
pygrametl: A Powerful Programming
Framework for Extract–Transform–Load

Programmers

Christian Thomsen and Torben Bach Pedersen

November, 2009

TR-25

A DB Technical Report

Title pygrametl: A Powerful Programming Framework for Extract–Transform–Load

Programmers

© ACM, (2009). This is the authors’ version of the work. It is posted here by per-

mission of ACM for your personal use. Not for redistribution. The definitive ver-

sion was published in Proceeding of the Twelfth International Workshop on Data

Warehousing and OLAP (2009) http://doi.acm.org/10.1145/1651291.1651301

Author(s) Christian Thomsen and Torben Bach Pedersen

Publication History Extended version of: Christian Thomsen and Torben Bach Pedersen: “pygram-

etl: A Powerful Programming Framework for Extract–Transform–Load Program-

mers” in Proceeding of the Twelfth International Workshop on Data Warehousing

and OLAP, Hong Kong, China, November 2009, pp. 49–56

For additional information, see the DB TECH REPORTS homepage: 〈www.cs.aau.dk/DBTR〉.

Any software made available via DB TECH REPORTS is provided “as is” and without any express or implied

warranties, including, without limitation, the implied warranty of merchantability and fitness for a particular

purpose.

The DB TECH REPORTS icon is made from two letters in an early version of the Rune alphabet, which was used

by the Vikings, among others. Runes have angular shapes and lack horizontal lines because the primary storage

medium was wood, although they may also be found on jewelry, tools, and weapons. Runes were perceived as

having magic, hidden powers. The first letter in the logo is “Dagaz,” the rune for day or daylight and the phonetic

equivalent of “d.” Its meanings include happiness, activity, and satisfaction. The second letter is “Berkano,” which

is associated with the birch tree. Its divinatory meanings include health, new beginnings, growth, plenty, and

clearance. It is associated with Idun, goddess of Spring, and with fertility. It is the phonetic equivalent of “b.”

Abstract

Extract–Transform–Load (ETL) processes are used for extracting data, transforming it and loading it into data

warehouses (DWs). Many tools for creating ETL processes exist. The dominating tools all use graphical user

interfaces (GUIs) where the developer visually defines the data flow and operations. In this paper, we challenge

this approach and propose to do ETL programming by writing code. To make the programming easy, we present

the (Python-based) framework pygrametl which offers commonly used functionality for ETL development.

By using the framework, the developer can efficiently create effective ETL solutions from which the full power

of programming can be exploited. Our experiments show that when pygrametl is used, both the development

time and running time are short when compared to an existing GUI-based tool.

1 Introduction

The Extract–Transform–Load (ETL) process is a crucial part for a data warehouse (DW) project. The task of the

ETL process is to extract data from possibly heterogenous source systems, do transformations (e.g., conversions

and cleansing of data) and finally load the transformed data into the target DW. It is well-known in the DW

community that it is both time-consuming and difficult to get the ETL right due to its high complexity. It is often

estimated that up to 80% of the time in a DW project is spent on the ETL.

Many commercial and open source tools supporting the ETL developers exist [2, 19]. The leading ETL tools

provide graphical user interfaces (GUIs) in which the developers define the flow of data visually. While this is

easy to use and easily gives an overview of the ETL process, there are also disadvantages connected with this

sort of graphical programming of ETL programs. For some problems, it is difficult to express their solutions with

the standard components available in the graphical editor. It is then time consuming to construct a solution that is

based on (complicated) combinations of the provided components or integration of custom-coded components into

the ETL program. For other problems, it can also be much faster to express the desired operations in some lines of

code instead of drawing flows and setting properties in dialog boxes. In a recent article, Stodder names the impact

of open source as a “BI megatrend”. It is argued that “[...] to customize data integration middleware through

access to the source code is attractive because like it or not, many organizations need to tailor such routines to

their requirements. Out-of-the-box routines only go so far.” [18]. We agree with this but, in our opinion, this is also

an argument that supports programming of ETL operations. It is also unattractive to integrate such a specialized

routine into a GUI and provide the eye-candy like icons, configuration windows, etc. It is more productive only to

program the core routine that does the data manipulation.

The productivity does not become high just by using a graphical tool. In fact, in personal communication with

employees from a Danish company with a revenue larger than one billion US Dollars and hundreds of thousands

of customers, we have learned that they gained no change in productivity after switching from hand-coding ETL

programs in C to using one of the leading graphical ETL tools. Actually, the company experienced a decrease

during the first project with the tool. In later projects, the company only gained the same productivity as when

hand-coding the ETL programs. The main benefits were that the graphical ETL program provided standardization

and self-documenting ETL specifications such that new team members easily could be integrated.

Trained specialists are often using textual interfaces efficiently while non-specialists use GUIs. In an ETL

project, non-technical staff members often are involved as advisors, decision makers, etc. but the core development

is (in our experience) done by dedicated and skilled ETL developers that are specialists. Therefore it is attractive

to consider alternatives to GUI-based ETL programs. In relation to this, one can recall the high expectations to

Computer Aided Software Engineering (CASE) systems in the eighties. It was expected that non-programmers

could take part in software development by specifying (not programming) characteristics in a CASE system that

should generate the code. Needless to say, the expectations were not fulfilled. It might be argued that forcing all

ETL development into GUIs is a step back to the CASE idea.

We acknowledge that graphical ETL programs are useful in some circumstances but we also claim that for

many ETL projects, a (completely or partly) code-based solution is the right choice. However, many parts of such

code-based programs are redundant if each ETL program is coded from scratch. To remedy this, a framework with

common functionality is needed.

In this paper, we present pygrametl (pronounced py-gram-e-t-l) which is a programming framework for

ETL programmers. The framework offers functionality for ETL development and while it is easy to get an

overview of and to start using, it is still very powerful. pygrametl offers a novel approach to ETL programming

by providing a framework which abstracts the access to the underlying DW tables and allows the developer to

1

use the full power of the host programming language. In particular, the use of snowflaked dimensions is easy as

the developer only operates on one “dimension object” for the entire snowflake while pygrametl handles the

different DW tables in the snowflake. It is also very easy to insert data into dimension and fact tables while only

iterating the source data once and to create new (relational or non-relational) data sources. Our experiments show

that pygrametl indeed is effective in terms of development time and efficient in terms of performance when

compared to a leading open-source GUI-based tool.

In previous work [20], we have been involved in building ETL tools for a DW that stores data about web

resources and tests of these web resources. Experiences from this work have been used in building pygrametl.

In particular, we have made it easy to insert data into dimensions and fact tables while only iterating through the

source data once, to insert data into snowflaked dimensions that span several underlying tables, and to add new

kinds of (relational or non-relational) data sources. Due to the ease of programming (we elaborate in Section 3)

and the rich libraries, we implemented pygrametl as an application library in Python.

pygrametl is a framework where the developer makes the ETL program by coding it. pygrametl applies

both functional and object-oriented programming to make the ETL development easy and provides often needed

functionality. In this sense, pygrametl is related to other special-purpose frameworks where the user does

coding but avoids repetitive and trivial parts by means of libraries that provide abstractions. This is, for example,

the case for the web frameworks Django [1] and Ruby on Rails [14] where development is done in Python and

Ruby code, respectively.

Many commercial ETL and data integration tools exist [2]. Among the vendors of the most popular prod-

ucts, we find big players like IBM, Informatica, Microsoft, Oracle, and SAP [4, 5, 7, 8, 15]. These are also the

vendors named as the market leaders in Gartner’s Magic Quadrant [2]. These vendors and many other provide

powerful tools supporting integration between different kinds of sources and targets based on graphical design of

the processes. Due to their wide field of functionality, the commercial tools often have steep learning curves and

as mentioned above, the user’s productivity does not necessarily get high(er) from using a graphical tool. Many of

the commercial tools also have high licensing costs.

Open source ETL tools are also available [19]. In most of the open source ETL tools, the developer specifies

the ETL process either by means of a GUI or by means of XML. Scriptella [16] is an example of a tool where the

ETL process is specified in XML. This XML can, however, contain embedded code written in Java or a scripting

language. pygrametl goes further than Scriptella and does not use XML around the code. Further, pygram-

etl offers DW-specialized functionality such as direct support for slowly changing dimensions and snowflake

schemas, to name a few.

The academic community has also been attracted to ETL. A recent paper [22] presents a survey of the research.

Most of the academic approaches, e.g., [17, 21], use UML or graphs to model an ETL workflow. In this paper, we

challenge the idea that graphical programming of ETL is always easier than text-based programming. Grönniger

et al. [3] have previously argued why text-based modeling is better than graphical modeling. Among other things,

they point out that writing text is more efficient than drawing models, that it is easier to grasp details from text,

and that the creative development can be hampered when definitions must be added to the graphical model. As

graphical ETL tools often are model-driven such that the graphical model is turned into the executable code, these

concerns are, in our opinion, also related to ETL development. Also, Petre [10] has previously argued against

the widespread idea that graphical notation and programming always lead to more accessible and comprehensible

results than what is achieved from text-based notation and programming. In her studies [10], she found that text

overall was faster to use than graphics.

The rest of this paper is structured as follows: Section 2 presents an example of an ETL scenario which is

used as a running example in the paper. Section 3 gives an overview of pygrametl. Sections 4–8 present

the functionality and classes provided by pygrametl. There are classes that represent different data sources

(described in Section 4), dimensions (Section 5), fact tables (Section 6), and steps in an ETL flow (Section 7).

Further, there are a number of convenient helper functions (Section 8) that provide often needed functionality.

Section 9 evaluates pygrametl. Finally, Section 10 concludes and points to future work.

2 Example Scenario

In this section, we describe an ETL scenario which we use as a running example throughout the paper. The

example considers a DW where test results for tests of web pages are stored. This is inspired by the work we did

2

Table 1: The source data format for the running example
Field Explanation

localfile Name of local file where the page was stored

url URL from which the page was downloaded

server HTTP header’s Server field

size Byte size of the page

downloaddate When the page was downloaded

lastmoddate When the page was modified

(a) DownloadLog.csv

Field Explanation

localfile Name of local file where the page was stored

test Name of the test that was applied to the page

errors Number of errors found by the test on the page

(b) TestResults.csv

in the European Internet Accessibility Observatory (EIAO) project [20] but has been simplified here for the sake

of brevity.

In the system, there is a web crawler that downloads web pages from different web sites. Each downloaded

web page is stored in a local file. The crawler stores data about the downloaded files in a download log which is a

tab-separated file. The fields of that file are shown in Table 1(a).

When the crawler has downloaded a set of pages, another program performs a number of different tests on

the pages. These tests could, e.g., test if the pages are accessible (i.e., usable for disabled people) or conform to

certain standards. Each test is applied to all pages and for each page, the test outputs the number of errors detected.

The results of the tests are also written to a tab-separated file. The fields of this latter file are shown in Table 1(b).

After all tests are performed, the data from the two files is loaded into a DW by an ETL program. The schema

of the DW is shown in Figure 1. The DW schema has three dimensions: The test dimension holds information

about each of the tests that are applied. This dimension is static and prefilled (and not changed by the ETL).

The date dimension holds information about dates and is filled by the ETL on-demand. The page dimension is

snowflaked and spans several tables. It holds information about the individual downloaded web pages including

both static aspects (the URL and domain) and dynamic aspects (size, server, etc.) that may change between two

downloads. The page dimension is also filled on-demand by the ETL. The page dimension is a so-called slowly

changing dimension where information about different versions of a given web page is stored.

Each dimension has a surrogate key (with a name ending in “id”) and one or more attributes. The individual

attributes have self-explanatory names and will not be described in further details here. There is one fact table

which has a foreign key to each of the dimensions and a single measure holding the number of errors found for a

certain test on a certain page on a certain date.

3 Overview of the Framework

The purpose of pygrametl is to make it easy to load data into DWs managed by relational database man-

agements systems (RDBMSs). The trend on the commercial market for ETL is moving towards big suites of

integration tools [2] supporting many kinds of targets. Focusing on RDBMSs as the targets for pygrametl

keeps the design simple as it allows us to make assumptions and go for the good solutions specialized for this

domain instead of thinking in very general “integrations terms”. The data sources do not have to be relational.

When using pygrametl, the programmer makes code that controls the flow, the extraction (the E in ETL)

from source systems, the transformations (the T in ETL) of the source data, and the load (the L in ETL) of

the transformed data. For the flow control, extraction, and load, pygrametl offers components that support

the developer and it is easy for the developer to create more of these components. For the transformations, the

programmer benefits from having access to the full-fledged host programming language.

The loading of data into the target DW is particularly easy with pygrametl. The general idea is that the

programmer creates objects for each fact table and dimension (different kinds are directly supported) in the DW.

An object representing a dimension offers convenient methods like insert, lookup, etc. that hide all details of

3

test

 testid: int (PK)

 testname: text

 testauthor: text

date

 dateid: int (PK)

 date: date

 day: int

 month: int

 year: int

 week: int

 weekyear: int

page

 pageid: int (PK)

 url: text

 size: int

 validfrom: date

 validto: date

 version: int

 domainid: int (FK)

 serverversionid: int (FK)

testresults

 pageid: int (PK, FK)

 testid: int (PK, FK)

 dateid: int (PK, FK)

 errors: int

domain

 domainid: int (PK)

 domain: text

 topleveldomainid: int (FK)

topleveldomain

 topleveldomainid: int (PK)

 topleveldomain: text

server

 serverid: int (PK)

 server: text

serverversion

 serverversionid: int (PK)

 serverversion: text

 serverid: int (FK)

Figure 1: The schema for the running example.

caching, key assignment, SQL insertion, etc. In particular it should be noted that a snowflaked dimension also is

treated in this way such that a single object can represent the entire dimension but the data is inserted into several

tables in the underlying database.

The dimension object’s methods take rows as arguments. A row in pygrametl is simply a mapping from

names to values. Based on our personal experiences with other tools, we found it important that pygrametl does

not try to validate that all data rows given to a dimension object have the same attributes or the same attribute types.

If the programmer wants such checks, (s)he should make code for that. It is then, e.g., possible for the programmer

to leave an attribute that was used as temporary value holder in a row or on purpose to leave out certain attributes.

Only when attributes needed for pygrametl’s operations are missing, pygrametl complains. Attribute values

that should be inserted into the target DW must exist when the insertion is done as pygrametl does not try to

guess missing values. However, pygrametl has functionality for setting default values and/or on-demand call-

back of user-defined functions that provide the missing values. Some other existing tools are strict about enforcing

uniformity of rows. In pygrametl, it should be easy for the programmer to do what (s)he wants – not what the

tool thinks (s)he wants.

pygrametl is implemented as a module in Python [13]. Many other programming languages could obviously

have been used. We chose Python due to its design to support programmer productivity and its comprehensive

standard libraries. Further, Python is both dynamically typed (the programmer does not have to declare the type

a variable takes) and strongly typed (if a variable holds an integer, the programmer cannot treat it like a string).

Consider, for example, this function:

def getfloat(value, default=None):

try:

return float(value)

except Exception:

return default

This function converts its input to a float or – if the conversion fails – to another value which defaults to None,

Python’s null value. Note that no types are specified for the input variables in the function declaration. It is

possible to call the function with different types as in the following:

f1 = getfloat(10)

f2 = getfloat('1e1')

f3 = getfloat('A string', 10.0)

f4 = getfloat(['A', 'list'], 'Not a float!')

After this, f1, f2, and f3 all equal 10.0 while f4 holds the string ’Not a float!’. The expression f1 + f2 will

thus succeed, while f3 + f4 will fail since a float and a string cannot be added.

Python is object-oriented but to some degree it also supports functional programming, e.g., such that functions

or lambda expressions can be used as arguments. This makes it very easy to customize behavior. pygrametl,

4

for example, exploits this to support calculation of missing values on-demand (see Section 5). As Python also

supports default arguments, pygrametl provides reasonable defaults for most arguments to spare the developer

for unnecessary typing.

4 Data Source Support

In this and the following sections, we describe the functionality provided by pygrametl. As explained in

Section 3, data is moved around in rows in pygrametl. Instead of implementing our own row class, we use

Python’s built-in dictionaries that provide efficient mappings between keys (i.e., attribute names) and values (i.e.,

attribute values). The data sources in pygrametl pass data on in such dictionaries. Apart from that, the only

requirement to a data source is that it is iterable (i.e., its class must define the iter method) such that code

as the following is possible: for row in datasrc:.... Thus, it does not require a lot of programming to

create new sources (apart from the code that does the real extraction which might be simple or not depending on

the source format). For typical use, pygrametl provides a few, basic data sources described below.

SQLSource is a data source returning the rows of an SQL query. The query, the database connection to

use and optionally new names for the result columns and “initializing” SQL are given when the data source is

initialized.

CSVSource is a data source returning the lines of a delimiter separated file turned into dictionaries. This

class is in fact just implemented in pygrametl as a reference to the class csv.DictReader in Python’s

standard library. Consider again the running example. There we have two tab-separated files and one instance of

CSVSource should be created for each of them to load the data. For TestResults.csv, this is done as in

testresults = CSVSource(file('TestResults.csv', 'r'),

delimiter='\t')

Again, we emphasize the flexibility of using a language like Python for the pygrametl framework. Much more

configuration can be done during the instantiation than what is shown but default values are used in this example.

The input could also easily be changed to come from another source than a file, e.g., a web resource or a string in

memory.

MergeJoiningSource is a data source that equijoins rows from two other data sources. It is given two

data sources (which must deliver rows in sorted order) and information about which attributes to join on. It then

merges the rows from the two sources and outputs the combination of the rows.

In the running example, we consider data originating from two data sources. Both the data sources have the

field localfile and this is how we relate information from the two files:

inputdata = MergeJoiningSource(testresults, 'localfile',

downloadlog, 'localfile'))

where testresults and downloadlog are CSVSources.

HashJoiningSource is also a data source that equijoins rows from two other data sources. It does this by

using a hash map. Thus, the input data sources do not have to be sorted.

5 Dimension Support

In this section, we describe the classes representing dimensions in the DW to load. This is the area where the

flexibility and easy use of pygrametl are most apparent. Figure 2 shows the class hierarchy for the dimension

supporting classes. Methods only used internally in the classes and attributes are not shown. Only required argu-

ments are shown, not those that take default values when not given. Note that SnowflakedDimension actually

does not inherit from Dimension but offers the same interface and can be used as if it were a Dimension due

to Python’s dynamic typing.

5.1 Basic Dimension Support

Dimension is the most basic class for representing a DW dimension in pygrametl. It is used for a dimension

that has exactly one table in the DW. When an instance is created, the name of the represented dimension (i.e.,

5

Dimension

 lookup(row)

 getbykey(keyvalue)

 getbyvals(row)

 insert(row)

 ensure(row)

 update(row)

CachedDimension SlowlyChangingDimension

 scdensure(row)

SnowflakedDimension

 scdensure(row)

Figure 2: Class hierarchy for the dimension supporting classes.

the name of the table in DW), the name of the key column1, and a list of attributes (the underlying table may have

more attributes but pygrametl will not use them) must be given. Further, a number of optional settings can

be given as described in the following. A list of lookup attributes can be given. These attributes are used when

looking up the key value. Consider again the running example. The test dimension has the surrogate key testid

but when data is inserted from the CSV files, the test in question is identified from its name (testname). The ETL

application then needs to find the value of the surrogate key based on the test name. That means that the attribute

testname is a lookup attribute. If no lookup attributes are given by the user, the full list of attributes (apart from

the key) is used.

When the dimension object is given a row to insert into the underlying DW table (explained below), the row

does not need to have a value for the dimension’s key. If the key is not present in the row, a method (called

idfinder) is called with the row as an argument. Thus, when creating a Dimension instance, the idfinder

method can also be set. If not set explicitly, it defaults to a method that assumes that the key is numeric and returns

the current maximum value for the key incremented by one.

A default key value for unfound dimension members can also be set. If a lookup does not succeed, this default

key value is returned. This is used if new members should not be inserted into the dimension but facts still should

be recorded. By using a default key value, the facts would then reference a prefilled member representing that

information is missing. In the running example, test is a prefilled dimension that should not be changed by the

ETL application. If data from the source file TestResults.csv refers to a test that is not represented in the test

dimension, we do not want to disregard the data by not adding a fact. Instead, we set the default ID value for the

test dimension to be -1 which is the key value for a preloaded dimension member with the value “Unknown test”

for the testname attribute. This can be done as in the following code.

testdim = Dimension(name='test',

key='testid',

defaultidvalue=-1,

attributes=['testname', 'testauthor'],

lookupatts=['testname'])

Finally, it is possible for the developer to assign a function to the argument rowexpander. With such a

function, it is in certain situations (explained below) possible to add required fields on-demand to a row before it

is inserted into the dimension.

Many of the methods defined in the Dimension class accept an optional name mapping when called. This

name mapping is used to map between attribute names in the rows (i.e., dictionaries) used in pygrametl and

names in the tables in the DW. Consider again the running example where rows from the source file TestResults.csv

have the attribute test but the corresponding attribute in the DW’s dimension table is called testname. When the

Dimension instance for test in pygrametl is given a row r to insert into the DW, it will look for the value

of the testname attribute in r. However, this value does not exist since it is called test in r. A name mapping

n = {’testname’ : ’test’} can then be set up such that when pygrametl code looks for the attribute testname in

r, test is actually used instead. Examples showing the use of the methods are given in Section 9

Dimension offers the method lookup which based on the lookup attributes for the dimension returns the

key for the dimension member. As arguments it takes a row (which at least must contain the lookup attributes)

and optionally a name mapping. Dimension also offers the method getbykey. This method is the opposite

1We assume that a dimension has a non-composite key.

6

of lookup: As argument it takes a key value and it returns a row with all attributes for the dimension member

with the given key value. Another method for looking up dimension members is offered by Dimension’s get-

byvals method. This method takes a row holding a subset of the dimension’s attributes and optionally a name

mapping. Based on the subset of attributes, it finds the dimension members that have equal values for the subset of

attributes and returns those (full) rows. For adding a new member to a dimension, Dimension offers the method

insert. This method takes a row and optionally a name mapping as arguments. The row is added to the DW’s

dimension table. All attributes of the dimension must be present in the pygrametl row. The only exception to

this is the key. If the key is missing, the idfindermethod is applied to find the key value. The method update

takes a row which must contain the key and one or more of the other attributes. The member with the given key

value is updated to have the same values as the given attributes.

Dimension also offers a combination of lookup and insert: ensure. This method first tries to use lookup

to find the key value for a member. If the member does not exist and no default key value has been set, ensure

proceeds to use insert to create the member. In any case, ensure returns the key value of the member to

the caller. If the rowexpander has been set (as described above), that function is called by ensure before

insert is called. This makes it possible to add calculated fields before an insertion to the DW’s dimension table

is done. In the running example, the date dimension has several fields that can be calculated from the full date

string (which is the only date information in the source data). However, it is expensive to do the calculations

repeatedly for the same date. By setting rowexpander to a function that calculates them from the date string,

the dependent fields are only calculated the first time ensure is invoked for certain date.

Compared to SQL Server Integration Services (SSIS) – a dominating ETL tool on the market – the function-

ality of ensure offers the programmer more flexibility. When using SSIS, the programmer should typically fill

the dimension tables before fact tables are filled. The Lookup transformation cache in SSIS is filled before the

data flow execution and it is hard to add new members on the fly such that they are available for later lookups.

Workarounds are possible (e.g., use of stored procedures and hash tables for new members as in [23]) but they

are complex and hard to maintain in comparison to the simple approach taken by pygrametl where the addi-

tion of new dimension members can be interleaved with the addition of facts. In our previous work in the EIAO

project [20], it was only possible to run through the source data once due to time constraints and the used (RDF)

data source and we had to add new dimension members when their first fact occurred. Such a strategy is very easy

to implement with pygrametl.

CachedDimension has the same public interface as Dimension and the same semantics. However, it

internally uses memory caching of dimension members to speed up lookup operations. The caching can be com-

plete such that the entire dimension is held in memory or partial such that only the most recently used members

are held in memory. A CachedDimension can also cache new members as they are being added. As noted

above, addition of new dimension members to a cache is complex when using SSIS.

When an instance of CachedDimension is created, it is possible to set the same settings as for Dimen-

sion. Further, optional settings can decide the size of the cache, whether the cache should be prefilled with

rows from the DW or be filled on-the-fly as rows are used, whether full rows should be cached or only keys and

lookup attributes, and finally whether newly inserted rows should be put in the cache. In the running example, a

CachedDimension for the test dimension can be made as in the following code.

testdim = CachedDimension(name='test',

key='testid',

defaultidvalue=-1,

attributes=['testname', 'testauthor'],

lookupatts=['testname'],

cachesize=500,

prefill=True,

cachefullrows=True)

5.2 Advanced Dimension Support

SlowlyChangingDimension provides support for type 1 and 2 changes in slowly changing dimensions [6].

When an instance of SlowlyChangingDimension is created, it can be configured in the same way as a

Dimension instance. Further, the name of the attribute that holds versioning information for type 2 changes in

the DW’s dimension table should be set. A number of other things can optionally be configured. It is possible to

set which attribute holds the “from date” telling from when the dimension member is valid. Likewise it is possible

7

to set which attribute holds the “to date” telling when a member becomes replaced. A default value for the “to

date” for a new member can also be set. Further, functions that, based on the data in the rows, calculate these

dates can be given but if they are not set, pygrametl defaults to use a function that returns the current date.

pygrametl offers some convenient functions for this functionality. It is possible not to set any of these date

related attributes such that no validity date information is stored for the different versions. It is also possible to list

a number of attributes that should have type 1 changes (overwrites) applied. SlowlyChangingDimension

has built-in cache support and its details can be configured.

SlowlyChangingDimension offers the same functions as Dimension (which it inherits) and the se-

mantics of the functions are basically unchanged. lookup is, however, modified to return the key value for the

newest version. To handle versioning, SlowlyChangingDimension offers the method scdensure. This

method is given a row (and optionally a name mapping). It is similar to ensure in the sense that it first sees

if the member is present in the dimension and, if not, inserts it. However, it does not only do a lookup. It also

detects if any changes have occurred. If changes have occurred for attributes where type 1 changes should be

used, it updates the existing versions of the member. If changes have also occurred for other attributes, it creates

a new version of the member and adds the new version to the dimension. As opposed to the previously described

methods, scdensure has side-effects on its given row: It sets the key and versioning values in its given row such

that the programmer does not have to query for this information afterwards.

When a page is downloaded in the running example, it might have been updated compared to last time it was

downloaded. To be able to record this history, we let the page dimension be a slowly changing dimension. We

add a new version when the page has been changed and reuse the previous version when the page is unchanged.

We lookup the page by means of the URL and detect changes by considering the other attributes. We create the

SlowlyChangingDimension object as in the following.

pagedim = SlowlyChangingDimension(name='page',

key='pageid',

attributes=['url', 'size', 'validfrom', 'validto',

'version', 'domainid' 'serverversionid'],

lookupatts=['url'],

fromatt='validfrom',

fromfinder=pygrametl.datereader('lastmoddate'),

toatt='validto',

versionatt='version')

In the shown code, the fromfinder argument is a method that extracts a “from date” from the source data when

creating a new member. It is also possible to give a tofinder argument to find the “to date” for a version to

be replaced. If not given, this defaults to the fromfinder. If another approach is wished (e.g., such that the to

date is set to the day before the new member’s from date), tofinder can be set to a function which performs the

necessary calculations.

SnowflakedDimension supports filling a dimension in a snowflake schema [6]. A snowflaked dimension

is spread over more tables such that there is one table for each level in the dimension hierarchy. The fact table

references one of these tables that itself references tables that may reference other tables etc. A dimension member

is thus not only represented in a single table as each table in the snowflaked dimension represents a part of the

member. The complete member is found by joining the tables in the snowflake.

Normally, it can be a tedious task to create ETL logic for filling a snowflaked dimension. First, a lookup can

be made on the root table which is the table referenced by the fact table. If the member is represented there, it

is also represented in the dimension tables further away from the fact table (otherwise the root table could not

reference these and thus not represent the member at the lowest level). If the member is not represented in the

root table, it must be inserted but it is then necessary to make sure that the member is represented in the next level

of tables such that the key values can be used in references. This process continues for all the levels until the

leaves2. While this is not difficult as such, it takes a lot of tedious coding and makes the risk of errors bigger. This

is remedied with pygrametl’s SnowflakedDimension which takes care of the repeated ensures such

that data is inserted where needed in the snowflaked dimension but such that the developer only has to make one

method call to add/find the member.

An instance of SnowflakedDimension is constructed from other Dimension instances. The program-

mer creates a Dimension instance for each table participating in the snowflaked dimension and passes those

2It is also possible to do the lookups and insertions from the leaves towards the root but when going towards the leaves, it is possible to

stop the search earlier if a part of the member is already present.

8

instances when creating the SnowflakedDimension instance. In the running example, the page dimension

is snowflaked. We can create a SnowflakedDimension instance for the page dimension as shown in the

following code (where different Dimension instances are created before).

pagesf = SnowflakedDimension([

(pagedim, [serverversiondim, domaindim]),

(serverversiondim, serverdim),

(domaindim, topleveldim)

])

The argument is a list of pairs where a pair shows that its first element references each of the dimensions in the

second element (the second element may be a list). For example, it can be seen that pagedim references serverver-

siondim and domaindim. We require that if t’s key is named k, then an attribute referencing t from another table

must also be named k. This requirement could be removed but it makes the specification of relationships between

tables much easier. We also require that the tables in a snowflaked dimension form a tree (where the table closest

to the fact table is the root) when we consider tables as nodes and foreign keys as edges. Again, we could avoid

this requirement but this would complicate the ETL developer’s specifications and the requirement does not limit

the developer. If the snowflake does not form a tree, the developer can make SnowflakedDimension con-

sider a subgraph that is a tree and use the individual Dimension instances to handle the parts not handled by

the SnowflakedDimension. Consider, for example, a snowflaked date dimension with the levels day, week,

month, and year. A day belongs both to a certain week and a certain month but the week and the month may

belong to different years (a week has a week number between 1 and 53 which belongs to a year). In this case,

the developer could ignore the edge between week and year when creating the SnowflakedDimension and

instead use a single method call to ensure that the week’s year is represented:

Represent the week's year. Read the year from weekyear

row['weekyearid'] = yeardim.ensure(row,{'year':'weekyear'})

Now let SnowflakedDimension take care of the rest

row['dateid'] = datesnowflake.ensure(row)

SnowflakedDimension’s lookup method calls the lookup method on the Dimension object for the

root of the tree of tables. It is assumed that the lookup attributes belong to the table that is closest to the fact

table. If this is not the case, the programmer can use lookup or ensure on a Dimension further away from

the root and use the returned key value(s) as lookup attributes for the SnowflakedDimension. The method

getbykey takes an optional argument that decides if the full dimension member should be returned (i.e., a

join between the tables of the snowflaked dimension is done) or only the part from the root. This also holds for

getbyvals. ensure and insert work on the entire snowflaked dimension starting from the root and moving

outwards as much as needed. The two latter methods actually use the same code. The only difference is that

insert, to be consistent with the other classes, raises an exception if nothing is inserted (i.e., if all parts were

already there). Algorithm 1 shows how the code conceptually works but we do not show details like use of name

mappings and how to keep track of if an insertion did happen. The algorithm is recursive and both ensure and

insert first invoke it with the table dimension set to the table closest to the fact table. On line 1, a normal

Algorithm 1 ensure helper(dimension, row)

1: keyval← dimension.lookup(row)
2: if found then

3: row[dimension.key]← keyval

4: return keyval

5: for each table t that is referenced by dimension do

6: keyval← ensure helper(t, row)
7: if dimension uses the key of a referenced table as a lookup attribute then

8: keyval← dimension.lookup(row)
9: if not found then

10: keyval← dimension.insert(row)
11: else

12: keyval← dimension.insert(row)
13: row[dimension.key]← keyval

14: return keyval

9

lookup is performed on the table. If the key value is found, it is set in the row and returned (lines 2–4). If not,

the algorithm is applied recursively on each of the tables that are referenced from the current table (lines 5–6).

As side-effects of the recursive calls, key values are set for all referenced tables (line 3). If the key of one of the

referenced tables is used as a lookup attribute for dimension, it might just have had its value changed in one of

the recursive calls and a new attempt is made to look up the key in dimension (lines 7–8). If this attempt fails, we

insert (part of) row into dimension (line 10). We can proceed directly to this insertion if no key of a referenced

table is used as a lookup attribute in dimension (lines 11–12).

SnowflakedDimension also offers an scdensure method. This method can be used when the root is

a SlowlyChangingDimension. In the running example, we previously created pagedim as an instance of

SlowlyChangingDimension. When pagedim is used as the root as in the definition of pagesf above,

we can use the slowly changing dimension support on a snowflake. With a single call of scdensure, a full

dimension member can be added such that the relevant parts are added to the five different tables in the page

dimension.

As previously mentioned, it is difficult to add dimension members and facts interleaved when using SSIS.

The complexity of the workarounds to do this gets even higher when they must be applied to more tables as in

snowflakes. In contrast it is very easy when using pygrametl. Also when using the open source graphical ETL

tool Pentaho Data Integration (PDI), use of snowflakes requires the developer to use several lookup/update steps.

It is then not possible to start looking up/inserting from the root as foreign key values might be missing. Instead,

the developer has to start from the leaves and go towards the root. In pygrametl, the developer only has to

use the SnowflakedDimension instance once. The pygrametl code considers the root first (and may save

lookups) and only if needed moves on to the other levels.

6 Fact Table Support

pygrametl also offers three classes to represent fact tables. In this section, we describe these classes. It is

assumed that a fact table has a number of key attributes and that each of these is referencing a dimension table.

Further, the fact tables may have a number of measure attributes.

FactTable provides a basic representation of a fact table. When an instance is created, the programmer

gives information about the name fact table, names of key attributes and optionally names of measure attributes.

Note that the methods defined for FactTables also support optional name mappings.

FactTable offers the method insert which takes a row and inserts a fact into the DW’s table. This is

obviously the most used functionality. It also offers a method lookup which takes a row that holds values for

the key attributes and returns a row with values for both key and measure attributes. Finally, it offers a method

ensure which first tries to use lookup. If a match is found on the key values, it compares the measure values

between the fact in the DW and the given row. It raises an error if there are differences. If no match is found, it

invokes insert. All the methods support name mappings.

BatchFactTable inherits FactTable and has the same methods. However, it does not insert rows im-

mediately when insert is called but waits until a user-configurable number of rows are available. This can lead

to a high performance improvement.

BulkFactTable provides a write-optimized representation of a fact table. It does offer the insertmethod

but not lookup or ensure. When insert is called, the data is not inserted directly into the DW but instead

written to a file. When a user-configurable number of rows have been added to the file (and at the end of the load),

the content of the file is bulkloaded into the fact table.

The exact way to bulkload varies from DBMS to DBMS. Therefore, we again rely on Python’s functional pro-

gramming support and require the developer to pass a function when creating an instance of BulkFactTable.

This function is invoked by pygrametl when the bulkload should take place. When using the database driver

psycopg2 [12] and the DBMS PostgreSQL [11], the function can be defined as below.

10

def pgbulkloader(name, attributes, fieldsep, rowsep, nullval, filehandle):

global connection # Opened outside this method

cursor = connection.cursor()

cursor.copy_from(file=filehandle, table=name, sep=fieldsep, null=nullval,

columns=attributes)

Further, the developer can optionally define which separator and line-ending BulkFactTable uses and which

file the data is written to before the bulkload. A string value used to represent NULLs can also be defined. For the

running example, a BulkFactTable instance can be created for the fact table as shown below.

facttbl = BulkFactTable(name='testresults',

measures=['errors'],

keyrefs=['pageid', 'testid', 'dateid'],

bulkloader=pgbulkloader,

bulksize=5000000)

7 Flow Support

To make it possible to create components with encapsulated functionality and easily connect such components,

pygrametl offers support for steps and flow of data between them. The developer can, for example, create a

step for extracting data, a step for cleansing, a step for logging, and a step for insertion into the DW’s tables. Each

of the steps can be coded individually and finally the data flow between them can be defined. This borrows one of

the good aspects from GUI-based ETL tools, namely that it easy to keep different aspects separated and thus to get

an overview of what happens in a sub-task. In pygrametl, we combine the best of both worlds: The developer

can benefit from the expressiveness and power of coding but also use encapsulation and the built-in flow support.

Step is the basic class for flow support. It can be used directly or as a base class for other step-supporting

classes. The programmer can for a given Step set a worker function which is applied on each row passing through

the Step. If not set by the programmer, the function defaultworker (which does not do anything) is used.

Thus, defaultworker is the function inheriting classes override. The programmer can also determine to which

Step rows by default should be sent after the current. That means that when the worker function finishes its work,

the row is passed on to the next Step unless the programmer specifies otherwise. So if no default Step is set

or if the programmer wants to send the row to a non-default Step (e.g., for error handling), there is the function

redirect which the programmer can use to explicitly direct the row to a specific Step.

There is also a method inject for injecting a new row into the flow before the current row is passed on.

The new row can be injected without an explicit target in which case the new row is passed on the Step that rows

by default are sent to. The new row can also be injected and sent to a specified target. This gives the programmer

a large degree of flexibility.

The worker function can have side-effects on the rows it is given. This is, for example, used in the class

DimensionStep which calls ensure on a certain Dimension instance for each row it sees and adds the

returned key to the row. Another example is MappingStep which applies functions to attributes in each row.

A typical use is to set up a MappingStep applying pygrametl’s type conversion functions to each row. A

similar class is ValueMappingStepwhich performs mappings from one value set to another. Thus, it is easy to

perform a mapping from, e.g., country codes like ’DK’ and ’DE’ to country names like ’Denmark’ and ’Germany’.

To enable conditional flow control, the class ConditionalStep is provided. A ConditionalStep is given

a condition (which is a function or a lambda expression). For each row, the condition is applied to the row and if

the condition evaluates to a True value, the row is passed on to the next default Step. In addition, another Step

can optionally be given and if the condition then evaluates to a False value for a given row, the row is passed on

to that Step. Otherwise, the row is silently discarded. We emphasize how easy this is to use. The programmer

only has to pass on a lambda expression or function. Also, to define new step functionality is very easy. The

programmer just writes a single function that accepts a row as input and gives this function as an argument when

creating a Step.

Steps can also be used for doing aggregations. The base class for aggregating steps, AggregatingStep,

inherits Step. Like an ordinary Step, it has a defaultworker. This method is called for each row given to

the AggregatingStep and must maintain the necessary data for the computation of the average. Further, there

is a method defaultfinalizer that is given a row and writes the result of the aggregation to the row.

11

The functionality described above could also be implemented by the developer without Steps. However, if

the developer prefers to think in terms of connected steps (as typically done in GUI-based ETL programs), (s)he

can create specialized components with encapsulated functionality by using the Step classes. It is even possible

to create a GUI from which the pygrametl Steps can be placed and connected visually while still allowing the

programmer to take full advantage of Python programming.

8 Further Functionality

Apart from the classes described in the previous sections, pygrametl also offers some convenient methods

often needed for ETL. These include functions that operate on rows (copy, rename, project, set default values) and

functions that convert types, but return a user-configurable default value if the conversion cannot be done (like

getfloat shown in Section 3).

In particular for use with SlowlyChangingDimension and its support for time stamps on versions, py-

grametl provides a number of functions for parsing strings to create date and time objects. Some of these

functions apply functional programming such that they dynamically create new functions based on their argu-

ments. In this way specialized functions for extracting time information can be created. For an example, refer to

pagedim we defined in Section 5. There we set fromfinder to a (dynamically generated) function that reads

the attribute lastmoddate from each row and transforms the read text into a date object.

While this set of provided pygrametl functions is relatively small, it is important to remember that with

a framework like pygrametl, the programmer also has access to the full standard library of the host language

(in this case Python). Further, it is easy for the programmer to build up private libraries with the most used

functionality.

9 Evaluation

To evaluate pygrametl, we implemented an ETL program for the running example. To get data, we made a

data generator (details are given below). We also implemented an ETL solution in the graphical ETL tool Pentaho

Data Integration (PDI) [9] to be able to compare the development efforts when using visual programming and

code-based programming, respectively. PDI is a leading open-source ETL tool. It is Java-based and works with

many different data sources and targets. Ideally, the comparison should have included commercial ETL tools

but the license agreements of these tools (at least the ones we have read) explicitly forbid publishing of any

evaluation/performance results without the consent of the provider. In this section, we present the findings of the

evaluation. Note that pygrametl, the described ETL program, and the data generator are publicly available

from http://pygrametl.org.

9.1 Development Time

We have previous experience with PDI but we obviously know the details of pygrametl very well. Therefore, it

is hard to make a comprehensive comparison of the development times without having trained development teams

at our disposal. We used each tool twice to create identical solutions. In the first use, we worked slower as we also

had to find a strategy. In the latter use, we found the “interaction time” spent on typing and clicking.

The pygrametl-based ETL program was very easy to develop. It took a little less than one hour to code

the complete ETL program in the first use. In the second use, it took 24 minutes. The program consists of 142

lines including comments and plenty of whitespace (for example, there is only one argument on each line when

the Dimension objects are created). The program only has 56 Python statements. This strongly supports that it

is easy to develop ETL programs using pygrametl. The main method of the developed ETL is shown below.

12

def main():

for row in inputdata:

extractdomaininfo(row)

extractserverinfo(row)

row['size'] = pygrametl.getint(row['size']) #Convert from string to int

Add the data to the dimension and fact tables

row['pageid'] = pagesf.scdensure(row)

row['dateid'] = datedim.ensure(row, {'date':'downloaddate'})

row['testid'] = testdim.lookup(row, {'testname':'test'})

facttbl.insert(row)

connection.commit()

The methods extractdomaininfo and extractserverinfo have four lines of code that extract the do-

main, top-level domain, and server name from the URL and serverversion attributes. Note that the page dimension

is a slowly changing dimension so we use scdensure to add new (versions of) members. This is a very easy

way to fill a both snowflaked and slowly changing dimension. To fill the date dimension correctly, we have set

a rowexpander for the datedim object to a function that (on demand) calculates the attribute values for a

member to insert into the dimension. Thus, it is enough to use ensure to find or insert a member. The test

dimension is preloaded and we only do lookups.

In comparison, the first PDI-based solution took us a little more than two hours to make work. In the second

use of PDI, it took 28 minutes to create the solution. The solution has 19 boxes and 19 arrows between them. The

flow is shown in Figure 3.

Figure 3: Data flow in PDI-based solution.

We emulate the rowexpander feature of pygrametl by first looking up a date and calculating the remain-

ing date attributes in case there is no match. Note how we must fill the page snowflake from the leaves towards

the root as discussed in Section 5.2.

Comparing the number of statements (56) in the pygrametl-based solution to the number of boxes (19) in

the PDI-based solution, it can be seen that one box in PDI corresponds to three Python statements when using

pygrametl. This is a very promising result supporting that pygrametl is efficient to use (remember that a

box is not just a box – rich dialogs must be used to configure its behaviour). From our experiments where we only

measured the time spent on using keyboard and mouse, we found that the graphical tool was not faster to use than

it was to program by code in a text editor. In fact, the typing of pure text was slightly faster.

In the experiment, pygrametl was faster to use than PDI in both uses. The first solution was much faster

to create in pygrametl and we find that the strategy is far simpler to work out in pygrametl (compare the

shown main method and Figure 3).

9.2 Performance

To test the performance of the solutions, we generated data. The generator was configured to create results for

2,000 different domains each having 100 pages. Five tests were applied to each page. Thus, data for one month

gave 1 million facts. To test the SCD support, a page could remain unchanged between two months with probability

0.5. For the first month, there were thus 200,000 page versions and for each following month, there were ∼100,000

new page versions. We did the tests for 5, 10, 50, and 100 months, i.e., on data sets of realistic sizes. The

solutions were tested on a single3, powerful server with two quad-core 1.86GHz Xeon CPUs, 16GB of RAM,

3We did not test PDI’s support for distributed execution.

13

 0

 100

 200

 300

 400

 500

 600

 0 20 40 60 80 100

M
in

u
te

s

Million facts

PDI
pygrametl

PDI with bulkloading

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 20 40 60 80 100

M
in

u
te

s

Million facts

PDI
PDI with bulkloading

pygrametl

(a) Elapsed time (b) CPU time

Figure 4: Performance results.

and 10,000 rpm harddisks. The server ran SUSE Linux Enterprise Edition 10, Python 2.6, Sun Java 6SE, PDI

3.2-RC1, and PostgreSQL 8.3.5. We tested the tools on a DW where the primary key constraints were declared

but the foreign key constraints were not. The DW had an index on page(url, version). We loaded the data

into DWs that already held data for 100 months.

PDI was tested in two modes. One with a single connection to the DW such that the ETL is transactionally

safe and one which uses a special component for bulkloading the facts into PostgreSQL. This special component

makes its own connection to the DW. This makes the load faster but transactionally unsafe as a crash can leave the

DW loaded with inconsistent data. The pygrametl-based solution uses bulkloading (BulkFactTable) but

is always running in safe transactional mode with a single connection to the DW. The solutions were configured

to use caches without size limits. When PDI was tested, the max. Java heap size was set to 8GB (12GB for the

largest data set as 8GB was too little for this).

Figure 4(a) shows the elapsed wall-clock time for the loads and Figure 4(b) shows the spent CPU time. It can

be seen that the elapsed time grows super-linearly for PDI while it grows linearly for pygrametl. PDI does not

scale linearly since swapping occurs for the big data set due to the high memory consumption (note that the spent

CPU time does scale linearly for PDI).

PDI is the fastest when it is allowed to use two connections but this advantage fades for large data sets. In safe

mode with a single transaction, the pygrametl-based solution is the fastest for all the data sets. When loading

100 million facts, the pygrametl-based solution handles 5081 facts/sec. PDI with a single connection handles

2796 and PDI with two connections handles 4065 facts/sec.

Servers may have many CPUs/cores but it is still desirable if the ETL uses little CPU time. More CPU time

is then available for other purposes like processing queries. This is in particular relevant if the ETL is running

on a virtualized server with contention for the CPUs. From Figure 4(b), it can be seen that pygrametl uses

much less CPU time than PDI. When loading the data set with 50 million facts, pygrametl’s CPU utilization

is 72%. PDI’s CPU utilization is 177% with one connection and 191% with two. It is clearly seen that it in

terms of resource consumption is beneficial to code a specialized light-weight program instead of using a general

feature-rich but heavy-weight ETL application.

With a real-life, confidential data set (with around 8 millions facts in three fact tables and 8 dimensions of

which one is a snowflake with two hierarchies and six participating tables), we have experienced that PDI 3.0

on the same server as before, loads the data set in around 240 minutes while a pygrametl-based solution uses

around 100 minutes. The resource consumption of the pygrametl-based solution is also much smaller than

PDI’s. pygrametl used 70 minutes of CPU-time while PDI used 730 minutes of CPU time. This means that

the average CPU usage for pygrametl was 70% while it was 300% for PDI (meaning that, on average, three

cores were used concurrently by PDI). Further, pygrametl had 50MB resident in RAM while PDI had 3.3GB

resident in RAM for that data set.

14

10 Conclusion and Future Work

In this paper, we presented pygrametl which is a programming framework for ETL programming. We chal-

lenged the conviction that ETL development is always best done in a graphical tool. We proposed to also let the

ETL developers (that typically are dedicated experts) do ETL programming by writing code. Instead of “drawing”

the entire program, the developers can concisely and precisely express the processing in code. To make this easy,

pygrametl provides commonly used functionality such as data source access and filling of dimensions and fact

tables. In particular, we emphasize how easy it is to fill snowflaked and slowly changing dimensions. A single

method call will do and pygrametl takes care of all needed lookups and insertions.

pygrametl is implemented in Python. Python was chosen because it offers convenient functionality to boost

the programming efficiency (including object-oriented and functional programming) and a rich standard library.

Our experiments have shown that ETL development with pygrametl is indeed efficient and effective. py-

grametl’s flexible support of fact and dimension tables makes it easy to fill the DW and the programmer can

concentrate on the needed operations on the data where (s)he benefits from the the power and expressiveness of a

real programming language to achieve high productivity.

We do, however, acknowledge that some persons prefer a graphical overview of the ETL process. Indeed, an

optimal solution could include both a GUI and code. In future work, we plan to make a GUI for creating and

visually connecting steps. Roundtrip engineering such that updates in the code are visible in the GUI and vice

versa should be possible. We also plan to investigate how to provide an efficient and yet simple way to create and

run ETL programs in parallel or distributed DW environments. It should be possible to plug in new DW and ETL

servers and have the coordination done automatically.

Acknowledgments

This work was supported by the Agile & Open Business Intelligence project co-funded by the Regional ICT

Initiative under the Danish Council for Technology and Innovation under grant no. 07-024511.

References

[1] Django. djangoproject.com/ as of 2009-06-18.

[2] T. Friedman, M.A. Beyer, and A. Bitterer. Gartner Magic Quadrant for Data Integration Tools, 2008.

[3] H. Grönniger, H. Krahn, B. Rumpe, M. Schindler, and S. Völkel. Text-based Modeling. In Proc. of ATEM,

2007

[4] IBM InfoSphere DataStage. ibm.com/software/data/ integration/datastage/ as of

2009-06-18.

[5] Informatica. informatica.com as of 2009-06-18.

[6] R. Kimball and M. Ross. The Data Warehouse Toolkit, 2nd Edition. Wiley, 2002.

[7] Microsoft SQL Server Integration Services.

microsoft.com/sqlserver/2005/en/us/integration-services.aspx as of

2009-06-18.

[8] Oracle Warehouse Builder. oracle.com/technology/products/warehouse/index.html as

of 2009-06-18.

[9] Pentaho Data Integration. kettle.pentaho.org as of 2009-06-18.

[10] M. Petre. Why Looking Isn’t Always Seeing: Readership Skills and Graphical Programming. Comm. ACM

38(6):33-44, 1995.

[11] PostgreSQL. postgresql.org as of 2009-06-18.

15

[12] Psycopg2. initd.org/pub/software/psycopg/ as of 2009-06-18.

[13] Python. python.org as of 2009-06-18.

[14] Ruby on Rails. rubyonrails.org/ as of 2009-06-18.

[15] SAP BusinessObjects. sap.com/solutions/sapbusinessobjects/index.epx as of

2009-06-18.

[16] Scriptella. scriptella.javaforge.com as of 2009-06-18.

[17] A. Simitsis, P. Vassiliadis, M. Terrovitis, and S. Skiadopoulos. Graph-Based Modeling of ETL Activities

with Multi-Level Transformations and Updates. In Proc. of DaWaK , pp. 43-52, 2005.

[18] D. Stodder. Nine BI Megatrends. Intelligent Enterprise, January 2009. Available from

intelligententerprise.com/channels/business_intelligence/showArticle.

jhtml?articleID=212700482 as of 2009-06-18.

[19] C. Thomsen and T.B. Pedersen. A Survey of Open Source Tools for Business Intelligence. IJDWM

5(3):56-75, 2009.

[20] C. Thomsen and T.B. Pedersen. Building a Web Warehouse for Accessibility Data. In Proc. of DOLAP,

2006.

[21] J. Trujillo and S. Lujàn-Mora. A UML Based Approach for Modeling ETL Processes in Data Warehouses.

In Proc. of ER2003, pp. 307–320, 2003.

[22] P. Vassiliadis. A Survey of Extract–Transform–Load Technology. IJDWM 5(3):1-27, 2009.

[23] E. Veerman. Microsoft Server 2005. Project REAL: Business Intelligence ETL Design Practices, 2005.

Available from http://technet.microsoft.com/en-us/library/cc966422.aspx as of

2009-06-18.

16

