit-wise operations, while the latter utilizes data transformation and B+-tree indexing. Kossmann
et al. [21] propose a Nearest Neighbor (NN) method that identifies skyline points by recursively invoking
R∗-tree based depth-first NN search over different data portions. Papadias et al. [26] propose a Branch-and-
Bound Skyline (BBS) method based on the best-first nearest neighbor algorithm [16].

2.2.2 Dominance Based Skyline Query Derivatives

Several approaches have been proposed as skyline query derivatives based on the dominance definition. All
approaches known to the authors are listed in Table 2. For each approach, we consider its methodological
nature, its applicability to the case where the number of points expected (k) is less than the skyline size (s)
and the opposite case (k > s), and its relevant algorithm. For the nature of an approach, we consider four
types: pointwise ranking, subspace reference, set-wide maximization, and approximate selection.

Papadias et al. [26] propose the top-k dominating query that retrieves points that dominate the largest
number of points. Yiu and Mamoulis [30] have recently proposed efficient processing algorithms for this
problem. The top-k dominating query belongs to the pointwise ranking category.

By utilizing the frequency of points’ membership in subspace skylines, Chan et al. [10] formalize a
top-k ranking problem that gives priority to points that appear more frequently in subspace skylines. This
skyline frequency approach is able to return a fixed number of points for both cases. Zhang et al. [31]

4

propose the concept of strong skyline points, which frequently appear in small-sized subspace skylines in
high-dimensional spaces. This method does not return a fixed number of points in the case of k < s, and it
is not applicable to the case of k > s. Chan et al. [9] propose K-dominant1 skyline for high dimensional
space. The strict dominance covering all dimensions is relaxed to only K dimensions in any subspace. A
K-dominant skyline does not return a fixed number of points in the case of k < s, and it is not applicable
to the case of k > s. All the three approaches just covered use subspaces for result determination, while the
skyline frequency approach can also be regarded as a total pointwise ranking.

Lin et al. [25] propose the k most representative skyline point problem (top-k RSP for short), which
selects a portion of points from the traditional skyline that maximizes the total number of dominated points.
This approach is an instance of set-wide maximization.

Koltun and Papadimitriou [20] introduce approximately dominating representatives, which produces
a smaller, but not fixed-size, so-called ε-ADR skyline. The approximation lies in that before a point is
compared with others, it is first enlarged by ε in all dimensions (if larger values are assumed to be preferred).
This approach is not applicable to the case of k > s. Rather than evaluating single data points, Jin et al. [19]
extend the conventional skyline, which they term a thin skyline, to a so-called thick skyline, by including
points in the proximity of the conventional skyline points. This approach is only applicable to the case of
k > s, and it cannot return a fixed number of points. Both of the above approaches perform approximate
selections, as they employ approximate measures when evaluating point candidates.

Balke et al. [1, 2] propose to allow user interference or feedback to reduce skyline sizes. Lee et al. [24]
propose to rank skyline points according to user-specific preference that prioritizes dimensions and requires
search in preferred subspaces. In contrast, our skyline order approach ranks full-space skylines without any
user-specific preference.

3 Skyline Size Tuning

3.1 Pointwise Ranking

To support size constraints on skyline queries, we need criteria for point candidates that select satisfactory
ones and rule out undesirable ones. In this section, we discuss options to resolve the query size constraint
by ranking all points with a dominance-based scoring function.

To enable pointwise ranking of all points in P , a mapping function f : P −→ C, is needed that maps
each individual point p in P to a single value f(p) in a totally ordered domain C. As a result, all points in
P can be ranked in terms of their f(p) values.

The pointwise ranking approach essentially converts the multiple criteria optimization that underlies a
size constrained skyline query to a top-k ranking problem. It is capable of fully controlling the result size
according to arbitrary k from 0 to |P |, as C is totally ordered. However, this approach needs a careful
design of the mapping function f , which is expected to be dominance based, and invariant to the scaling
and shifting with any constant factor of dimensions.

Next, we discuss two classes of mapping functions that can be used for supporting pointwise ranking.

3.1.1 Dominating Points Counting

One option is to take dominating capabilities into account when defining a mapping function f . A straight-
forward way is to count for a point p the number of points it dominates [26]. As a result, the mapping
function is fDN (p) = |D≺

P (p)|, where D≺
P (p) = {q|q ∈ P ∧ p ≺ q} is the set of points from P that are

dominated by p. This definition is simple, but it sometimes prefers non-skyline points over skyline points.
1This K carries a different meaning than does k in our problem definition.

5

Referring to Figure 1, we have fDN (A) = 0 because point A dominates nobody, fDN (F) = 2 because F
dominates both H and I. Following the same line of reasoning, we have fDN (B) = 3, fDN (C) = 5, and
fDN (D) = 2. If a size constrained skyline query based on fDN asks for k = 4 points, points C, B, D and
F will be returned but the skyline point A will be suppressed. However, since F is apparently dominated by
C, F is unlikely interesting to the user. In this sense, the result actually offers fewer options compared to the
result that includes A instead.

3.1.2 Subspace Skyline Frequency

Another way to rank all points in P is to consider for each point p its frequency of appearance in the
subspace skylines. The mapping function is defined as follows.

fSSF (p) =
∣∣∣R′ ∈ 2R

d | pR′ ∈ SPR′
∣∣∣ (1)

Here pR′ is the projection of the point p on the subspaceR′, and function PR′ is the projection of all points
in P onto R′. Intuitively, fSSF (p) counts the number of subspaces on which p locates on the skyline of the
data set P .

However, this method requires a traversal of all subspaces of Rd, computing the skyline of P ’s pro-
jection on each subspace, and counting subspace frequency for each point in P . Therefore its computation
calls for approximate algorithms [10]. The time complexity of the approximate counting algorithm in [10] is
upper bounded byO(2d2 ln(2/δ)/ε2), when the approximate result is within the error of ε with a confidence
level ≥ 1− δ.

3.2 Set-Wide Maximization

Set-wide maximization is also an alternative for evaluating size constrained skyline queries. Instead of
considering each single point separately, this method considers a set of points collectively to maximize a
target value.

3.2.1 Count Based Maximization

The top-k representative skyline points problem [25] is limited to the case where k is smaller than the
skyline size |SP |. This definition can be extended by modifying the outcome for the case where k ≥ |SP |.
A direct extension is given as follows.

Definition 3.1 (Extended Top-k Representative Skyline Points Query) The extended top-k representa-
tive skyline points query Qersp

k (P) retrieves a subset S of k points from a d-dimensional point set P that
maximizes |D≺

P (S)|, where D≺
P (S) is the set of points from P \ S dominated by some point in S.

For the extended definition above, we have the following lemma that explicitly states the relationship
between the usual skyline and the result of query Qersp

k (P).

Lemma 3.1 Given the skyline SP of a d-dimensional point set P , and the result Sersp of an extended top-k
representative skyline points query Qersp

k (P), the following properties hold:

1. SP ⊂ Sersp, if k > |SP |;
2. Sersp ⊂ SP , if k < |SP |.

6

Proof. 1. As |Sersp| = k > |SP |, there must exist at least one non-skyline point p s.t. p ∈ Sersp but p /∈ SP .
Suppose there exists a skyline point s s.t. s ∈ SP but s /∈ Sersp. If s dominates p, (Sersp \ {p}) ∪ {s} is
a better result than Sersp, in terms of the number of points dominated. If s does not dominate p, there must
exist another skyline point s′ that dominates p. If s′ /∈ Sersp, (Sersp\{p})∪{s′} is a better result than Sersp;
otherwise, (Sersp \{p})∪{s} is better since |D≺

P ((Sersp \{p})∪{s})| ≥ |D≺
P (Sersp)|+1 > |D≺

P (Sersp)|.
Each case leads to a contradiction, which proves that SP ⊂ Sersp if k > |SP |.
2. Suppose there is a p ∈ Sersp but p /∈ SP . There must be s ∈ SP that dominates p. If s /∈ Sersp, (Sersp \
{p})∪{s} is a better result than Sersp, since |D≺

P ((Sersp \{p})∪{s})| ≥ |D≺
P (Sersp)|+1 > |D≺

P (Sersp)|.
If s ∈ Sersp, for any skyline point s′ /∈ Sersp (such a s′ must exist as |Sersp| < |SP |), (Sersp \{p})∪{s′} is
a better result than Sersp since |D≺

P ((Sersp \ {p}) ∪ {s′})| ≥ |D≺
P (Sersp)|+ 1 > |D≺

P (Sersp)|. Both cases
lead to a contradiction, which proves that Sersp ⊂ SP if k < |SP |. ¥

Lemma 3.1 gives indications on how to answer an extended top-k representative skyline points query:
its result is contained in the skyline if less points are expected, or it contains the skyline if more points are
expected. However, the lemma also indicates that the direct extension given in Definition 3.1 is problematic
when k is larger than the original skyline size s. For that case, D≺

P (S) actually can never exceed D≺
P (SP)

because every point in P \Sersp must be dominated by some skyline point in SP . It is shown by Lemma 3.1
that SP is always contained in the query result Sersp, but it makes no difference which non-skyline points
are included into Sersp, as none of them increases |D≺

P (Sersp)|. Thus, it is attractive to modify Definition 3.1
so that it becomes more meaningful for an arbitrary k. This will be discussed in Section 4.

3.2.2 Estimation Based Maximization

It is expensive to count exactly how many points are dominated by a point or a set of points [25]. In this
section, we propose another result criterion based on dominating capability estimation. Such estimations
take into account the dominating region [17] of each point and can be used for queries with k < s.

The dominating region of a point p is a hyper-rectangle, whose main diagonal is the line segment from
p to the maximum corner of P . As any point in this dominating region is definitely dominated by p, its
volume, termed as VDR(p), is used to estimate p’s capability of dominating other points.

To illustrate, consider hotel D in Figure 1. Its dominating region is a rectangle as there are only two
dimensions. For all hotels, $250 is the maximum price and 35 miles is the longest distance to the beach.
These two maximum values together correspond to the (virtual) maximum corner that together with D
defines the main diagonal of D’s dominating region. Hotels G and I are within that region and are thus
dominated by hotel D.

For a set of points, we consider their overall dominating capability which is indicated by the union of
all their dominating regions. By applying the Inclusion-Exclusion principle, we can compute the volume of
such a union of all points in a set S = {s1, s2, . . . , sk}, with Ul denoting the maximum value on dimension
l, as follows.

VDR(S) =
k∑

i=1

VDR(si) +
k∑

j=2

((−1)j−1
∑

1≤i1<...<ij≤k

d∏

l=1

(Ul −max(si1 .al, . . . , sij .al))) (2)

Formula 2 only refers to k points in the set S, without any other global information like the number of
dominated points and the subspace skyline frequency. However, an optimization based on Formula 2, i.e.,
selection of a subset S from P with maximum VDR(S), is still not cheap when k is very large, whose time
complexity is O((2e|P |

k)k) [14]. Specific heuristics can be used to approximately compute the VDR(S).
One straightforward option is to simply sum up all VDR values of k candidate points, and select as S

the combination with the maximum sum. Another option greedily maximizes the sum of point distances,
as intuitively the farther points are apart, the less their dominated regions overlap. First two points with the

7

largest distance are selected into S. Then in each step to increase S, a new point is added such that the sum
of its distances to all points currently in S is maximized. As the straightforward method usually obtains
approximations with better precision [14], it is used in the experimental studies.

3.3 Discussion

The existing approaches exhibit limitations when attempting to use them for resolving arbitrary size con-
straints on skyline queries.

The use of pointwise ranking approaches causes three difficulties. First, a total ranking tends to decon-
struct the essence of multi-criteria optimization when it converts a complex problem into a simple one. As
pointed out in Section 3.1.1, if we count dominating points only, non-skyline points may be preferred over
skyline points. This also happens in subspace skyline frequency based ranking, where a non-skyline point
can have an advantage in more subspaces than has a skyline point.

Second, a total ranking can incur too many ties, which invalidates the ranking. For example in Figure 1,
we cannot differentiate D and F (or E and G) by counting dominating points. For an arbitrary data set, such
ties are very likely to exist. Ties also occur in the subspace skyline frequency based ranking, especially
when the dimensionality is not large enough.

Third, a total ranking is a time-consuming task especially when the data set is large. Therefore, complex
index structures [30] or approximate algorithms [10] are employed.

Next, the count based set-wide maximization approach is not applicable to arbitrary size constraints on
skyline queries because it is unable to handle the case where more points than the skyline cardinality are
expected. Moreover, the count based set-wide maximization approach is computationally very expensive
due to its counting and set-wide optimization characteristics.

It makes sense to apply pointwise ranking approaches and set-wide maximization approaches in combi-
nation. The former is focused on judging whether any individual point is good enough to be included in the
result. The latter is concerned with maximizing the collective advantage of a number of result points. The
two approaches thus tackle the same problem from opposite directions: bottom-up and top-down, respec-
tively. An interesting question thus arises: Can we find some novel way in-between the two to overcome the
aforementioned obstacles in supporting arbitrary size constrained skyline queries? Our answer is positive.
We will elaborate our skyline order based framework in the next two sections.

We proceed to present the concept skyline order which ranks points partially and in batch rather than
fully, one by one.

4 Skyline Order

4.1 Definitions and Properties

Definition 4.1 (Skyline Order) The skyline order of a set of d-dimensional points P is a sequence S =
〈S1, S2, . . . , Sn〉 defined as follows:

1. S1 is the skyline of P , i.e., SP ;

2. ∀i, 1 < i ≤ n, Si is the skyline of P \⋃i−1
j=1 Sj .

3.
⋃n

i=1 Si = P

We call each Si a skyline subset in the skyline order or a skyline order subset, and we call n the skyline order
length, i.e., the number of subsets in S. The definitions iteratively removes the current skyline starting

8

with P until all points in P belong to a skyline subset, resulting in n skyline subsets are obtained. By
construction, the points in Si are incomparable and Si ∩ Sj = ∅ for i 6= j.

For convenience, we define skyline order index for any point p in P as follows.

Definition 4.2 (Skyline Order Index) Given the skyline order S1, S2, . . . , Sn of a d-dimensional point set
P , the skyline order index of a point p ∈ P is i if p ∈ Si.

The skyline order has some interesting properties as described in the following lemma. We omit its
proof here as the reasoning is quite direct from the definition.

Lemma 4.1 Given the skyline order S1, S2, . . . , Sn of a d-dimensional point set P , the following properties
hold:

1. ∀i > 1 ∀p1 ∈ Si ∃p2 ∈ Si−1 (p2 ≺ p1).

2. ∀i > 1 ∀p1 ∈ Si ∀j < i ∃p2 ∈ Sj (p2 ≺ p1).

3. ∀p1 ∈ Si ∀j > i @p2 ∈ Sj (p2 ≺ p1).

An example of skyline order is shown in Figure 2. Here, we have S1 = {A, B, C, D}, which is also the
skyline of all hotels. Furthermore, we have S2 = {E, F, G}, the skyline of subset {E, F, G, H, I}, and S3 =
{H, I}. Further, the skyline order index is 1 for any point in {A, B, C, D}, 2 for any point in {E, F, G}, and
3 for any point in {H, I}, as indicated by the corresponding numeric subscripts in the figure.

50 100 150 200 250 Price ($)102030
40 Distance to the beach (miles)A B C DE F H G I S1S2S3

Figure 2: Skyline Order

Skyline order has practical applications. Referring to Figure 2, assume that a large number of attendees
are to be accommodated by a conference. A skyline query will return the best hotels A, B, C, and D. They
together, however, may provide fewer vacancies than needed by the attendees. To provide enough rooms,
hotels E, F and G can be easily included in the result. The skyline order is thus a systematic approach to
provide results with enough vacancies.

A notion of ranking through iterated preference is proposed in [12], which is focused on preference
modeling without specific skyline order definitions or algorithms. In-place algorithms for computing layers
of maxima in [6] are focused on 2-dimensional data sets only. In contrast, this paper’s setting poses no
in-place requirement, and our algorithms in Section 4.2 are not limited to two dimensions. The idea of
layered skyline has also been used in the literature as part of an indexing method for top-k queries [18]. In
this paper, we focus on computing the skyline layers efficiently and on applying them in size-constrained
skyline queries, which has not been studied in the literature.

Our skyline order also differs from the Onion technique [11]. First, we partition a given data set based
on the skyline concept, whereas the Onion technique is based on the convex hull definition. Second, the

9

skyline order supports size constrained skyline queries well, as we will see in the rest of this paper, whereas
the onion technique is focused on indexing for linear optimization queries. Third, the skyline order is able to
support local queries, in our setting, skyline queries with size constraints, without any specific hierarchical
structures as needed by the Onion technique.

4.2 Skyline Order Computation

In this section, we introduce algorithms requiring no index to compute skyline order. In Section 6.2.3, we
will adapt index based skyline algorithm for skyline order.

4.2.1 Basic Algorithm

We adapt the BNL algorithm [7] to compute the skyline order. The pseudo code is described in Algorithm 1.
It loops on each point p in the input data set P : It checks p against each subset in the current skyline order and
put it into a specific subset or creates a new subset for it. Instead of keeping one list of skyline candidates
only, as does BNL, the algorithm maintains all subsets of the current skyline order. While determining
the membership for p, some points in the skyline subset being checked currently may also change their
membership, thus producing a new subset in the skyline order.

Algorithm 1 SkylineOrderScan (data set P)
1: S = 〈〉
2: for each point p in P do
3: for each Si from S1 to Sn in S do
4: isSky=TRUE; Stmp = ∅
5: for each point q in Si do
6: if q ≺ p then
7: isSky=FALSE; break
8: else
9: if p ≺ q then

10: move q from Si to Stmp

11: if isSky then
12: if Si = ∅ then
13: Si = {p}; insert Stmp into S after Si

14: else
15: if Stmp 6= ∅ then
16: AdjustSkyOrd(Stmp, S, i+1)
17: add p to Si

18: break
19: if p does not belong to any Si then
20: append {p} to S
21: return S

Specifically, the skyline order S is initialized to be empty (line 1). For each point p in P , it is compared
to each point q in each Si sequentially from S1 to the current Sn (lines 2–16). If p is dominated by q, the
algorithm breaks from the loop on the current Si and skips to the next subset in the skyline order (lines 6–
7). If p dominates q, q will be moved into a temporary list Stmp, which contains all those points that come
from the current Si and are dominated by p (lines 9–10). If p is found to be a qualified skyline point for
the current Si (line 11), necessary actions are to be taken to ensure the skyline order is updated correctly,
followed by breaking from the loop on S (line 18). If Si is empty, which indicates that p dominates all

10

points previously in Si, {p} will be used as the new Si and Stmp will be inserted into S after the new Si

(lines 12–13). Otherwise, the procedure AdjustSkyOrd will be called to adjust the subsets after Si in the
skyline order (lines 15–16) in case Stmp is not empty, and p will be added into Si (line 17). If p does not
belong to any Si in S, {p} will be appended to S (lines 19–20).

The pseudo code of AdjustSkyOrd is given in Algorithm 2. It requires three parameters: the temporary
list Stmp containing points excluded from the current skyline subset in the scanning, the current Skyline
order S, and the next subset index in the scanning. It loops on each subset Si in S starting from Snext. Each
point p in Si is moved to a temporary list temp if it is not dominated by any point in Stmp (lines 3–5). If Si

has not been changed, indicated by an empty temporary list temp, Stmp is added to S immediately before
Si, and the algorithm returns (lines 6–7). A non-empty temp is merged into Stmp (line 8). If Si becomes
empty after all its points have been checked, Stmp replaces it in S, and the algorithm returns (lines 9–10).
Otherwise, Si and Stmp are swapped, and the loop continues to the next subset in S (line 11). If Stmp is not
empty when the loop is over, it is appended to the skyline order (lines 12–13).

Algorithm 2 AdjustSkyOrd(Temporary list Stmp, Current Skyline order S, Next subset index next)
1: for each subset Si from Snext to Sn in S do
2: temp = ∅
3: for each point p in Si do
4: if @q ∈ Stmp s.t. q ≺ p then
5: move p from Si to temp
6: if temp == ∅ then
7: add Stmp to S immediately before Si; return
8: merge temp to Stmp

9: if Si == ∅ then
10: replace Si in S with Stmp; return
11: swap Si and Stmp

12: if Stmp 6= ∅ then
13: append Stmp to S

Taking Figure 2 as an example, let the processing order of all hotels be I, E, F, A, D, H, G, C, B. Table 3
lists the resulting skyline order after each hotel is processed. The * symbol indicates that the current p
triggers a call of the AdjustSkyOrd algorithm.

When E is processed, it is merged with I to form the only skyline order subset because they are incom-
parable to each other. As F dominates I, this causes Stmp = {I} that becomes the new tail in the skyline
order after the AdjustSkyOrd algorithm is called. When G is processed, I is again moved out to the new tail.

Finally, when C is processed, the situation is more complex. The Stmp = {E,F} is the input to the
AdjustSkyOrd algorithm, in which Stmp is compared with the skyline order subsets S2 = {G,H} and
S3 = {I} in turn. In the first iteration of the for-loop, G is merged with {E,F}, as G is dominated by
neither E nor F. Then Stmp = {E,F,G} is swapped with the reduced S2 = {H}. In the second iteration,
Stmp = {H} is expanded to become {H, I} and replaces S3 = {} as the new S3.

4.2.2 Improvements

The basic algorithm calls the procedure AdjustSkyOrd when a new point p is found to dominate some old
points that form the temporary list Stmp passed to AdjustSkyOrd. We can eliminate the cost of this by pre-
sorting the data set P . As we assume that smaller values are preferred in skyline computation, we pre-sort
P in the non-descending order of the sum of a point’s dimension values. As a result, a point p is not able to
dominate any point q that has been processed before it [13]. The relevant improved pseudo code is described

11

Table 3: Example Steps of Algorithm 1
Current p Resulting Skyline Order
I 〈{I}〉
E 〈{E, I}〉
F* 〈{E,F}, {I}〉
A 〈{A,E,F}, {I}〉
D 〈{A,D,E,F}, {I}〉
H 〈{A,D,E,F}, {H, I}〉
G* 〈{A,D,E,F}, {G,H}, {I}〉
C* 〈{A,C,D}, {E,F,G}, {H, I}〉
B 〈{A,B,C,D}, {E,F,G}, {H, I}〉

in Algorithm 3. Here, we have no list Stmp, and neither do we call the procedure AdjustSkyOrd.

Algorithm 3 SkylineOrderPreSort (sorted data set P)
1: S = 〈〉
2: for each point p in P do
3: for each Si from S1 to Sn in S do
4: isSky=TRUE
5: for each point q in Si do
6: if q ≺ p then
7: isSky=FALSE; break
8: if isSky then
9: add p to Si; break

10: if p does not belong to any Si then
11: append {p} to S
12: return S

A further improvement is to carry out a binary search for the loop on all existing subsets in the skyline
order, instead of the sequential scan in line 3 in Algorithm 3. Essentially, the loop on all skyline order
subsets finds the subset Sx that satisfies: (a) all points in Sx are incomparable to p; (b) x is the minimum
index among all such subsets satisfying (a). A binary search starts with low = 1 and high = n, the skyline
order length. At each loop step, we check the dominance relationship between the current point p and the
subset Smid where mid = blow + highc/2.

Due to P being sorted, only two possibilities exist: p is dominated by some point(s) in Smid or p is
incomparable to all points in Smid. For the former, we set low = mid + 1 and continue the binary search.
For the latter, we look one subset backwards, checking the relationship between p and the subset Smid−1.
If p is dominated by some point(s) in Smid−1, Smid is exactly what we need and the binary search ends.
Otherwise, i.e., points in Smid−1 are also incomparable to p, we set high = mid−1 and continue the binary
search. When the binary search terminates, either the expected subset Sx is found and p is inserted into Sx,
or the tail of the skyline order is reached and p will constitute a new singleton tail. Note that p cannot be a
new singleton head as it cannot dominate any point before it when P is sorted as described above.

We note that the backward check above is necessary to ensure the correctness of the binary search based
algorithm. The binary search here is different from an exact match binary search, which returns as soon as
the expected value is found. The incomparable relationship here is not equivalent to an exact match. Rather,
we need to find the minimum (instead of any) index x such that any point in the subset Sx is incomparable
to p.

Referring to Figure 2, let the current skyline order be 〈{C}, {F}, {I}〉 and B be the p being processed.
For simplicity we ignore the other points. Note that B should be inserted into {C} to maintain a correct

12

skyline order, as {C} is the first skyline order subset and C is comparable with B. However, if we do not
employ a backward check, B will be inserted into {F} instead, since we have low = 1 and high = 3, which
yields mid = 2.

The binary search idea can also be used in the basic algorithm in Section 4.2.1, but the improvement
will not be significant. The binary search method does not lower the possibility that a new point dominates
an old one when it is integrated into the basic algorithm on a unsorted data set. This means that the frequent
and time-consuming call of AdjustSkyOrd is not avoided at all. Therefore, we do not apply the binary
search to the basic algorithm.

4.2.3 Analyses

We briefly analyze the proposed skyline order computation algorithms, by regarding the dominance com-
parisons between two points as the characteristic operation. For the sake of presentation simplicity, we do
not count the presorting time cost when analyzing the SkyOrdPreSort algorithm and its variant with binary
search.

For the SkylineOrderScan algorithm, the best case is that each point p from P forms a new first skyline
order subset in S, without invoking the procedure AdjustSkyOrd. In this case, only one dominance com-
parison is needed, involving p and the single point in the current S1 in S. As a result, the total number of
dominance comparisons, processing the whole data set P , is N − 1.

The worst case, however, involves cascading adjustments caused by a call of AdjustSkyOrd. Suppose
we are processing the j’th point p from P , and the cardinalities of Stmp and Si+1 to Sn are c0, ci+1, . . . , cn,
respectively, before AdjustSkyOrd is called in line 16 of Algorithm 1. Note that c0 +

∑n
k=i+1 ck ≤ j− 2 as

we are processing the j’th point p from P and Si cannot be empty if AdjustSkyOrd is called (lines 12–16
in Algorithm 1).

A total cascading adjustment chain in AdjustSkyOrd (Algorithm 2) maintains all but one point in every
current skyline subset Si. This is because if temp is empty, there will be no more cascading adjustment
(lines 6–7 in Algorithm 2). Those points are swapped into Stmp (line 11 in Algorithm 2) and then compared
with all points in Si+1. This happens until Sn is reached. Considering that all points in the input Stmp are
compared with the initial Snext, the total number of dominance comparisons is c0 ·ci+1 +(ci+1−1) ·ci+2 +
. . . + (cn−1 − 1) · cn = c0 · ci+1 +

∑n−1
k=i+1 ck · ck+1 −

∑n
k=i+2 ck ≤ (c0 +

∑n
k=i+1 ck)2/2 = (j − 2)2/2.

In the worst case, processing each j’th (j ≥ 2) point p from P incurs this cost. As a result, the number of
dominance comparisons contributed by AdjustSkyOrd is bounded by

∑N
j=2(j − 2)2/2 = (

∑N−2
k=1 k2)/2 =

(N − 2) · (N − 1) · (2N − 3)/12, yielding a worst case complexity ofO(N3). This is also the upper bound
of the worst case cost of the SkylineOrderScan algorithm, as it cannot incur more dominance comparisons
without calling AdjustSkyOrd.

For the SkyOrdPreSort algorithm without binary search, the best case is the same as that of Skyline-
OrderScan, i.e., N − 1 dominance comparisons. Its worst case happens if each point p from P is compared
with every point in every skyline subset from the first to the last in S. The worst case leads to a total of
N(N − 1)/2 dominance comparisons.

For the SkyOrdPreSort variant with binary search, the best case is that every point from P forms a
singleton skyline order subset, and all points already in S are compared with the newly encountered i’th
point p from P in a binary search fashion. This requires a total of

∑N
i=1 log2 i = log2(N !) = O(N log N)

dominance comparisons. The worst case is that all points from P form only one skyline order subset, which
causes each point p from P to be compared with all points encountered before it. As a result, the total
number of dominance comparisons in the worst case is N(N − 1)/2.

A summarization of cost analysis is given in Table 4.

13

Table 4: Summary on Algorithm Complexity
Algorithm Best Case Worst Case
SkylineOrderScan O(N) O(N3)
AdjustSkyOrd O(N) O(N2)
SkylineOrderPreSort O(N log N) O(N2)

4.3 Maintenance of Skyline Order Upon Updates

Updates on a point set P can consequently change its computed skyline order SP (S1, S2, . . . , Sn). In this
section, we discuss how to maintain the skyline order upon such updates in an incremental way, instead of
re-computing the whole skyline order totally from scratch.

When a new point p is inserted to P , a loop starts from S1 to find the subset p belongs to. It works in
the same way as the counterpart in Algorithm 1 (lines 3–16). When a point p is deleted from P , the subset
Sl to which p belongs is found by a sequential scan on SP . Then, Algorithm 2 will be called with Sl \ p
being the temporary list and l + 1 being the next subset index. This is because the deletion of p can only
affect those subsets after Sl, according to the skyline order properties. If Sl happens to be the last one in
SP , nothing will be done further.

When a point p in P is modified, a simple way is to treat it as a deletion followed by insertion, taking
corresponding actions presented above. There may exist complex but more efficient ways to deal with this
problem. One option is to compare p and its updated counterpart p′. If p dominates p′, p′ will definitely not
belong to any subset before Sl to which p belongs, according to the skyline order properties. As a result,
the insertion can be simplified without checking those subsets. As the point modification problem itself is
not directly relevant to our targeted size constrained skyline queries, we will not discuss such alternatives in
this paper but leave them for possible future work.

5 Processing Size Constrained Skyline Queries with Skyline Order

We next show how skyline order can be used to process size constrained skyline queries. We first give a
query definition, then present several algorithms that compute the query.

5.1 Definition

Based on skyline order, we are able to define a new size constrained skyline query that combines pointwise
ranking and set-wide maximization to return interesting points according to both approaches. The definition
is given as follows.

Definition 5.1 (Skyline Order Based Size Constrained Skyline Queries) Let a set P of d-dimensional
points with skyline order S = 〈S1, S2, . . . , Sn〉 be given. The skyline order based size constrained skyline
query Qsoscs

k (P) retrieves the set Ssoscs defined as follows:

Ssoscs = (
l⋃

i=1

Si) ∪ S′l+1

where l is defined such that
l∑

i=1

|Si| ≤ k <
l+1∑

i=1

|Si|,

and S′l+1 ⊂ Sl+1 such that |Ssoscs | = k.

14

Here, S′l+1 is selected from Sl+1 using some set-wide maximization approach presented in Section 3.2.
The query returns consecutive skyline order subsets from the original skyline until k points have been
returned.

5.2 Algorithms

We present two algorithms that process a size constrained skyline query using the concept of skyline order.
One takes advantage of a pre-computed skyline order, whereas the other processes a given query without a
pre-computed skyline order.

5.2.1 Algorithm With Pre-Computed Skyline Order

If the skyline order S of the data set P has been computed before a size constrained skyline query Qscs
k (P)

is issued, S can be used to facilitate the query processing. Following Definition 5.1, our algorithm uses a
simple loop on all pre-computed skyline order subsets while maintaining a count of the points seen. The
relevant pseudo code is described in Algorithm 4. First, the result set S is initialized to be empty, and a

Algorithm 4 SCSQuerySkyOrdPre (Skyline order S, number of points to retrieve k)
1: S = ∅; cnt = k
2: for each subset Si from S1 to Sn in S do
3: if |Si| == cnt then
4: S = S ∪ Si; break
5: if |Si| < cnt then
6: S = S ∪ Si; cnt = cnt− |Si|
7: else
8: S = S ∪ rSKY(Si, cnt); break
9: return S

count variable cnt is set to k (line 1). Then each subset Si in S is checked sequentially. If the cardinality of
Si equals the current count in cnt, Si is merged into S, and the loop stops (lines 3–4). If the cardinality of Si

is smaller than cnt, Si is merged into S and the loop continues with an updated cnt (lines 5–6). Otherwise,
rSKY is called to select the last cnt points from Si, and the loop stops (line 8).

The set-wide maximization approaches discussed in Section 3.2 can be used for implementing rSKY. In
Section 6.3, we will experimentally compare our estimation based heuristic (Section 3.2.2) with the count
based approach.

As a remark, skyline orders are pre-computed (and maintained) with the same reasoning as are ma-
terialized views [8, 23]. They can help efficiently solve arbitrary size constraints posed by future skyline
queries.

5.2.2 Algorithm Without Pre-Computed Skyline Order

If no precomputed skyline order S of the data set P is available, query Qscs
k (P) can be processed as de-

scribed in Algorithm 5, which accepts a sorted data set P as described in Section 4.2.2 and accomplishes the
query processing in two phases. In the first phase, it follows the same logic as the improved skyline order
computation in Algorithm 3. But only a partial skyline order S is now maintained. As soon as there are
enough points in S, the extra subsets on the tail are removed from S, any point p belonging to those subsets
are also ignored (lines 10–12). A new singleton tail is created only when S still has less than k points in
total (lines 13–14). By keeping a partial skyline order only, considerable computation cost is saved. In

15

the second phase, SCSQuerySkyOrdPre (Algorithm 4) is called to pick up k points from the partial skyline
order S (line 15).

Algorithm 5 SCSQuerySkyOrd (sorted data set P , number of points to retrieve k)
1: S = 〈〉
2: for each point p in P do
3: for each Si from S1 to Sn in S do
4: isSky=TRUE
5: for each point q in Si do
6: if q ≺ p then
7: isSky=FALSE; break
8: if isSky then
9: add p to Si; break

10: else
11: if

∑
1≤j≤i |Sj | ≥ k then

12: remove all subsets after Si in S; break
13: if (!isSky AND

∑
Si∈S |Si| < k) then

14: append {p} to S
15: return SCSQuerySkyOrdPre(S, k)

Following the same line of reasoning as covered in as Section 4.2.2, the sequential scan on all skyline
order subsets (line 3 in Algorithm 5) can also be replaced by a binary search. We will experimentally study
this improvement in Section 6.

6 Experimental Studies

This section presents results of extensive experimental studies on both synthetic and real data sets. One part
of experiments reveals the skyline orders of different data sets; the other compares different approaches to
the size constrained skyline queries.

6.1 Experimental Settings

We generate both independent and anti-correlated synthetic data sets. We vary their cardinality from 100K
to 1,000K, with 1K = 1024, and their dimensionality from 2 to 20. Anti-correlated data sets are generated
according to a method introduced in previous work [7]. The value domain for each dimension is [0, 1].

All parameters and their settings are listed in Table 5. All code is written in Java and run on a Windows
XP PC with a 2.8GHz Intel Pentium D CPU and 1GB RAM.

Table 5: Parameters Used in Experiments
Parameter Setting
Data set distribution Indep. (IN), Anti-Correl. (AC)
Data set cardinality 100K, 200K, . . . , 1000K
Data set dimensionality 2, 3, 4, 5, 10, 15, 20
k 50, 100, 150, . . . , 500

16

6.2 Experiments on Skyline Order

6.2.1 Skyline Order Distribution

We first fix the data set dimensionality to 2 and 5, and vary the cardinality from 100K to 1,000K. The
resulting skyline order lengths, i.e., the number of subsets a skyline order contains, are listed in Table 6.
The sizes of the first two skyline order subsets of each data set are given in parentheses. We can see that
for both data distributions, larger cardinality leads to higher skyline order. However, an anti-correlated data
set has lower skyline order than its independent counterpart. This is because an anti-correlated data set has
more skyline points than an independent one, when they are of the same cardinality.

Table 6: Skyline Order Length vs. Cardinality
Card. Anti-Corre. Indep.
100K, 2D 210 (52, 82) 617 (8, 18)

5D 18 (15493, 29209) 23 (1003, 2684)
200K, 2D 297 (46, 80) 886 (9, 17)

5D 19 (21143, 45826) 27 (1108, 3308)
300K, 2D 363 (48, 107) 1096 (15, 19)

5D 21 (26037, 59842) 28 (1413, 4347)
400K, 2D 418 (47, 88) 1257 (14, 16)

5D 23 (29200, 70356) 30 (1561, 4691)
500K, 2D 467 (53, 81) 1412 (10, 14)

5D 23 (31589, 79498) 32 (1512, 4649)
600K, 2D 518 (51, 73) 1546 (9, 15)

5D 24 (34680, 89413) 32 (1646, 5164)
700K, 2D 556 (45, 79) 1668 (14, 22)

5D 26 (36377, 94982) 34 (1886, 5853)
800K, 2D 593 (64, 110) 1778 (15, 22)

5D 26 (38394, 102850) 35 (1876, 6300)
900K, 2D 633 (61, 88) 1909 (9, 15)

5D 27 (39767, 108147) 37 (1727, 5888)
1000K, 2D 671 (67, 98) 2008 (13, 24)

5D 27 (41991, 114960) 38 (1956, 6010)

For anti-correlated data sets, the skyline order distributions are shown in Figure 3(a). The x-axis is the
skyline order subset index, and the y-axis shows the percentage of data points falling into the corresponding
skyline order subset. For each data set, its skyline order approximates a normal distribution with respect
to the subset indexes. Intuitively, the mean appears around the middle subset index, while the standard
deviation becomes larger when the cardinality increases.

For independent data sets, the skyline order distributions are shown in Figure 3(b), from which we can
see that the trends are similar to those for anti-correlated data sets above. However, because independent
data sets have longer skyline orders, we also see more and larger zigzag fluctuations here.

Next we fix the data set cardinality to 100K and vary the dimensionality from 3 to 5, 10, 15, and 20.
The resulting skyline order length are listed in Table 7. For both data distributions, the dimensionality
has an apparent impact on the skyline order length: as the dimensionality increases, the skyline order get
significantly lower. This is attributed to the “curse of dimensionality” that also affects skyline queries:
the more dimensions a data set has, the higher the percentage of its points enter its skyline. Further, the
difference between anti-correlated data sets and independent data sets is also apparent here.

The impact of data set dimensionality on the skyline order distributions is reported in Figure 4. For 3-
to 5-dimensional data sets, the skyline order still approximate a normal distribution with respect to subset

17

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

0 100 200 300 400 500 600 700

P
er

ce
nt

ag
e

(%
)

Skyline order index

AC-100K
AC-200K
AC-300K
AC-400K
AC-500K
AC-600K
AC-700K
AC-800K
AC-900K

AC-1000K

(a) AC Data Sets

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

0 400 800 1200 1600 2000

P
er

ce
nt

ag
e

(%
)

Skyline order index

IN-100K
IN-200K
IN-300K
IN-400K
IN-500K
IN-600K
IN-700K
IN-800K
IN-900K

IN-1000K

(b) IN Data Sets

Figure 3: Skyline Order Distribution vs. Cardinality

Table 7: Skyline Order Length vs. Dimensionality
Dim. \ Distrib. Anti-Corre. Indep.
2D 210 (52, 82) 617 (8, 18)
3D 66 (653, 1420) 105 (85, 155)
4D 29 (4432, 10414) 41 (338, 868)
5D 18 (15493, 29209) 23 (1003, 2684)
10D 5 (84393, 14531) 6 (26207, 46478)
15D 3 (96972, 5417) 3 (77920, 24095)
20D 2 (101438, 962) 2 (98826, 3574)

indexes. However, the most left parts of 4- and 5-dimensional anti-correlated data sets curves are “cut off”,
because they both have large-sized original skylines caused by the special data distribution. For 10-, 15-
and 20-dimensional data sets, the approximate normal skyline order distribution is no longer visible. This
is apparently because their skyline orders are too short, with as few as 2 to 6 subsets only as reported in
Table 7.

0

10

20

30

40

50

10 20 30

P
er

ce
nt

ag
e

(%
)

Skyline order index

AC-3D
AC-4D
AC-5D

AC-10D
AC-15D
AC-20D

(a) AC Data Sets

0

10

20

30

40

50

10 20 30 40 50 60 70 80 90 100

P
er

ce
nt

ag
e

(%
)

Skyline order index

IN-3D
IN-4D
IN-5D

IN-10D
IN-15D
IN-20D

(b) IN Data Sets

Figure 4: Skyline Order Distribution vs. Dimensionality

We further investigate into the skyline order of a real-life data set. We use the NBA players season

18

statistics from 1949 to 20032, which has 16,644 17-attribute records and approximates a correlated data
distribution. All records are normalized to the space [0, 1]17. We first compute the skyline order by taking
all 17 attributes into account. The percentage each subset occupies is plotted in Figure 5(a), where we get
36 skyline order subsets totally. Then, we pick three most important attributes, namely number of points,
number of rebounds and number of assists from all 17 ones, and compute the skyline order of all records
in terms of these 3 attributes. As a result, we get a total of 167 skyline order subsets. The percentage each
subset occupies is plotted in Figure 5(b).

0

2

4

6

8

10

12

6 12 18 24 30 36

P
er

ce
nt

ag
e

(%
)

Skyline order index

(a) Full Attributes

0

0.5

1.0

1.5

20 40 60 80 100 120 140 160

P
er

ce
nt

ag
e

(%
)

Skyline order index

(b) Partial Attributes

Figure 5: Skyline Order Distribution of NBA Data Set

For both results, the size of skyline order subset grows as the index increases, reaching its largest at some
point, and then it goes down as index continues increasing. Although the curves here do not approximate
normal distributions, we still have the “up-then-down” trends which have presented on the synthetic data
sets above. Note the curve of full attributes is more smooth than that of partial attributes. This is due to the
shortened skyline order length caused by a much higher dimensionality.

6.2.2 Skyline Order Computation Cost

We compare three skyline order computation approaches: the basic scan approach (Algorithm 1), the im-
proved approach with pre-sorting (Algorithm 3), and the one with binary search in addition to pre-sorting.
We consider the total computation time cost for each approach. As we are focused on the efficiency of these
approaches themselves, the time for pre-sorting is excluded from the results.

The effect of data set cardinality on the computation time cost is reported in Figure 6. For both distri-
butions, we fix the dimensionality to 2. It can be seen that as cardinality increases, the basic scan approach
deteriorates dramatically, the binary search approach only slowly incurs higher cost at a low pace, and the
pre-sorting approach remains between the two. The pre-sorting approach performs better than the basic
scan approach because the pre-sorting of a data set avoids the expensive cascading adjustment (the calling
of AdjustSkyOrd in Algorithm 2), which happens when a current point p dominates some points scanned
before it.

The binary search approach improves the performance further, as it does not sequentially scan all skyline
order subsets. In addition, the performance improvement between the basic scan approach and the pre-
sorting approach is much more significant than the one between the latter and the binary search approach.
This difference shows that AdjustSkyOrd is the most time-consuming part of the basic scan approach. This

2http://databasebasketball.com

19

1000

2000

3000

4000

5000

6000

7000

8000

200K 400K 600K 800K 1000K

C
om

pu
ta

tio
n

tim
e

(s
)

Cardinality

AC-Scan
AC-PreSort
AC-Binary

(a) AC Data Sets

1000

2000

3000

4000

5000

200K 400K 600K 800K 1000K

C
om

pu
ta

tio
n

tim
e

(s
)

Cardinality

IN-Scan
IN-PreSort

IN-Binary

(b) IN Data Sets

Figure 6: Computation Cost vs. Cardinality

also indicates that applying the binary search idea directly to the basic scan approach is not attractive, as it
has no chance to outperform the pre-sorting approach.

The effects of data set dimensionality are reported in Figure 7. Here we fix the cardinality to 100K,
and have two important observations. First, the binary search approach is no longer the best when the
dimensionality exceeds 2; rather, it becomes the worst when the dimensionality is higher than 10. This is
because the skyline order length of a given data set shrinks as the dimensionality increases (refer to Table 7).
Shorter skyline orders disfavor binary search, which consequently performs poorly with considerable extra
costs for worst-case inputs.

1000

2000

3000

4000

5000

6000

7000

8000

2 3 4 5 10 15 20

C
om

pu
ta

tio
n

tim
e

(s
)

Dimensionality

AC-Scan
AC-PreSort
AC-Binary

(a) AC Data Sets

1000

2000

3000

4000

5000

6000

7000

8000

2 3 4 5 10 15 20

C
om

pu
ta

tio
n

tim
e

(s
)

Dimensionality

IN-Scan
IN-PreSort
IN-Binary

(b) IN Data Sets

Figure 7: Computation Cost vs. Dimensionality

Second, as the dimensionality increases (higher than 10 for anti-correlated data sets and 15 for indepen-
dent data sets), the basic scan approach becomes comparable to the pre-sort approach. For dimensionality 10
to 20, the very short skyline order lengthes (seen from Table 7) provide very limited room for optimizations
that would otherwise benefit the pre-sort approach.

20

6.2.3 Adapting to Disk-Resident Data

So far we have assumed that both input data and skyline order subsets are kept in the main memory. If the
data is too large to fit in memory, skyline order computation algorithms requires appropriate adaptations to
work properly. We adapt the binary search approach since it is the most efficient in most cases.

In particular, all data points are loaded into memory in different batches. For each batch, a binary search
is executed. A skyline order subset is initially created in memory, and may be output to the disk later to get
free memory blocks. When a subset needed for comparison is not in memory, it is loaded from disk. Small
skyline order subsets are allowed to share a memory block, whereas a large one may use multiple blocks
with the last one accepting insertions of points. When a dirty memory block is to be eliminated, modified
data will be output to the disk to the corresponding skyline order subset(s). When all points are processed,
all dirty memory blocks will be output.

We also adapt the IO-optimal BBS algorithm [26] to compute skyline orders as follows. In addition to
the main min-heap for all R-tree entries containing skyline points, we use an extra min-heap to contain all
those entries pruned. When the skyline (also the first subset of the skyline order) is computed for the input
data set, the extra heap is upgraded as the main heap and the BBS algorithm is executed to obtain the second
skyline order subset, with the old main heap being the extra heap for pruned entries. This upgrading and
processing is repeated until all data points are processed, indicated by an empty extra min-heap.

We use an LRU buffer whose size is 1% that of the input data set. For the adapted binary search
approach, one buffer block is used for loading the input data, and others for skyline order subsets. The
R-tree page size in BBS is set to 4K. The results of IO costs are reported in Figures 8 and 9. The inferiority
of the adapted BBS approach, especially when the data are large, is attributed to the disadvantage that all
pruned R-tree entries in the extra heap are accessed again subsequently, which renders the approach to have
no real effective pruning.

103

104

105

106

107

108

109

1010

200K 400K 600K 800K 1000K

I/O

Cardinality

AC-BBS
AC-Binary

(a) AC Data Sets

103

104

105

106

107

108

109

1010

200K 400K 600K 800K 1000K

I/O

Cardinality

IN-BBS
IN-Binary

(b) IN Data Sets

Figure 8: IO Cost vs. Cardinality

6.3 Experiments on Queries

We proceed to compare different approaches that can be used for answering size constrained skyline queries.
From the ranking based approaches, we choose the subspace skyline frequency approach [10] (SSF) as a
representative for comparison. The algorithm parameters in SSF are set as: ε = 0.2 and δ = 0.05. Readers
are referred to [10] for detailed explanations on these parameters.

21

103

104

105

106

107

108

109

1010

2 3 4 5 10 15 20

I/O

Dimensionality

AC-BBS
AC-Binary

(a) AC Data Sets

103

104

105

106

107

108

109

1010

2 3 4 5 10 15 20

I/O

Dimensionality

IN-BBS
IN-Binary

(b) IN Data Sets

Figure 9: IO Cost vs. Dimensionality

We also compare different skyline orders based query processing approaches: the algorithm with pre-
computed skyline order (Algorithm 4 in Section 5.2.1), the algorithm without pre-computed skyline order
(Algorithm 5 in Section 5.2.2), and the binary search algorithm (an improvement of Algorithm 5 in Sec-
tion 5.2.2).

We combine each of the algorithms with different skyline reduction algorithms to return exact number
of result points. We compare our volume of dominating region (VDR) estimation based approach (Sec-
tion 3.2.2) with the top-k representative skyline points approach [25]. For the former, we use the heuristic
that maximizes the sum of VDR values of candidate points. For the latter, we implement a bitmap based
greedy algorithm, where each candidate point has a long bitmap indicating all points dominated by it. Note
that the greedy algorithm does not return the optimal result for the top-k representative problem, which
actually is NP-hard for data sets with dimensionality 3 or higher [25].

All approaches, apart from SSF, and their abbreviations to be used in the performance result graphs
are listed in Table 8. We proceed to compare the response times of these approaches. Although SSF
and the proposed techniques differ with respect to definition and output, comparing their response time is
meaningful because they aim to meet similar user needs.

Table 8: Description of Approaches
Set-Wide Maximization

SCS query algorithm Count (C [25]) Estimation (E)
Pre-computation based (P) PCM PEM
No pre-computation (O) OCM OEM
Binary search (B) BCM BEM

E: Estimation of VDR (Sec. 3.2.2)
P: Algorithm SCSQuerySkyOrdPre (Sec. 5.2.1)
O: Algorithm SCSQuerySkyOrd (Sec. 5.2.2)
B: Improvement on O (Sec. 5.2.2)

6.3.1 Effect of Cardinality

In this batch of experiments, we fix the data set dimensionality at 2 and k at 100, and we study the effects
of the cardinality on the different approaches. We vary the cardinality from 100K to 1,000K; the resulting

22

query computation times are reported in Figure 10. For clarity, we only plot a portion of the results here.
The omitted results exhibit similar trends.

For both data distributions, several observations are noteworthy. First, pre-computation based ap-
proaches usually outperform their corresponding counterparts without pre-computation: PCM is better than
both OCM and BCM, and PEM is better than both OEM and BEM. This shows that pre-computed skyline
orders save query processing time.

101

102

103

104

105

200K 400K 600K 800K 1000K

C
om

pu
ta

tio
n

tim
e

(m
s)

Cardinality

OCM
OEM

BCM
BEM

PCM
PEM

SSF

(a) AC Data Sets

101

102

103

104

105

200K 400K 600K 800K 1000K

C
om

pu
ta

tio
n

tim
e

(m
s)

Cardinality

OCM
OEM

BCM
BEM

PCM
PEM

SSF

(b) IN Data Sets

Figure 10: Query Cost vs. Cardinality

Second, when reducing skyline size, the VDR estimation based approach is better than the count of
dominated points based approach: OEM is better than OCM, BEM is better than BCM, and PEM is better
than PCM. The estimation based approach is much faster because it does not explore the global dominance
relationship to count, but makes estimates based on the given candidate point only. Because of the dual mer-
its of pre-computation and estimation, the PEM approach has a significant advantage over its competitors.

Third, the total ranking approach SSF is the worst among all approaches, and it degrades noticeably as
the cardinality increases. The total pointwise ranking of SSF is very time-consuming, and larger cardinali-
ties inevitably worsen the situation.

Fourth, PEM performs better on anti-correlated data sets than on independent ones. For an anti-
correlated data set, its starting skyline order subsets contain more points than those of an independent data
set. This difference makes PEM explore fewer skyline order subsets than the former. However, PCM does
not have this advantage. The benefit of pre-computation of PCM is counteracted by its time-consuming
count based skyline reduction approach.

6.3.2 Effect of Dimensionality

Next, we fix the data cardinality at 100K and k at 100, and then vary the dimensionality from 2 to 5. The
results are reported in Figure 11.

As the dimensionality grows, most approaches deteriorate markedly, especially OCM, BCM, and PCM.
The count based reduction incorporated by these approaches requires more time to check for dominance
when dimensionality increases. In contrast, the estimation based approaches OEM and BEM are more
steady. The cost of PEM even decreases in some cases: from 2D to 3D on anti-correlated data sets; from 2D
to 4D on independent data sets. These surprising improvements are attributed to skyline order subset size
variations. Referring to Table 7, PEM needs to explore 2 subsets for 2D data set, but only one for other data
sets. This helps reduce query processing time on one hand. On the other hand, 4D and 5D data sets contain

23

101

102

103

104

105

106

2 3 4 5

C
om

pu
ta

tio
n

tim
e

(m
s)

Dimensionality

OCM
OEM

BCM
BEM

PCM
PEM

SSF

(a) AC Data Sets

101

102

103

104

105

2 3 4 5

C
om

pu
ta

tio
n

tim
e

(m
s)

Dimensionality

OCM
OEM

BCM
BEM

PCM
PEM

SSF

(b) IN Data Sets

Figure 11: Query Cost vs. Dimensionality

much more points than k in their first skyline order subsets, meaning that considerable time is needed to
reduce points. As a result, the overall costs on 4D and 5D data sets increase. Similar reasoning applies to
independent data sets.

6.3.3 Effect of k

In the next experiment, we fix the data cardinality at 1,000K and the dimensionality at 2, and we then vary
k from 50 to 500. Figure 12 reports the relevant results.

20

40

60

80

100

120

100 200 300 400 500

C
om

pu
ta

tio
n

tim
e

(s
)

k

OCM
OEM

BCM
BEM

PCM
PEM

SSF

(a) AC Data Sets

20

40

60

80

100

120

100 200 300 400 500

C
om

pu
ta

tio
n

tim
e

(s
)

k

OCM
OEM

BCM
BEM

PCM
PEM

SSF

(b) IN Data Sets

Figure 12: Query Cost vs. k

It is again seen that pre-computation is beneficial and that VDR estimation is better than the count
based approach. For the approaches incorporating count based reduction (the ∗CM approaches), the costs
usually increase for larger k. As k increases, more skyline order subsets are explored. For those subsets, the
numbers of candidate points increase as the subset indexes increase. Hence, the ∗CM approaches slow down
because their greedy heuristic reduction gets larger inputs. In contrast, the approaches with estimation based
reduction (the ∗EM approaches) are considerably more steady because VDR estimation is computationally
quite fast even for larger numbers of candidate points.

24

It can be seen that the ∗CM approaches exhibit “drops”: at k = 450 for the anti-correlated data set,
and at k = 300 for the independent data set. The independent data set of 1,000K points has exactly 300
points in its first eight skyline order subsets. As a result, for the case k = 300 no skyline reduction occurs
for any of the ∗CM and the ∗EM approaches. Therefore, the cost of any ∗CM approach is exactly the same
as that of its ∗EM counterpart. The anti-correlated data set of 1,000K points has a total of 448 points in its
first four skyline order subsets. As a result, for k = 450 any of the ∗CM approaches need to choose only
2 additional points from the fifth skyline order subset with 169 points, which is quite easy for the greedy
heuristic employed by the ∗CM approaches.

6.3.4 Performance on Disk-Resident Data

In this section, we investigate the query performance on disk-resident data. We adapt the algorithms in the
similar way as in Section 6.2.3. We use an LRU buffer with size of 1% data size. We also adapt the IO-
optimal BBS algorithm [26] to process queries. In particular, skyline order subsets are computed on-the-fly
one by one using the adapted BBS version with two min-heaps, as detailed in Section 6.2.3. After a skyline
order subset is computed, the BBS processing stops if all current subsets totally contain k or more points.
For the latter, the VDR estimation 3.2.2 is used to reduce the result to exact k points. The R-tree page is set
to 4K for the BBS algorithm.

The results on IO costs are reported in Figures 13 to 15. The default settings are given in each title. It is
seen that our PEM approach is always the best in terms of query IO; PCM approach is the second best for
most cases.

101

103

105

107

109

200K 400K 600K 800K 1000K

I/O

Cardinality

OCM
OEM

BCM
BEM

PCM
PEM

SSF
BBS

(a) AC Data Sets

101

102

103

104

105

106

107

200K 400K 600K 800K 1000K

I/O

Cardinality

OCM
OEM

BCM
BEM

PCM
PEM

SSF
BBS

(b) IN Data Sets

Figure 13: IO Cost vs. Cardinality (d = 5, k = 100)

6.3.5 Interpretation of Query Results

Note that all the ∗EM approaches produce the same set of points given the same input; so do all ∗CM
approaches. Therefore, we compare the results of PEM and PCM with those of alternatives.

As mentioned in Section 3.3, pointwise ranking is prone to ties and thus to selecting points with sim-
ilar features, while results with diverse points are usually more desirable to users issuing skyline queries.
Therefore, we evaluate the diversity of the query results computed by the different approaches based on the
variance among the points returned from synthetic data sets. Let R be the set of points returned as the query
result. Its variance V (R) is defined as the average Euclidean distance between points in R and the mean of
R, i.e., V (R) = 1

k

∑
p∈R ‖p−R‖2, where k is |R|.

25

101

102

103

104

105

106

107

2 3 4 5

I/O

Dimensionality

OCM
OEM

BCM
BEM

PCM
PEM

SSF
BBS

(a) AC Data Sets

101

102

103

104

105

106

2 3 4 5

I/O

Dimensionality

OCM
OEM

BCM
BEM

PCM
PEM

SSF
BBS

(b) IN Data Sets

Figure 14: IO Cost vs. Dimensionality (|P | = 100K, k = 100)

101

103

105

107

109

100 200 300 400 500

I/O

k

OCM
OEM

BCM
BEM

PCM
PEM

SSF
BBS

(a) AC Data Sets

101

102

103

104

105

106

107

108

100 200 300 400 500

I/O

k

OCM
OEM

BCM
BEM

PCM
PEM

SSF
BBS

(b) IN Data Sets

Figure 15: IO Cost vs. k (|P | = 1000K, d = 5)

We fix the synthetic data cardinality at 1,000K and the dimensionality at 5. The results obtained from
synthetic data sets are shown in Figure 16. For the anti-correlated data set, all approaches are quite close to
each with in terms of the result variance. Whereas for the independent data set, our skyline order concept
helps achieve result variance due to its combined advantages; SSF fails to do so due to its pointwise ranking
nature.

We proceed to compare the query results obtained from the NBA data set 3 which has 19,112 17-attribute
records and generally follows a correlated data distribution. Following [30], we select four most important
attributes to query: games played, points, rebounds and assists. All records are normalized to the space
[0, 1]4. The query results for k=5 are listed in Table 9. PEM returns impressive result by identifying the
peak seasons of the legend player Wilt Chamberlain. PCM outputs query results with larger variance, which
also overlap with those returned by the top-k dominating approach. Finally, SSF fails to identify star players
as it faces too many ties in ranking.

3NBA Statistics v2.0: http://databasebasketball.com.

26

0.06

0.07

100 200 300 400 500

R
es

ul
t v

ar
ia

nc
e

k

PCM
PEM
SSF

(a) AC Data Sets

0

0.01

0.02

100 200 300 400 500

R
es

ul
t v

ar
ia

nc
e

k

PCM
PEM
SSF

(b) IN Data Sets

Figure 16: Result Variance vs. k

Table 9: Comparison of Query Results
k PCM PEM Top-k SSF
1 Wilt Chamberlain (1967) Wilt Chamberlain (1965) Wilt Chamberlain (1967) John Abramovic (1946)
2 Julius Erving (1974) Wilt Chamberlain (1963) Billy Cunningham (1972) Chet Aubuchon (1946)
3 Julius Erving (1971) Oscar Robertson (1961) Kevin Garnett (2002) Norm Baker (1946)
4 Oscar Robertson (1961) Wilt Chamberlain (1966) Julius Erving (1974) Herschel Baltimore (1946)
5 Isiah Thomas (1983) Wilt Chamberlain (1967) Kareem Abdul-Jabbar (1975) John Barr (1946)

7 Conclusion

Skyline queries are able to find interesting data points in multi-dimensional data sets. However, existing
approaches to skyline queries offer little control on their result cardinalities. Most previous work has been
focused on how to reduce skyline result cardinalities. In this paper, we aim to resolve arbitrary size con-
straints on skyline queries, without any a priori assumptions about the relationship between the expected
number of points and the skyline cardinality.

The paper describes how typical existing techniques are not well equipped to contend with arbitrary size
constraints. Then the concept of skyline order is proposed where a data set is partitioned using the skyline
dominance relationship. The skyline ordering provides an order among different partitions, but still reserves
room for different local optimizations within each partition.

Efficient algorithms are developed for computing skyline orders and resolving arbitrary size constraints
using skyline order. Extensive empirical studies show that skyline order presents a flexible framework for
efficient and scalable resolution of arbitrary size constraints on skyline queries.

References
[1] W.-T. Balke, J. X. Zheng, and U. Guentzer. Approaching the dfficient frontier: cooperative database retrieval

using high-Dimensional skylines. In Proc. DASFAA, pp. 410–421, 2005.
[2] W.-T. Balke, U. Guentzer, C. Lofi. Eliciting matters - controlling skyline sizes by incremental integration of

user preferences. In Proc. DASFAA, pp. 551–562, 2007.
[3] J. L. Bentley, K. L. Clarkson, and D. B. Levine. Fast linear expected-time algorithms for computing maxima

and convex hulls. In Proc. SODA, pp. 179–187, 1990.
[4] I. Bartolini, P. Ciaccia, and M. Patella. Efficient sort-based skyline evaluation. TODS, 33(4):1–49, 2008.

27

[5] J. L. Bentley, H. T. Kung, M. Schkolnick, and C. D. Thompson. On the average number of maxima in a set of
vectors and applications. JACM, 25(4):536–543, 1978.

[6] H. Blunck and J. Vahrenhold. In-place algorithms for computing (layers of) maxima. In Proc. SWAT, pp.
363–374, 2006.

[7] S. Borzonyi, D. Kossmann, and K. Stocker. The skyline operator. In Proc. ICDE, pp. 421–430, 2001.
[8] J. A. Blakeley, P. Larson, and F. W. Tompa. Efficiently Updating Materialized Views. In Proc. SIGMOD, pp.

61–71, 1986.
[9] C.-Y. Chan, H. Jagadish, K.-L. Tan, A. K. Tung, and Z. Zhang. Finding k-dominant skylines in high dimensional

space. In Proc. SIGMOD, pp. 503–514, 2006.
[10] C.-Y. Chan, H. Jagadish, K.-L. Tan, A. K. Tung, and Z. Zhang. On high dimensional skylines. In Proc. EDBT,

pp. 478–495, 2006.
[11] Y.-C. Chang, L. Bergman, V. Castelli, C.-S. Li, M.-L. Lo, and J. R. Smith. The onion technique: Indexing for

linear optimizatoin queries. In Proc. SIGMOD, pp. 391–402, 2000.
[12] J. Chomicki. Preference formulas in relational queries. TODS, 28(4):427–466, 2003.
[13] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang. Skyline with presorting. In Proc. ICDE, pp. 717–719, 2003.
[14] B. Cui, H. Lu, Q. Xu, L. Chen, Y. Dai, and Y. Zhou. Parallel Distributed Processing of Constrained Skyline

Queries by Filtering. In Proc. ICDE, pp. 546–555, 2008.
[15] P. Godfrey, R. Shipley, and J. Gryz. Maximal vector computation in large data sets. In Proc. VLDB, pp. 229–240,

2005.
[16] G. Hjaltason and H. Samet. Distance browsing in spatial database. ACM TODS, 24(2):265–318, 1999.
[17] Z. Huang, C. S. Jensen, H. Lu, and B. C. Ooi. Skyline queries against mobile lightweight devices in MANETs.

In Proc. ICDE, page 66, 2006.
[18] W. Jin, M. Ester, and J. Han. Efficient processing of ranked queries with sweeping selection. In Proc. PKDD,

pp. 527–535, 2005.
[19] W. Jin, J. Han, and M. Ester. Mining thick skylines over large databases. In Proc. PKDD, pp. 255–266, 2004.
[20] V. Koltun and C. H. Papadimitriou. Approximately dominating representatives. In Proc. ICDT, pp. 204–214,

2005.
[21] D. Kossmann, F. Ramsak, and S. Rost. Shooting stars in the sky: An online algorithm for skyline queries. In

Proc. VLDB, pp. 275–286, 2002.
[22] H. T. Kung, F. Luccio, and F. P. Preparata. On finding the maxima of a set of vectors. JACM, 22(4):469–476,

1975.
[23] P. Larson, H. Z. Yang. Computing Queries from Derived Relations. In Proc. VLDB, pp. 259–269, 1985.
[24] J. Lee, G. You, and S. Hwang. Telescope: Zooming to InterestingSkylines. In Proc. DASFAA, pp. 539–550,

2007.
[25] X. Lin, Y. Yuan, Q. Zhang, and Y. Zhang. Selecting stars: The k most representative skyline operator. In Proc.

ICDE, pp. 86–95, 2007.
[26] D. Papadias, Y. Tao, G. Fu, and B. Seeger. An optimal and progressive algorithm for skyline queries. In Proc.

SIGMOD, pp. 467–478, 2003.
[27] D. Papadias, Y. Tao, G. Fu, and B. Seeger. Progressive skyline computation in database systems. ACM TODS,

30(1):41–82, 2005.
[28] K. L. Tan, P. K. Eng, and B. C. Ooi. Efficient progressive skyline computation. In Proc. VLDB, pp. 301–310,

2001.
[29] A. Vlachou, C. Doulkeridis, K. Nørvåg, and M. Vazirgiannis. Skyline-based Peer-to-Peer Top-k Query Process-

ing. In ICDE, pp. 1421–1423, 2008.
[30] M. L. Yiu and N. Mamoulis. Efficient processing of top-k dominating queries on multi-dimensional data. In

Proc. VLDB, pp. 483–494, 2007.
[31] Z. Zhang, X. Guo, H. Lu, A. K. Tung, and N. Wang. Discovering strong skyline points in high dimensional

spaces. In Proc. CIKM, pp. 247–248, 2005.
[32] Shiming Zhang, N. Mamoulis, and D. W. Cheung Scalable skyline computation using object-based space

partitioning. In Proc. SIGMOD, pp. 483–494, 2009.

28

