
RELAXML: Bidirectional Transfer between
Relational and XML Data

Steffen Ulsø Knudsen, Torben Bach Pedersen, Christian Thomsen and Kristian Torp

May 11, 2005

TR-11

A DB Technical Report

Title RELAXML: Bidirectional Transfer between Relational and XML Data

Copyright c© 2005 Steffen Ulsø Knudsen, Torben Bach Pedersen, Chris-
tian Thomsen and Kristian Torp. All rights reserved.

Author(s) Steffen Ulsø Knudsen, Torben Bach Pedersen, Christian Thomsen and
Kristian Torp

Publication History Extended version of: Steffen Ulsø Knudsen, Torben Bach Pedersen, Chris-
tian Thomsen and Kristian Torp: “RELAXML: Bidirectional Transfer be-
tween Relational and XML Data” to appear in Proceedings of the Ninth In-
ternational Database Applications & Engineering Symposium, Montreal,
Canada, July 2005, 12 pages.

For additional information, see the DB TECH REPORTS homepage: 〈www.cs.aau.dk/DBTR〉.

Any software made available via DB TECH REPORTS is provided “as is” and without any express or
implied warranties, including, without limitation, the implied warranty of merchantability and fitness for a
particular purpose.

The DB TECH REPORTS icon is made from two letters in an early version of the Rune alphabet, which
was used by the Vikings, among others. Runes have angular shapes and lack horizontal lines because the
primary storage medium was wood, although they may also be found on jewelry, tools, and weapons. Runes
were perceived as having magic, hidden powers. The first letter in the logo is “Dagaz,” the rune for day
or daylight and the phonetic equivalent of “d.” Its meanings include happiness, activity, and satisfaction.
The second letter is “Berkano,” which is associated with the birch tree. Its divinatory meanings include
health, new beginnings, growth, plenty, and clearance. It is associated with Idun, goddess of Spring, and
with fertility. It is the phonetic equivalent of “b.”

Abstract

In modern enterprises, almost all data is stored in relational databases. Additionally, most enterprises
increasingly collaborate with other enterprises in long-running read-write workflows, primarily through
XML-based data exchange technologies such as web services. However, bidirectional XML data ex-
change is cumbersome and must often be hand-coded, at considerable expense. This paper remedies the
situation by proposing RELAXML, an automatic and effective approach to bidirectional XML-based
exchange of relational data. RELAXML supports re-use through multiple inheritance, and handles both
export of relational data to XML documents and (re-)import of XML documents with a large degree of
flexibility in terms of the SQL statements and XML document structures supported. Import and export
are formally defined so as to avoid semantic problems, and algorithms to implement both are given. A
performance study shows that the approach has a reasonable overhead compared to hand-coded pro-
grams.

1 Introduction

Most enterprises store almost all data in relational databases. Additionally, most enterprises increasingly
collaborate with other enterprises in long-running read-write workflows. This primarily takes place through
XML-based data exchange technologies such as web services, which ensures openness and flexibility.

As an example, consider a database for a fictitious grocery supplier. The database has the relations
Products(PID, PName), Customers(CID, CName), Orders(OID, CID), and OrderLines(OID, PID, Qty,
Date) where Orders.CID references Customers.CID and OID and PID in OrderLines references OID of
Orders and PID of Products, respectively. The data is as shown below.

PID PName
1 Cola
2 Candy
3 Bread

Products

CID CName
1 Mini Market
2 Smith’s
3 Kiosk24

Customers

OID CID
1 1
2 3
3 1

Orders

OID PID Qty Date
1 1 200 04/03/05
1 3 50 03/01/05
2 2 100 04/05/05
3 2 75 05/01/05

OrderLines

Using a web-service call, a customer, e.g., Mini Market, requests an XML document with information
on all their orders and the ordered products, see Figure 1 (for now, please ignore the concept and structure
attributes in the root element). To save space, we use attributes in the shown XML, but in RELAXML the
user can choose freely between elements and attributes. This document can easily be created by RELAXML.
After receiving the document, the customer updates it to change the quantity of the bread ordered and the
delivery date for the candy, and sends it back to the supplier using another web-service call. The database
can then be automatically updated by RELAXML to reflect the changes made to the XML document. Using
traditional approaches, significant hand-coding would be necessary.

This paper presents RELAXML, a flexible approach to bidirectional data transfer between relational
databases and XML documents. Figure 2 shows the procedure when RELAXML exports relational data to
an XML document. An export is specified using a concept (a view-like construct), and a structure definition,
which specify the data to export and the structure of the exported XML document, respectively. From the
concept, SQL that extracts the data, is generated, resulting in a derived table that can be changed by user-
specified transformations. The resulting data is exported to an XML document with an XML Schema

1

<Orders concept="B.rxc" structure="B.rxs">
<Customer CID="1">Mini Market</Customer>
<Order OID="1">

<OrderLines>
<Product PID="1" Qty="200" Date="04/03/05">Cola</Product>
<Product PID="3" Qty="50" Date="03/01/05">Bread</Product>

</OrderLines>
</Order>
<Order OID="3">

<OrderLines>
<Product PID="2" Qty="75" Date="05/01/05">Candy</Product>

</OrderLines>
</Order>

</Orders>

Figure 1: Example of an XML document.

specified by the structure definition. Using both concepts and structure definitions separates data from
structure, i.e., a single concept can be associated with multiple structure definitions. The import procedure
is basically the reverse of the procedure shown in Figure 2 and allows for insert, update, and delete of data
from the database.

Database

P R R S T
...

...

Q

Derived Table
Transformed

<X A="xyz">
 <Q>xyz</Q>
</X>
<Y B="xyz">
 <R>xyz</R>
 <S>xyz</S>
</Y>

Definition
Structure

XML Document
and Schema

TransformationsSQL

Derived Table

Concept

A B Q S
...

...

R

Figure 2: The export procedure.

The SQL statement used for an export can include inner and outer joins plus filters. The structure of the
XML documents is very flexible and supports, e.g., grouping (or nesting) of XML elements, data as XML
elements or attributes, and additional container XML elements. Export and import are formally defined,
including definitions of concepts, structure definitions, and transformations. In addition, it is specified how
to determine at export time if an XML document may be imported into the database again and how an
XML document must be self-contained if the data is to be imported into an empty database, so that integrity
constraints are not violated. Algorithms for export and import are given. Performance studies of the DBMS
independent prototype show that the algorithms are efficient, have a reasonable overhead compared to hand-
coded programs, and can handle large documents (> 200 MB) with a small main memory usage.

The mapping of XML data to new (specialized) relational schemas has been widely studied [2, 18].
The mapping of the result of an SQL query to an XML document (termed an export) has also been widely
studied [7, 11, 17, 18, 19], and recently SQL/XML [13] has been proposed as a standard for this mapping.
However, unlike RELAXML, none of this work supports the import of XML documents into an existing
database. Only few papers [1, 3, 6] have studied how to do a bidirectional (both export and import) mapping
between existing databases and XML documents. Again, note that SQL/XML only maps from databases to
XML documents. Further, some of the bidirectional approaches have limited capabilities, i.e., can only map

2

an XML document to a single table [3]. A number of so-called XML-enabled databases with extensions
for transferring data between XML documents and themselves exist [5, 8]. However, the solutions in these
products are vendor specific and do not provide full support for transferring data into existing databases
with given schemas.

There exist many middleware products (such as RELAXML) for transferring data between databases
and XML documents [3], including products that can either export, import, or both. Examples are JDBC2-
XML [12], DataDesk [14] and XML-DBMS [4]. Of these, XML-DBMS is the most interesting since it can
perform both import and export. It uses a mapping language to provide flexible mappings between XML
elements and database columns and mappings can be automatically generated from a DTD or database
schema. However, compared to RELAXML, XML-DBMS is not as scalable as it uses DOM instead of
SAX, does not support inheritance or transformations, and gives no guarantee for import at export time. In
[1], bidirectional transfer of data is also considered. The main differences are that [1] creates new views in
the underlying database and updates through these views. Each query (tree) may need multiple new views.
In contrast, we update the underlying database tables directly and do not need to modify the database
schema at all. Additionally, we consider θ-joins (instead of only inner joins), we provide a performance
study of an open-source prototype, and we support multiple inheritance. Compared to existing work on
updating relational databases through views [9, 10], the RELAXML approach differs as 1) the SQL update
statements are not known, but instead deduced from the XML document by RELAXML and 2) the needed
execution order of the update statements (due to integrity constraints), is deduced from the underlying
database schema by RELAXML.

The remainder of the paper is structured as follows. Sections 2 and 3 provide definitions of basic
constructs, and export and import, respectively. Sections 4 and 5 present the design of export and import,
respectively. Experimental results are presented in Section 6. Finally, Section 7 concludes the paper and
points to directions of future research.

2 Basic definitions

We now formally define the used constructs. When transferring relational data to an XML document, the
user may want to transform the data in some way, e.g., by converting a price to another currency. This
transformation multiplies the price by c when exporting to XML, and divides the price by c when importing
from the XML.

In the following, we consider rows as relational tuples, i.e., a row has a number of unique attribute
names (also denoted columns) and for each attribute name, an attribute value exists. For a row r and an
attribute name a, r[a] denotes the attribute value for a in r. Further, N (r) denotes the set of attribute names
in r. The set of all rows is denoted R. With this, we can define transformations formally.

Definition 2.1 (Transformation) A transformation t is a function t : R → R that fulfills N
(

t(r)
)

=
N

(

t(s)
)

for all r, s ∈ dom(t) where dom(t) is the domain of t.

The set of attribute names added by a transformation t is denoted α(t), and the set of names deleted by a
transformation t is denoted δ(t). Formally, α(t) = N (t(r)) \ N (r) and δ(t) = N (r) \ N (t(r)) for all r ∈
dom(t). Note that for efficiency reasons, transformations are pipe-lined in the RELAXML implementation.

We now define join tuples, which are used for defining concepts formally. Intuitively, a join tuple
defines a relation derived by joining existing relations like an SQL query, i.e., the relations to join, the
join operator(s), and the join predicate(s) should be specified. For example, the join tuple for the example
in Section 1 says that Orders and OrderLines are inner joined on the OIDs, the resulting relation is inner
joined with Customers on the CIDs, and finally, this result is inner joined with Products on the PIDs.

3

Let θ be a theta join, and LOJ/ROJ/FOJ be a left/right/full outer join. Ω = I ∪ O where I = {θ}
and O = {LOJ,ROJ, FOJ} is the set of RELAXML join operations (the operators in O are neither
commutative nor associative).

Definition 2.2 (Join tuple) A join tuple is a three-tuple of the form ((r1, . . . , rm), (ω1, . . . , ωm−1),
(p1, . . . , pm−1)) for m ≥ 1 and where

1) ri is a relation or another join tuple for 1 ≤ i ≤ m

2) ωi ∈ Ω for 1 ≤ i ≤ m− 1

3) pi is a predicate for 1 ≤ i ≤ m− 1.

Further, we require that if ωi ∈ O then ωj ∈ I for j < i.

For an ω ∈ Ω and a predicate p, A ωp B denotes the join (of type ω) where the predicate p must be fulfilled.
For a given join tuple, it is then possible to compute a relation by means of the eval function where

eval(r) =

eval(r1) ω
p1

1 eval(r2) ω
p2

2 · · · ω
pm−1

m−1 eval(rm) if r = ((r1, . . . , rm),
(ω1, . . . , ωm−1),
(p1, . . . , pm−1))

r if r is a relation.

To avoid ambiguity, only one join operator fromO can be used in a join tuple since they are neither com-
mutative nor associative. If more are needed, several join tuples are used (similar to requiring parentheses
in an expression).

A concept is used for defining which data to transfer, and thus includes a join tuple, along with a list of
columns used in a projection of the relation resulting from the join tuple, a predicate to restrict the considered
row set, and a list of transformations to apply. Further, as concepts support inheritance, a concept also lists
its ancestors (if any). An example of concept inheritance appears in Example 2.4.

Definition 2.3 (Concept) A concept is a 6-tuple (n,A, J, C, f, T) where n is the concept’s caption, A is a
possibly empty sequence of unique parent concepts to inherit from, J is a join tuple, C is a set of included
columns from the base relations of J , f is a row filter predicate, and T is a possibly empty sequence of
transformations to be applied.

For a concept with join tuple J and ancestors a1, . . . , an, we require that the relations D(a1), . . . , D(an)
(defined below) are included by J .

The relation valued function D computes the base (not yet transformed) data for a concept. For a
concept k = (n, (a1, . . . , am), J, C, f, T), D is defined as follows, where ν(c) denotes the name of the
table from which a column c originates and cols(x) gives all columns in a relation x.

D(k) =
,

c∈C
ρ[〈k〉#ν(c)$c/c](πC∪{c̃ | c̃∈cols(D(ai)), i=1,...,n}(σf (eval(J)))) (1)

First, eval computes the relation that holds the data from the base relations, followed by performing a
selection and then a projection of all columns included by k or any of its ancestors. Finally, a renaming
schema of the columns included by k is used by means of the rename operator where # and $ represent
separator characters. This 3-part naming schema (concept name, table name, column name) is necessary
in order have a one-to-one mapping from the columns of D(k) to the columns of the database. With the
renaming schema, both table and concept names are part of the column names of D(k), which is necessary
in order to separate the scopes of different concepts.

4

As shown above, D(k) denotes a relation with the data of the concept k before transformations are
applied. For a concept k with parent list (a1, . . . , au) and transformation list T = (t1, . . . , tp), the resulting
data is given by the relation valued function R defined as follows.

R(k) =
⋃

d∈D(k)

(

γ(k)
)(

d
)

, (2)

where

γ(k) =
(

,

n∈((∪t∈T α(t))\(∪t∈T δ(t)))
ρ[〈k〉#n/n]

(

tp ◦ · · · ◦ t1
)

)

◦ γ(au) ◦ · · · ◦ γ(a1).

When a concept inherits from parent concepts, parent transformations are evaluated before child transforma-
tions. When all the transformations have been evaluated, all the attribute names they have added are prefixed
with an encoding of the concept, so it is possible to distinguish between identically named attributes added
by transformations from different concepts. With the definition in (2), a problem may emerge if a concept
is inherited from twice, namely that, when transformed, an attribute included by a common ancestor could
have an unexpected value, set by a transformation included by another concept. To avoid problems, we
require for a concept’s parent list L that ψ(L) does not contain duplicates, where ψ is recursively defined
as ψ(()) = () and ψ(l1 :: · · · :: ln) = l1 :: · · · :: ln :: ψ

(

p(l1)
)

:: · · · :: ψ
(

p(ln)
)

where p(x) is concept x’s
list of parents.

Example 2.4 Consider again the data in Section 1. We now define a concept A which extracts information
on which customers have placed orders, and another concept, B, which inherits from A and adds details on
the ordered products. B restricts the data to the customer with CID = 1. Thus, B extracts the data shown in
Figure 1. We use C for Customers, O for Orders, OL for OrderLines, and P for Products.

A =(CustomersWithOrders, (),

((C,O), (θ), (C.CID = O.CID)),

{C.CID,C.CName,O.OID}, (true), ())

B =(Orders, (A),

((P,OL,D(A)), (θ, θ), ((OL.PID = P.PID),

(OL.OID = A#O$OID))), {P.PID,

P.PName, P.Qty, P.Date}, A#C$CID = 1, ())

Concept A has the caption CustomersWithOrders and does not inherit from other concepts. The join tuple
of A states that C and O must be joined by a θ-join on the CIDs. The columns C.CID, C.CName, and O.OID
are included by A. Each row from the join tuple should be included by A (each row fulfills the condition
“true”). A does not use any transformations. Concept B has the caption Orders and inherits from A. The
join tuple specifies how to join the relations P and OL to the relation found by A, D(A). B adds three
columns to those considered by A and adds a row filter such that only rows regarding a specific customer
are considered.

A structure definition is used to define the structure (i.e., the schema) of the XML containing the data.
The structure is described by means of a tree where a node represents an XML element or attribute. The
structure definition for the example in Figure 1 is shown in Figure 3. A structure definition has two kinds of
elements: elements that hold data but not elements, and elements that only hold other elements. A node in
the structure definition can be a node that we group by, i.e., in the XML, elements represented by that node

5

PID

CID
+

+
Customer

+

+
Order

Product

+
OrderLines

Qty

OID
+

Orders

Date

Figure 3: Structure definition example.

are coalesced into one if they have the same data values. The resulting element then holds the children of
all the coalesced elements, e.g., informations on a customer and each distinct order only appear once in the
XML in Figure 1. This is achieved by using group by nodes (marked with a +) in the structure definition in
Figure 3. The names shown are the names used in the XML, not the relational attribute names. Below is
the formal definition of structure definitions. Here, an ordered tree with vertex set V means that an injective
order function o : V → N ∪ {0} exists.

Definition 2.5 (Structure definition) A structure definition S = (Vd, Vs, E) is an ordered rooted tree
where Vs ∩ Vd = ∅ and V = Vs ∪ Vd is the set of vertices and E is the set of edges. Members of Vs

and Vd are denoted as structural and data nodes, respectively. A vertex v ∈ V is a tuple (c, t, g) where c is a
name, t ∈ {element, attribute} is the type and g ∈ {true, false} shows if the XML data is grouped by the
vertex. The root ρ = (c, element, true) ∈ Vs and for every v = (c, t, g) ∈ Vs it holds that t = element.
For v = (c, t, g) ∈ Vd it holds that if t = attribute then v has no children whereas if t = element then for
each child (d, u, h) of v we have u = attribute.

We say that a structure definition S = (Vd, Vs, E) complies with a concept k iff for each column ofR(k)
there exists exactly one node in Vd with identical name and the name of the root of S equals the caption of
the concept k. For a concept k, a vertex v ∈ Vd represents a column of R(k) and gives rise to elements that
hold data, while a vertex in Vs does not represent a column and gives rise to structural elements holding
other elements. We let the function κ be a mapping between the names of the vertices and XML tag names.
Thus, the XML elements represented by v in the structure definition will be named κ(v).

In order to represent a meaningful XML structure, a structure definition must be valid. For a vertex v,
let De(v) denote the set of descendants of v and Ch(v) the set of children of v.

Definition 2.6 (Valid structure definition) A structure definition S = (Vd, Vs, E) with root ρ and order o
is valid iff

S1) o(ρ) = 0

S2) For all v ∈ (Vd ∪ Vs) we have for all c ∈ De(v) that o(c) > o(v)

S3) For all a, b ∈ (Vd ∪ Vs), b 6∈ De(a), we have for all ca ∈ De(a) that o(a) < o(b)⇒ o(ca) < o(b)

S4) For all v ∈ (Vd ∪ Vs) there do not exist c, d ∈ Ch(v) such that c 6= d and κ(c) = κ(d)

S5) For all (c, t, g) ∈ Ch(ρ) we have t = element.

6

F

5

E

4

D

3

C

2

B

1

A

0 0

A

3

B

1

C

2

D

4

B

5

E

(a) Valid (b) Not valid

Figure 4: Structure definitions.

Requirements S1, S2 and S3 intuitively correspond to saying that the order numbers are assigned in a depth-
first fashion (this is automatically done by the RELAXML implementation and is thus of no concern for the
user). Requirements S4 and S5 say that siblings should be distinguishable by having non-identical names
and that the root should have only element children. Figure 4(a) shows an example of a valid structure
definition. A node of type element is represented as a circle and a node of type attribute is represented
as a square. A letter represents the name and a number the order. The structure definition shown in Figure
4(b), is not valid since the A element has two children with the name B, and the B with order 3 has children
with lower order than itself.

For a vertices v, f, p, we say that f is a following relative to v if f has higher order than v, and p is a
preceeding relative to v if p has lower order than v. It is not possible to group by an arbitrary node in the
tree, so we define a valid grouping below. Note that any valid structure definition that does not group by
any nodes (the root node is trivially grouped by), is automatically a valid grouping.

Definition 2.7 (Valid grouping) A valid grouping is a valid structure definition S = (Vd, Vs, E) where for
v = (n, t, g) ∈ (Vd ∪ Vs) where g = true the following holds.

G1) For all preceding relatives (a, b, c) of v, c = true.

G2) A following relative (a, b, c) of v exists with c = false.

G3) If a following relative that is not a descendant of v exists, then for all descendants (a, b, c) of v, it
holds that c = true.

G4) For all children (a, b, c) of v where b = attribute, it also holds that c = true.

Requirement G1 says that when we group by a node, we have to group by its ancestors as well. Otherwise
there would be no elements of the same type to coalesce in the XML. Further, the requirement ensures
efficiency at import time. Without it, we risk that to regenerate a single row, many rows have to be read
partly, e.g., if we in Figure 4(a) only grouped by E, we could have to read many B elements before the first
E element, leading to a significant memory usage. Requirement G2 ensures that for each row exported, at
least one element is written to the XML, ensuring that each exported row can be recreated at import time
such that a grouping is not lossy. To understand requirement G3, consider Figure 4(a). If we group by B, we
should also group by C and D. Then, an entire element, including children, represented by B can be written
when the data in one row has been seen. Without G3, this would not hold, and the writing of the element
represented by E would have to be postponed. Requirement G4 ensures that a specific element’s attributes
only appear once in that element.

Consider again Figure 4(a). Now assume that we group by E. Then to have a valid grouping we must
also group by A, B, C, and D, but not by F.

7

3 Export and import

3.1 Export

We now define the function XML that computes XML containing the data from R. The function XML
uses two auxiliary functions: Element, which adds an element tag, and Content, which adds the content
of an element. These two functions depend on the structure definition used (given by the subscript). In the
following, we consider the concept c with caption n and the valid grouping λ = (Vd, Vs, E) that has the root
ρ, complies with c and has order o. A string and a white space added to the XML is written in another
font and as an underscore, respectively.

XML(c, λ) = <n concept="〈c〉" structure="〈λ〉">Contentλ(ρ,R(c))</n> (3)

The function XML adds the root element of the XML which is named after the caption of the concept c.
Further, informations about the concept and structure definition are always added. The content (i.e., chil-
dren) of the root element is added by Content. In the following, for a vertex v = (x, y, z) in the structure
definition, we let v1 = x. Further, we let Att(v) denote the ordered (possibly empty) list of attribute chil-
dren of v. Then for v = (N, t, g) with Att(v) = (a1, . . . , an) and Ch(v) \ Att(v) = {e1, . . . , em}, we
define v̄ as

v̄ =

(v1, a1
1, . . . , a

1
n) if v ∈ Vd

(a1
1, . . . , a

1
n, ē1, . . . , ēm) if v ∈ Vs, g = true and v has a following relative f 6∈ De(v)

(a1
1, . . . , a

1
n) otherwise.

(4)

v̄ is used in the following to find lists of columns that should be used in projections when data to be put in
the XML should be found. The function Elementλ is defined as

Elementλ(v, P) =

,

∀r∈πv̄(P)

(

<κ(v1) κ(a1
1)="r[a1]" . . . κ(a1

n)="r[an]">Contentλ(v, σv̄=r(P))</κ(v1)>
)

(5)

for a relation P and a vertex v with v̄ 6= () and with attribute children {a1, . . . , an} where ai has lower
order than aj for i < j. If v̄ = (), Elementλ(v, P) = <κ(v1)">Contentλ(v, P)</κ(v1)">.

In (6), where Ch(v) = {e1, . . . , em}, o(ei) < o(ej) for i < j, (x, y, z) ∈ {e1, . . . , eh} implies that
z = true and (x, y, z) ∈ {eh+1, . . . , em} implies that z = false, we define the function Contentλ for a
structure node we group by.

Contentλ(v, P) =
,

∀w1:w1∈πē1
(P)

(

Elementλ
(

e1, σē1=w1
(P)

)

,

∀w2:(w1::w2)∈πē1,ē2
(P)

(

Elementλ
(

e2, σē1=w1,ē2=w2
(P)

)

· · ·

,

∀wh:(w1::···::wh)∈πē1,...,ēh
(P)

(

Elementλ
(

eh, σē1=w1,...,ēh=wh
(P)

)

,

∀r∈σē1=w1,...,ēh=wh
(P)

(

Elementλ(eh+1, {r}) · · ·Elementλ(em, {r})
)

)

· · ·

))

if v ∈ Vs and g = true (6)

8

Equation (6) shows that when we group by the children e1, . . . , eh, for each distinct value of the attributes in
P that are represented by e1 and its children, we create an XML element inside which data or other elements
are added recursively by means of Elementλ which itself uses Contentλ. After each of these elements
for e1, other elements are added for those attributes that are represented by e2 and its children. Here we
have to ensure that the values for e1 match such that we correctly group by e1. After the elements for e2,
elements for e3 follow and so on until elements for all group-by nodes have been added. Then elements for
non-group-by nodes are added. For these nodes exactly one tuple is used for each application of Elementλ.

When using Contentλ on non-group-by nodes, it is only given one tuple at a time. The definition of
Contentλ is

Contentλ(v, {r}) = Elementλ(e1, {r}) · · ·Elementλ(em, {r}) if v ∈ Vs and g = false, (7)

where Ch(v)\Att(v) = {e1, . . . , em} and for i < j : o(ei) < o(ej). That is, when not grouping by v ∈ Vs,
we simply add one element for each element child of v.

Now we define Contentλ for nodes in Vd. But from (5) we have that whenever Contentλ is given
a node v ∈ Vd, the given data has exactly one value for the attribute that v represents. Thus, all that
Contentλ should do is to add this value: Contentλ(v, P) = Contentλ

(

v, πv(P)
)

if |P | > 1 and v ∈ Vd

and Contentλ
(

v, {r}
)

= r[v] if v ∈ Vd.
For an example, consider again the data in Section 1 and the structure definition in Figure 3 where the

order of nodes is increasing from top to bottom, left to right.

3.2 Import

In the following, we refer to different states of the database. The value of the function D from (1) depends
on the state of the database and we therefore refer to the value of D(c) in the specific state s as Ds(c). Now
consider an XML document

X = <n concept="〈c〉" structure="〈s〉">
· · ·</n>, (8)

created by means of the concept c. By DXML(X) we denote a table with column names as D(c) that holds
exactly the values resulting when the inverse transformations from c have been applied to the data in X . It
is a requirement for importing Xthat the transformations of c are invertible. This is, in the general case,
undecidable and, thus, it is left to the user to ensure this. In the following, we do not consider the possible
impacts of triggers and assume that foreign keys can only reference primary keys.

We now give definitions of inserting and updating from the XML. The definitions give the states of
the database before and after the modifications, not the individual operations performed on the database.
When inserting, the data from the XML file should be inserted into tables in the database, e.g., it should be
possible to insert the data in the XML in Figure 1 into a database with a schema similar to that described in
Section 1.

Definition 3.1 (Inserting from XML) For a given database, inserting from the XML document X in (8)
is to bring the database that holds the relations used by c from a valid state a to a valid state b where
Db(c) = Da(c) ∪ D

XML(X) such that the only difference between a and b is that tuples may have been
added to relations used by c.

The data in DXML or some of it can be in the database before the insertion but only in such a way that no
updates are necessary, i.e., data is only inserted. We now define updating from the XML. If an exported
XML document is changed and the changes should be propagated to the database, updating is used. For

9

example, the quantity Cola in line 5 in Figure 1 can be changed to 300. In that case, updating results in
the database with the value 300 for Qty in the corresponding row (where OID = 1 and PID = 1) in the
OrderLines table shown in Section 1.

Definition 3.2 (Updating from XML) Consider the XML document X in (8) and assume that k is the set
of renamed primary keys in the relations used by the concept c.

For a given database that holds the relations used by c and tuples such that πk(D
XML(X)) ⊆ πk(Da(c)),

updating from the XML document X is then, by only updating tuples in base relations used by c, to bring
the database from a valid state a to a valid state b where for any tuple t

t ∈ DXML(X)⇒ t ∈ Db(c),
(

t ∈ Da(c) ∧ πk({t}) * πk

(

DXML(X)
))

⇒ t ∈ Db(c)

t 6∈ DXML(X) ∧ t 6∈ Da(c)⇒ t 6∈ Db(c).

Informally, the first requirement says that a tuple read from the XML will be in the database after the
updating. The second says that a tuple which is in the database before the updating, but not in the XML,
is left untouched in the database. The third says that new tuples, that are neither in the database or XML,
are not introduced in the database. It is also possible to combine inserting and updating, such that tuples are
updated if possible and otherwise inserted. This is called merging.

Definition 3.3 (Merging from XML) Consider the XML document X in (8) and assume that k is the set
of renamed primary keys in the relations used by the concept c.

For a given database that holds the relations used by c, merging from the XML document X is then, by
only adding tuples to or updating tuples in base relations used by c, to bring the database from a valid state
a to a valid state b where for any tuple t

t ∈ DXML(X)⇒ t ∈ Db(c),
(

t ∈ Da(c) ∧ πk({t}) * πk

(

DXML(X)
))

⇒ t ∈ Db(c)

t 6∈ DXML(X) ∧ t 6∈ Da(c)⇒ t 6∈ Db(c).

Notice that the requirement πk(D
XML(X)) ⊆ πk(Da(c)) from Definition 3.2 is not present in Defi-

nition 3.3. In Definition 3.3 it is implied by t ∈ DXML(X) ⇒ t ∈ Db(c) that a tuple in the database in
state a, for which a tuple t with matching values for the primary keys exists in DXML(X), is replaced in
the state b by t.

Further, deletion via XML is supported under some circumstances. To delete, we use a delete document
which has the same structure as XML documents generated by RELAXML. As many as possible of the
tuples in the database with data present in the delete document will be deleted. The reason that everything
is not always removed, is that foreign key constraints may inhibit this.

Since delete documents must have the same structure as the XML documents being exported/imported
by RELAXML, DXML can be computed for identification of the data to delete from the base relations.

Definition 3.4 (Deleting via XML) For a given database deleting base data by means of the XML docu-
ment X in (8), is to bring the database that holds the relations used by the concept c from a valid state a to
a valid state b. This should be done by deleting the tuples contributing to DXML(c) from the base relations
used by c but without violating the integrity constraints of the database.

It should hold that t ∈ DXML(c)⇒ t 6∈ Db(c) unless some value in t is referenced by a foreign key not
included by c and in a relation that has not been declared to set the foreign keys to a null or default value
or delete referencing tuples if t is deleted.

10

The deletion of tuples from relations used by cmay lead to updates or deletion of tuples of other relations
in the database according to the integrity constraints defined on the database. Apart from this, only tuples
in relations used by c will be deleted.

4 Design of export

We now focus on the design and implementation of RELAXML. When exporting, an SQL statement for
retrieval of the data is created based on the concept. Figure 5 shows the RELAXML flow when exporting. A
JDBC [16] ResultSet is decorated with an iterator and a number of transformations. If the XML should
be grouped by one or more elements, a database sort is required, since we do not want to hold all data in
main memory when writing. Finally, the data rows are handed to an XML writer.

<A>
 xyz

<C>
 <D>xyz</D>
 <E>xyz</E>
</C>

Relational database

Data

Data

Data row

Data row

ResultSet iterator

Concept

ResultSet

Data row

XML writer

Sorting iterator Database

Data row

Data row

XML elements

Structure definition

XML Document

and Schema

Transformation1

Transformation
n

Figure 5: The flow of data in an export.

4.1 SQL statements

The SQL statement to extract data from the database is generated from the concept of the export. SQL
statements for parent concepts appear as nested SQL statements in the FROM clause. Note that due to
inheritance the actual columns and row filter of the concept consist of the columns and row filters of parent
concepts together with included columns and row filter defined in the concept itself.

Example 4.1 Canonically, the SQL for the retrieval of the data of concepts A and B from Example 2.4 is
as follows. Note how the three-part naming schema is imposed and how the SQL code of parent concepts
appears as nested sub-queries. Modern DBMSs will, when optimizing, flatten this expression out to a regular
four-way join.

11

X Y Z
1 A null
2 B 1
3 C 1

Figure 6: Data where dead links can arise.

-- Concept A --
SELECT C.CID AS A#C$CID, C.CName AS A#C$CName,
O.OID AS A#O$OID FROM C JOIN O ON (C.CID = O.CID)

-- Concept B --
SELECT A#C$CID, A#C$CName, A#O$OID, P.PID AS B#P$PID,
P.PName AS B#P$PName, OL.Qty AS B#OL$Qty,
OL.Date AS B#OL$Date FROM
OL JOIN P ON (OL.PID = P.PID) JOIN
(SELECT C.CID AS A#C$CID, C.CName AS A#C$CName,
O.OID AS A#O$OID FROM C JOIN O ON (C.CID = O.CID)) RXTMP0
ON (OL.OID = A#O$OID) WHERE (A#C$CID = 1)

The code generation shown above generalizes to situations with multiple inheritance. In the implementa-
tion, the generated SQL does not contain the long names with #’s and $’s. Instead COL0, COL1, . . . are
used to avoid problems with DBMSs that do not support special characters and long names. RELAXML
automatically handles this mapping.

4.2 Dead links

When exporting a part of the database, we may risk that the data is not self-contained. If an element
represents a foreign key it may reference data not included in the XML document. We refer to such a
situation as the referencing element having a dead link. Figure 6 shows an example where dead links can
arise. In the example, Z is a foreign key referencing X. The data in the figure has no dead links but if the
tuple with X = 1 is removed, the data set contains two dead links since X = 1 is referenced by the other
tuples.

A dead link does not limit the possibility of updates during import assuming that the element referenced
in the dead link still exists in the database. Insertion into a new database is limited by a dead link because
of integrity constraints.

In order to detect dead links we use Algorithm 1. Here, we iterate through each table used in the derived
table. We find the foreign keys and the corresponding referenced keys. In line 5 we find the dead links of
the derived table.

When resolving dead links, the goal is to expand the selection criteria such that the missing tuples are
added. This may be done by adding OR clauses. Note that the SQL statement consists of possibly many
nested SELECT statements in the FROM clause and that because of the scope rules, specialized concepts
may include a WHERE clause on the columns of ancestor concepts. For this reason, an expansion of the
condition must in some cases be added several places in the SQL. This means, that instead of the SQL state-
ment described in Section 4.1, we move the WHERE clauses of the nested queries to the outermost query
where they are AND’ed together. The dead link resolution algorithm shown in Algorithm 2 recursively
invokes Algorithm 1 to find dead links, manipulating the WHERE clause such that the referenced tuples are
included. When a fix point is reached, all the dead links are resolved.

12

Algorithm 1 Detect dead links
1: for each table T part of the derived table DT do
2: find the sequence A = (a1, . . . , an) of foreign keys in T also included in DT
3: find the corresponding sequence B = ((b1,1, . . . , b1,m1

), . . . , (bn,1, . . . , bn,mn)) of candidate keys
that are referenced by the foreign keys in A where B is also in DT

4: for each ai ∈ A do
5: M ← SELECT DISTINCT ai FROM DT WHERE NOT EXISTS (SELECT B FROM DT

WHERE ai = bi,1 OR . . . OR ai = bi,mi
)

6: result[T][ai]←M
7: end for
8: end for
9: return result

Algorithm 2 Resolve dead links
1: determine the derived table DT which may have dead links
2: deadlinks = find dead links in DT by means of Algorithm 1
3: for each deadlinks[t] do // Consider tables contributing to DT
4: for each deadlinks[t][a] do // Consider columns
5: for each value v in deadlinks[t][a] do // Consider rows (i.e., cells)
6: expand DT ’s SQL expression with “OR a = v”
7: end for
8: end for
9: end for

10: if DT ’s SQL has been expanded then
11: Invoke recursive call and find new DT to resolve dead links in
12: else
13: return DT which is the original derived table expanded with rows referenced from (previous) dead

links
14: end if

4.3 XML writing

A desirable characteristic is that we do not want to rely on having all data stored in memory at one time.
Thus, the algorithm for writing the XML works such that whenever it gets a new data row, it writes out
some of the data to the XML. If grouping is not used, all the data represented in a data row is written to the
XML when a data row is received. If grouping is used, some of the data might already be present in the
current context in the XML and should not be repeated. To ensure this, the write algorithm compares the
new row to write out and the previous row that was written. When grouping is used, it is a precondition that
the data rows are sorted by the columns corresponding to the nodes that we group by. This is ensured by a
DBMS-based sorting iterator. When grouping by more than one node, the sort order is determined by the
order of the structure definition. The procedure for writing the XML is outlined in Algorithm 3.

To support type checking and validation on the XML document structure, RELAXML can generate an
XML Schema based on the concept and structure definition. The user chooses at export time if a Schema
should be generated or if he wants to use an existing Schema.

In order to generate the XML Schema for an export, we need information on the available columns,
their types and the structure of the XML document. A Concept object reveals the columns and their SQL
types (the types are from java.sql.Types) when the getDataRowTemplate()method is invoked,
and the structure of the XML document is given in the structure definition. For each column in the data

13

Algorithm 3 Write the XML

• Write the root element including information about concept and structure definition.

• For each data row do:

– Find a node we do not group by or a mismatching node (considering this and the previous row).
The node should have the lowest order possible. If no rows have been seen before, we let this
be the node with the lowest order apart from the root. Denote this node x.

– If we at this point have any unmatched opening tags for x and/or nodes with higher order than
x, print closing tags for them.

– Print opening tags for ancestor nodes of x that are not already open.

– For x and each of its siblings of type element and container and with higher order do:

∗ Print a < followed by the tag name for the node
∗ Print each tag name for the node’s attribute children followed by =", the data for the at-

tribute node and a ".
∗ Print a >.
∗ If the node is an element, print its data. Else if the node is a container, perform the inner

most steps recursively for all its element and container children.
∗ If the node is an element or a container that we do not group by or that has a sibling with

higher order, print a closing tag for the node.

• Print closing tags for any unmatched opening tags (this at least includes the root tag).

row template, a data type is generated in the XML Schema. The generated type is a simpleType which
is restricted to the XML Schema type that the columns SQL type is mapped to. It is, however, necessary
to take special considerations if the column can hold the value null, i.e., if the column is nullable. When
exporting, RELAXML will write the null value as a string chosen by the user. But if, for example, a column
of type integer is nullable, then the type generated in the XML Schema should allow both integers and the
string used to represent the null value. Therefore, the generated type should be a union between integers
and strings restricted to one string (the one chosen by the user).

The StructureDefinition holds a tree of structure nodes representing the tree structure of the
XML document. The Schema is generated by traversing this tree. Three types of nodes exist: container
nodes, element nodes and attribute nodes. The container nodes have no associated data type since their only
content is elements. Elements and attributes on the other hand have associated data types since they have
text-only content. These associated data types are those generated as described above.

When container nodes are treated, the Schema construct sequence is used. For a container that we
do not group by, all its children (which by definition also are not grouped by) are declared inside one
sequence. This ensures that in the XML instances of the considered element type each has exactly one
instance of each of its children element types.

For a container that we do group by there are more considerations to take. If we consider a node x which
we group by and which has at least one descendant which we do not group by, then, for each child we group
by, we start a new nested sequence with maxOccurs=’unbounded’. These sequences are not
ended until all children of x have been dealt with. All children of x that we do not group by are declared
inside one sequencewhich has the attribute maxOccurs=’unbounded’. For a structure definition as
the one shown in Figure 7 where we assume that we group by A, B and C, these rules ensure that in the

14

XML an instance of B is always followed by one instance of C which is followed by one or more instances
of D. It is, however, possible for an instance of C to follow an instance of D as long as the C instance is
followed by at least one other instance of D.

0

A

1

B

3

D

2

C

+

+ +

Figure 7: Example of a structure definition.

If we consider a container x where we group by x and all its descendants, then all elements types for
children of x are declared inside one single sequence.

5 Design of import

The flow of the import operation is the reverse of the flow in Figure 5, except that no sorting iterator is
needed. Thus, the XML data is converted to data rows as the XML document is read. These data rows are
sent through the inverse transformations and finally an importer takes appropriate action based on the data
rows. We now discuss insertion, update, and deletion via XML documents.

The user may specify a commit interval such that the importer commits for every n data rows. If
n =∞we may take advantage of deferrable constraints and may do a complete roll-back in case of integrity
constraints. If n 6=∞ we cannot defer the deferrable constraints and cannot do a complete roll-back.

We extend the description of concepts given in Section 2 by allowing a column to be marked “not
updateable”. If this is the case, the data in the database for that column will not be modified by RELAXML.

5.1 Requirements for importing

For a concept to be insertable, updateable, or deleteable, it must fulfill the following requirements.
The common requirements for insert, update, and delete are:

c1) all transformations have an inverse;

c2) all columns used in joins occur in the derived table.

Requirement c1) is obvious. Requirement c2) is needed to support θ-joins. If we do not have values for
all join columns, we cannot insert/update rows in the underlying tables. If only equijoins were supported,
values for half the join columns could be derived.

The requirements for insert are:

i1) all non-nullable columns without default values from included tables are in the export;

i2) if a foreign key column is included, then the referenced column is also included;

i3) the exported data contains no dead links;

i4) if all deferrable and nullable foreign keys are ignored, there are no cycles in the part of the database
schema used in the export.

15

Requirement i1) corresponds to Date’s rule for insert on a view with projection [9]. Requirements i2) and
i3) ensure that inserts do not cause foreign key constraint violations due to foreign keys pointing to non-
existing rows. Requirement i4) ensures that rows are inserted in an order in the underlying tables that avoids
immediate foreign key constraint violations.

The requirements for update are:

u1) each included table has a primary key which is fully included in the export;

u2) primary key values are not updated.

Requirement u1) is a restriction on Date’s rule for updating a view with projection [9]. Requirement u2)
ensures that primary keys can be used to identify the tuples to update. To ensure that primary keys are not
updated, a checksum transformation may be used to include a primary key checksum in the XML file. The
requirements for delete are the same as for update.

If a concept A uses inheritance, all A’s ancestors must be insertable or updateable for A to be insertable
or updateable, as we want to ensure that the requirements described above are fulfilled for each row in the
export. Otherwise, we would risk that for a concept c, one parent p1 included some, but not all, columns
from a table t required for c to be importable, while another parent p2 included the remaining columns from
t required for c to be importable. But if p1 only includes the rows where the predicate b is fulfilled whereas
p2 includes those rows where b is not fulfilled, we cannot combine the resulting row parts to insertable rows.

In summary, concepts are much more flexible than modification through SQL views [9], e.g., multiple
tables may be updated and consistency is guaranteed. Compared to Date’s general specification of modifica-
tion through views [9] we have stricter requirements on projection for insert and update and do not consider
SQL statements with union, intersect, and difference. Concepts involving only joins of tables are insertable
and updateable in the same way as views in Date’s general specification. Compared to Date we support
inheritance and guarantee that updates are consistent as discussed next.

5.2 Avoiding inconsistency

Since the XML document may hold redundant data originating from the same cell in the database, it is a risk
that the user makes an inconsistent update, e.g., if the same column from a table is selected twice. When
the user is editing the XML, he is indirectly making updates to the transformed derived table. But since the
derived table can contain redundant data, in the general case it is only in 1NF.

To detect inconsistent updates, we capture which values in the database are read from the XML, as
further updates on these would be inconsistent. Thus, for all updated or accepted values (those that were
identical in the database and the XML) we capture the table, row and column using a temporary Touched ta-
ble (in the database or main memory). The Touched table has three columns; TableName, PrimaryKeyValue
(the composite primary key), and ColumnName. When an update takes place, we check whether the value
has been updated before. If so, an exception is raised. If not, the update can take place and information
about it is added to the Touched table.

5.3 Inferring a plan for the import

5.3.1 Insert and update

We now consider how to do the actual work when inserting or updating from XML. Later we consider how
to delete by means of an XML document. In order to reason on importability of the data of a concept,
we build a database model, used for inferring database properties, and decide whether there is enough
information to import the data and to infer an insertion order. A specific order may be required because
of integrity constraints on the database. The database model holds information on the included tables and

16

columns and their types. Furthermore, the model holds information on the primary keys of the included
tables and links (foreign key constraints) between the tables of the concept. We have three types of links in
the database model. Hard links represent foreign key constraints which are neither deferrable nor nullable;
semi-hard links represent foreign key constraints which are not deferrable but nullable; soft links represent
deferrable foreign key constraints.

A concept is viewed as an undirected concept graph, where nodes represent tables and edges represent
the joins of the concept. Each edge is either an equijoin edge which follows the constraints of the database
(represented as a solid line) or a non-equijoin edge or an equijoin edge which does not follow the constraints
of the database (both represented as a dotted line). Figure 8 gives examples.

The execution plan determines the insertion order. Based on a concept and its database model, it is
possible to build an execution plan to be used when importing.

The join types used in the concept, the columns joined and the structure of the database schema influence
how to handle an insert or update. The data of a concept may be extracted from the database in many ways,
some of which do not reflect the database constraints. For example, a concept may join on two columns not
related by a database foreign key and may neglect another foreign key. Thus, data for a single data row may
not always be consistent with the foreign key constraints, i.e., these are not fulfilled for the row.

For the import, we construct an insertion order which is a list of table lists. A table list shows tables
which may be handled in the same run (parsing) through the XML document, as the data rows are consistent
with the database constraints. Thus, the length of the insertion order list is the required number of runs
through the XML document.

F

ED

CB

A

F

ED

CB

A

F

ED

CB

A

F

ED

CB

A A

B C

D E

F

(a) (b) (c) (d) (e)

Figure 8: (a) Database model (b)-(e) Concept graphs.

The database model in Figure 8(a) shows that table A has foreign keys to tables B and C , table C has
foreign keys to tables D and E, and table E has a foreign key to table F . Figures 8(b)-(e) show the concept
graphs for four different concepts using the database modeled in Figure 8(a).

The concept graph in Figure 8(b) shows that the data of each data row is guaranteed to be consistent
with the database constraints, as the joins used in the export reflect these constraints and because each join
is an equijoin. This is also the case for the Mini Market example in Figure 1. Figure 8(b) gives the insertion
order ((F,B,D,E,C,A)). The data from F is inserted before the data from E because the database model
shows that the foreign key in E references F . In Figure 8(c), only equijoins are present, but the foreign key
constraint from table C to E is not represented in the concept. Compared to the database model there is
also an extra equijoin between the tables D and E. The missing equijoin between tables C and E means
that in general we cannot insert the data rows at one time but must break the insertion into multiple phases.
A possible insertion order is therefore ((B,F,D,E), (C,A)). In Figure 8(d), all the constraints of the
database model are fulfilled, except that there is a non-equijoin between tables C and E. This leads to the
same situation as in Figure 8(c). In Figure 8(e), we get the insertion order ((B,F,D), (E,C,A)), since D
has an equijoin to E. We cannot continue with E in the first run since the D-E join might include a tuple
of E, which does not fulfill the foreign key constraint between E and F .

17

So far, the database models have had no cycles. If cycles are present, we may break a cycle if it has at
least one soft link or semi-hard link. A soft link may be deferred and a semi-hard link may be set to null
first and updated to the correct value as the final step in the import. We refer to columns having pending
updates as postponed columns.

Now, the execution plan holds an insertion order (the tables of the concept in a list of table lists) and a list
of postponed columns. In the following, let an independent table be a table which is guaranteed to fulfill the
constraints, i.e., does not have any outgoing links in the current database model. Algorithm 4 takes as input
a concept c. In line 1, we build the database model and in line 2 we initialize the set of postponed columns
to the empty set. Lines 3-4 remove all soft-links from the database model, i.e., edges representing deferrable
constraints. In lines 5-6, we remove all semi-hard links from the database model, i.e., the deferrable and
nullable constraints. The columns involved are added to the set of postponed columns. In lines 7-8, we
check that there are no cycles in the database model. In this highly unlikely situation we are not able to
continue, because there is a cycle of hard links. In line 9, we build the concept graph and in line 10 we
initialize the insertion order list to the empty list. The while loop in lines 11-20 builds the insertion order
list that consists of table lists. In line 12, the table list that can be inserted in one pass is initialized to the
empty list. Lines 13-15 add to the table list, all tables that are joined by equijoins. These tables are removed
from the database model. Lines 16-19 do the same for all independent tables. In line 20 the table list is
prefixed to the insertion order list. Finally, in line 21 we reverse the insertion list and line 22 returns this list
along with the set of postponed columns.

The importer uses the insertion order and handles one data row at a time. The insertion order shows
how the importer should progress in the current run through the XML file.

5.3.2 Delete

As described in Definition 3.4, we delete a tuple from the database if there is a match on all values in the
corresponding data in the XML document.

We describe an algorithm that handles deletion in database schemas which may be represented as di-
rected acyclic graphs (DAGs) and schemas that hold cycles with cascade actions on all constraints in the
cycle (termed cascade cycles). In addition, we consider modifications to the delete operation such that a
larger set of database schemas can be handled.

When deleting, tuples that are referencing one or more of the tuples to be deleted may block the deletion.
Even though a foreign key constraint is fulfilled in the data row, the derived table is denormalized and we
cannot delete a tuple that is referenced by another tuple before we reach the last occurrence in the derived
table. We do not know which data row is the last with regards to the specific constraint. For this reason, we
delete rows from lists of tables which are independent with regards to delete and foreign key constraints.

It is possible to specify delete actions on foreign key constraints, such that a deletion causes a side effect.
Delete actions can be defined on foreign key constraints and resolve constraint violations in case referenced
tuples are deleted. Possible delete actions are set null (the foreign keys are set to null), set default (the
foreign keys are set to a default value) and cascade (the referencing tuples are deleted).

The deletion order is very important. Consider a database schema where table A references table B. A
tuple from B may only be deleted when no tuples in A reference the tuple in B. For efficiency reasons we
do not want to query the database for referencing tuples for all tuples to delete. Instead we run through the
XML twice. First deleting the data from A and then the data from B. Because of the definition of delete
we may get a situation where tuples in A are updated as a side effect to deletion in B such that we cannot
delete them. This is the case if a set null or set default action is defined in the database such that deletion
of a tuple in B has a side effect on tuples in A. If the action is cascading delete, the side effect does the job
and one run suffices.

18

Algorithm 4 Building an execution plan
1: dbm← a database model for the concept c
2: ppCols← ∅
3: if commitInterval =∞ then
4: remove soft links from dbm
5: end if
6: if cycles are present in dbm then
7: break the cycles by postponing a number of semi-hard foreign key columns, add them to ppCols
8: end if
9: if cycles are still present in dbm then

10: Error - not importable (cycle of hard links exists)
11: end if
12: conceptGraph← a concept graph of the concept
13: iOrder ← ()
14: while dbm has more nodes do
15: tableList← ()
16: while dbm has an independent node n referenced by m where n and m are joined using an equijoin

in conceptGraph and n is not joined with other tables do
17: tableList← n :: tableList
18: dbm← dbm without n
19: end while
20: indep← independent nodes in dbm
21: for each node node in indep do
22: tableList← node :: tableList
23: dbm← dbm without node
24: end for
25: iOrder ← reverse(tableList) :: iOrder
26: end while
27: iOrder ← reverse(iOrder)
28: return (iOrder, ppCols)

We use the database model for inferring a deletion order. The deletion order is a list of lists of tables.
The inner lists show deletion safe tables to be handled in the same run.

As when inserting, it is possible to specify a commit interval. If the commit interval is set to∞ we may
defer deferrable constraints. In this way, we may break some of the cycles in the database model.

In the following, we assume that the database schema can be represented as a DAG. When inferring a
deletion order, actions have an impact on the deletion order.

In Figure 9(a), no actions are defined. We can use the order ((A), (B,C), (D,E, F,G)). In Figure 9(b),
if the action is a cascading delete action, we may delete A and in the same run delete C since the action
solves constraint violations. An order is therefore ((A,C), (B,F,G), (D,E)). If the action is a set null
action we cannot proceed to C in the same run since deletion in C may update tuples in A. This can have
an impact on equality of the tuples in A with regards to delete.

Assume that the database schema contains cascade cycles. We may delete data from such a cycle if
all incoming links also have cascading delete actions. In such a situation we may still perform the delete
operation.

[15] provides an algorithm for inferring a deletion order in schemas without cycles or where the only
cycles present are cascade cycles. As argued earlier, other delete actions invalidates the delete operation

19

because of side effects that influence if a row should be deleted. Consider cycle in Figure 9(c) where a
schema with a cycle with a set null action is shown. We can break such a cycle if we delete from A and then
proceed on the remaining graph (B,C,D).

ED

B

GF

C

A

B

GF

C

ACTION

A

ED

A

C

D

B

SET NULL

(a) (b) (c)

Figure 9: Schemas (a) DAG, no action (b) DAG, action (c) Cycle, action.

However, the side effect on the tuples of D and the definition of delete may cause that we cannot delete
tuples in D. If we change the delete operation to only consider equality of the primary keys, the cycle
in Figure 9(c) may be broken. The alternative solution can handle schemas with non-overlapping cycles
(cascade cycles or at least one set null or set default action) but updates to the database are not retained
which may be surprising to the user.

6 Performance study

An implementation with approximately 15,000 lines of Java is done. The implementation is open source and
is available from www.cs.aau.dk/∼chr/relaxml/ and www.relaxml.com. Performance tests have been carried
out on a 2.6 GHz Pentium 4 with 1GB RAM, running SuSE Linux 9.1, PostgreSQL 8.0, and Java 1.4.2 SE.
Every measurement is performed 5 times. The highest and lowest values are discarded and an average is
computed using the middle three (all results can be found in Appendix A). The used test data and the test
suites can be downloaded from the same places as the implementation.

The data is placed in a table with five integer columns and one varchar column: (ID, ParentID, GroupID,
DLLevel, Random, Fixed). The values of the rows are as described in Table 1.

Table 1: Description of data in performance study.

Name Range Description
ID 0, . . . , r − 1 Primary key for the table.
ParentID 0, . . . , r − 1, Foreign key to ID.

null For each row, the value is ID− 1 if ID mod 5 6= 0
Otherwise null.

GroupID 0, . . . , d r
5e − 1 For each row, the value is d(ID + 1)/5e − 1

DLLevel 0, . . . , 4 For each row, the value is ID mod 5

Random 0, . . . , 9 Each row holds a random value
Fixed c For each row, the value is c

For r = 10 this could result in the data in Table 2.

20

Table 2: Example data.

ID ParentID GroupID DLLevel Random Fixed
0 null 0 0 3 c

1 0 0 1 8 c

2 1 0 2 2 c

3 2 0 3 7 c

4 3 0 4 1 c

5 null 1 0 4 c

6 5 1 1 0 c

7 6 1 2 5 c

8 7 1 3 9 c

9 8 1 4 6 c

Export test 1 - Scalability in the number of rows This test exports all six columns. The data is
exported to an XML structure as the following (but without unecessary spaces) where no grouping is used.

<Data>
<GroupID value="[GroupID]">

<Fixed value="[Fixed]">
<ID>[ID]</ID>
<ParentID>[ParentID]</ParentID>
<DLLevel>[DLLevel]</DLLevel>
<Random>[Random]</Random>

</Fixed>
</GroupID>
<GroupID ...>

...
</GroupID>
...

</Data>

Figure 10(a) compares the running time of RELAXML with that of a specialized JDBC application that
executes the SQL query corresponding to the used RELAXML concept. Both write the result set to an
XML file, the structure of which has been hard-coded into the JDBC application. The results show that both
RELAXML and the JDBC application scale linearly in the number of rows to export. From the slopes, it is
seen that RELAXML handles on average 10.4 rows each millisecond (ms) whereas the JDBC application
handles 37.5 rows each ms, i.e., the RELAXML overhead is 260%. This is a reasonable overhead given the
flexibility and labor-savings of using RELAXML, especially taking into account that the XML documents
used in web services are usually not very large.

Export test 2 - Scalability when grouping Here, the same data as in Export test 1 is exported, but
now grouping is used. The data is grouped by one (GroupID) and two (GroupID and Fixed) nodes. The
running time for no grouping, is the same for RELAXML in Export test 1. The results, in Figure 10(b),
show that RELAXML also scales linearly in the number of rows when grouping. The performance suffers
when grouping is used, as one row takes approximately 3.3 times longer to export. This is as expected,
since the use of grouping requires all the rows to be inserted into a temporary table in the database before
they are sorted and then retrieved by the XML writer. The performance is the same when we are grouping
by one and two nodes even though there is more sorting to do when grouping by two nodes. However, more

21

 0

 2

 4

 6

 8

 10

 12

 0 10 20 30 40 50 60 70 80 90 100

Ti
m

e
(s

ec
)

Thousands of rows exported

RelaXML
JDBC

 0

 5

 10

 15

 20

 25

 30

 35

 0 10 20 30 40 50 60 70 80 90 100

Ti
m

e
(s

ec
)

Thousands of rows exported

One node is grouped by
Two nodes are grouped by

No nodes are grouped by

(a) Export test 1 (b) Export test 2

 0

 50

 100

 150

 200

 250

 0 10 20 30 40 50 60 70 80 90 100

Ti
m

e
(s

ec
)

Thousands of rows inserted

RelaXML
RelaXML (in mem)

RelaXML (no checks)
JDBC

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

 0 10 20 30 40 50 60 70 80 90 100

Ti
m

e
(s

ec
)

Hundreds of rows updated

6 columns
4 columns
2 columns

(c) Import test 1 (d) Import test 2

Figure 10: Performance tests.

data (30%) has to be written when we group by one node, as more tags are written since fewer elements are
coalesced.

Export test 3 - Scalability in the number of dead links This test selects the rows where DLLevel = 4.
Here, each selected row leads to four dead links which are resolved by RELAXML. The results are shown
below.

 0

 20

 40

 60

 80

 100

 120

 0 5 10 15 20 25 30 35 40 45 50

Ti
m

e
(s

ec
)

Hundreds of dead links resolved

The running time of RELAXML does not scale linearly in the number of dead links resolved. This is
expected since each time Algorithm 1 is invoked there will be more rows to search for dead links (leading
to an approximately quadratic complexity). Further, the query gets more complicated to process as more
OR clauses are added. Note that typical data sets will not contain so many dead links.

Import test 1 - Scalability in the number rows to insert We now compare the time used by RE-
LAXML for inserting with the time used for parsing the XML file with a SAX parser and inserting the data
through JDBC prepared statements, checking that this will not lead to a primary key violation. Further, we
consider the time used by RELAXML when the inconsistency checks are done in main memory or disabled.

22

The data to insert originates from Export test 1. The table is emptied before the test is executed. The times
used for inserting different numbers of rows are shown in Figure 10(c). The results show that both RE-
LAXML and the JDBC application scale linearly. The average time to import a row using RELAXML is
2.38 ms. When checks for inconsistencies are performed entirely in main memory, RELAXML handles a
row in 0.75 ms. If RELAXML does not check for inconsistencies, it handles a row in 0.67 ms, compared to
0.49 ms for using JDBC directly, i.e., the overhead from using RELAXML is only 37%.

Import test 2 - Scalability in the number rows to update We now focus on the scalability in the
number of updates. We consider the impacts of updates to one column in rows from the table, varying the
number of updated rows. When the XML document is processed, all the included rows have been updated.
Only the column Fixed is updated, but the test has been performed with 2, 4, and 6 columns in the used
concept. The results, in Figure 10(d), show that the running times are growing linearly in the number of rows
after the data sets reach a certain size. The checks for inconsistencies are performed in main memory. More
time is used when more columns are included, since more data has to be read from the XML document and
more comparisons have to be performed. When 10,000 rows with 6 columns are included, it takes 1.8 ms
to read a row and update it in the database. When 4 and 2 columns are included, it takes 1.7 ms and 1.6 ms,
respectively.

In summary, we find that the overhead of RELAXML is very reasonable considering the flexibility,
simplicity, and labor-savings of RELAXML compared to hard-coded applications. Further, to the best of
our knowledge this is the first paper to present a performance study of a general framework for bidirectional
transfer of data between relations and XML documents.

7 Conclusion

Motivated by the increasing exchange of relational data through XML based technologies such as web
services, this paper investigated automatic and effective bidirectional transfer between relational and XML
data.

As the foundation, we proposed the notion of concepts, which are view-like mechanisms, for specifying
the subset of data to export from a database to XML documents. Concepts supports multiple inheritance
and are therefore flexible to use. In addition, this allows specializations to be specified in an incremental
fashion. The separation of concept from structure definition allows multiple XML representations of the
same data. Further, the user-defined transformations allow changes to data that can be difficult to implement
in SQL, e.g., ensure that parts of an export XML document are not altered. The specification of import and
export ensured that data set are self-contained so that data sets can be imported into an empty database
without violating integrity constraints. Performance studies showed a reasonable overhead when exporting
and importing compared to the equivalent hand-coded programs. This overhead is easily offset by the
offered flexibility, simplicity, and labor-savings of RELAXML compared to hand-coded programs, e.g., in
web-service applications.

There are a number of interesting directions of future research. Currently only inheritance between
concepts is allowed. It would be interesting to allow aggregation such that the data from one concept can be
included as a single element in another concept. It could also be investigated how to extend the approach
to support XML documents with more freely defined structures, e.g, mixed content and irregular nesting
structures. Another topic is the dead-link detection algorithm that possibly can be tuned by using SQL IN
or BETWEEN statements instead of ORing as it is done now. Finally, it would be interesting to investigate
whether the overhead compared to hand-coded applications can be avoided altogether by using the concept
specification to auto-generate concept-specific Java code which is then just-in-time compiled before the
execution.

23

Acknowledgements

We would like to thank the Oticon Fonden for supporting Steffen Ulsø Knudsen and Christian Thomsen
financially. We would also like to thank Logimatic A/S and Lyngsoe Systems A/S for comments and
example data. This work was in part supported by the European Internet Accessibility Observatory (EIAO)
project, funded by the European Commission under Contract no. 004526.

References

[1] V. P. Braganholo, S. B. Davidson, and C. A. Heuser. From XML view updates to relational view
updates: old solutions to a new problem. VLDB, pp. 276–287, 2004.

[2] P. Bohannon, J. Freire, J. Haritsa, M. Ramanath, P. Roy, and J. Simeon. LegoDB: Customizing Rela-
tional Storage for XML Documents. VLDB, pp. 1091–1094, 2002.

[3] R. Bourret. XML Database Products: Middleware. www.rpbourret.com/xml/ProdsMiddleware.htm,
as of February 21, 2005.

[4] R. Bourret. XML-DBMS. www.rpbourret.com/xmldbms/index.htm, as of February 21, 2005.

[5] R. Bourret. XML Database Products. www.rpbourret.com/xml/XMLDatabaseProds.htm, as of Febru-
ary 21, 2005.

[6] R. Bourret., C. Bornövd, A. Buchman. A Generic Load/Extract Utility for Data Transfer between XML
Documents and Relational Databases. Workshop on Advanced Issues of E-Commerce and Webbased
Information Systems, pp. 134–143, 2000.

[7] M. J. Carey, J. Kiernan, J. Shanmugasundaram, E. J. Shekita, and S. N. Subramanian. XPERANTO:
Middleware for Publishing Object-Relational Data as XML Documents. VLDB, pp. 646–648, 2000.

[8] A. B. Chaudhri, A. Rashid, and R. Zicari. XML Data Management: Native XML and XML-Enabled
Database Systems. ISBN 0201844524. Addison-Wesley, 2003.

[9] C.J. Date. An Introduction to Database Systems. 7. edition, ISBN 0-201-68419-5, Addison-Wesley,
2000.

[10] U. Dayal and P. A. Bernstein. On the Correct Translation of Update Operations on Relational Views.
ACM TODS 8(2), pp 381–418, 1982.

[11] M. .F. Fernandez, Y. Kadiyska, D. Suciu, A. Morishima, and W. Tan. SilkRoute: A Framework for
Publishing Relational Data in XML. ACM TODS 27(4), pp. 438–493, 2002.

[12] Intelligent Systems Research. JDBC2XML: Merging JDBC Data into XML Documents.
www.intsysr.com/jdbc2xml.htm, as of February 21, 2005.

[13] International Organization for Standardization/International Electrotechnical Commission XML-
Related Specifications (SQL/XML). INCITS/ISO/IEC 9075-14:2003, 2003.

[14] Netbryx Technologies. DataDesk v. 1.0. www.netbryx.com/DataDesk.aspx, as of February 21, 2005.

[15] S. U. Knudsen and C. Thomsen. RELAXML A Tool for Transferring Data Between Relational
Databases and XML Files. Master thesis, Aalborg University, Denmark.

24

[16] G. Reese. Database Programming with JDBC and Java. ISBN 1565926161, O’Reilly, 2000.

[17] J. Shanmugasundaram, J. Kiernan, E. Shekita, C. Fan, and J. Funderburk. Querying XML Views of
Relational Data. VLDB, pp. 261–270, 2001.

[18] J. Shanmugasundaram, H. Gang, K. Tufte, D. Zhang, D.J. DeWitt, and J.F. Naughton. Relational
Databases for Querying XML Documents: Limitations and Opportunities. VLDB, pp. 302–314, 1999.

[19] J. Shanmugasundaram, E. Shekita, K. Tufte, R. Barr, M. Carey, B.R.B. Lindsay, and H. Pirahesh.
Efficiently Publishing Relational Databases as XML Documents. VLDB, pp. 65–76, 2000.

A Results from performance study

All shown results are in milliseconds.

Table 3: Export test 1 – RELAXML

of rows Average Run 1 Run 2 Run 3 Run 4 Run 5
1 1275 1276 1272 1276 1270 1279

1000 1518 1522 1512 1523 1518 1515
5000 1979 1981 1975 1980 1977 1979

10000 2523 2519 2545 2527 2519 2524
50000 6470 6470 6473 6473 6463 6466

100000 11287 11306 11295 11288 11277 11262

Table 4: Export test 1 – JDBC

of rows Average Run 1 Run 2 Run 3 Run 4 Run 5
1 229 228 229 230 229 240

1000 348 350 352 347 347 346
5000 483 481 483 481 484 484

10000 658 659 658 660 658 657
50000 1963 1962 1968 1965 1962 1957

100000 3417 3419 3429 3415 3415 3417

25

Table 5: Export test 2 – Group by 1 node

of rows Average Run 1 Run 2 Run 3 Run 4 Run 5
1 1787 1953 1883 1765 1713 1413

1000 2019 2013 2023 2015 2018 2042
5000 3575 3613 3633 3532 3538 3575

10000 5270 5261 5217 5278 5271 5374
50000 18544 18670 18612 18756 18189 18349

100000 34434 34378 34577 35347 34346 34230

Table 6: Export test 2 – Group by 2 nodes

of rows Average Run 1 Run 2 Run 3 Run 4 Run 5
1 1541 1567 1554 1503 1380 1587

1000 2080 2125 2026 2071 2044 2580
5000 3555 3554 3559 3552 3565 3551

10000 5163 5100 5129 5155 5300 5205
50000 18233 18170 18320 18516 18210 18059

100000 34253 34397 34069 33905 34292 34423

Table 7: Export test 3

of d.l.s Average Run 1 Run 2 Run 3 Run 4 Run 5
100 1610 1605 1608 1610 1619 1612
500 2941 2938 2939 2923 2947 3143

1000 6907 6849 6874 6800 7004 6998
2500 31983 32039 31963 31967 32020 31824
5000 111921 111852 111774 111948 111964 111986

Table 8: Import test 1 – RELAXML

of rows Average Run 1 Run 2 Run 3 Run 4 Run 5
1 1290 1275 1291 1290 1290 1299

1000 4056 3983 4082 4048 4072 4047
5000 12993 12858 12940 13057 13119 12981

10000 24451 24342 24294 24179 25305 24717
50000 118959 118813 120841 119726 118339 116743

100000 237974 236953 238734 235851 238236 240419

26

Table 9: Import test 1 – RELAXML, Touched table in memory

of rows Average Run 1 Run 2 Run 3 Run 4 Run 5
1 1377 1363 1373 1376 1383 1381

1000 2547 2543 2549 2548 2543 2549
5000 5620 5604 5536 5636 5621 5986

10000 9214 9228 9185 9266 9229 9166
50000 38693 38855 39038 38470 38753 37994

100000 76180 76961 74500 76826 76531 75184

Table 10: Import test 1 – RELAXML, No checks for inconsistencies

of rows Average Run 1 Run 2 Run 3 Run 4 Run 5
1 1412 1408 1417 1412 1410 1413

1000 2524 2509 2517 2535 2526 2528
5000 5336 5222 5291 5438 5363 5355

10000 8683 8646 8681 8721 9119 8572
50000 35581 35399 35889 35173 35962 35456

100000 69252 69004 69167 70377 69585 68427

Table 11: Import test 1 – JDBC

of rows Average Run 1 Run 2 Run 3 Run 4 Run 5
1 180 180 180 185 179 180

1000 1100 1120 1099 1100 1099 1100
5000 3051 3046 3011 3038 3070 3570

10000 5409 5422 5444 5383 5423 5382
50000 24093 24324 23839 23619 24115 25327

100000 48719 48467 48805 48754 48597 49379

Table 12: Import test 2 – 2 columns

of rows Average Run 1 Run 2 Run 3 Run 4 Run 5
10 1608 1480 1887 1554 1497 1773

1000 3683 3681 3689 3698 3679 3665
2500 5808 5777 5790 5774 5857 6018
5000 9120 8912 9386 8995 8979 9562

10000 16190 15868 16222 15926 16422 16647

27

Table 13: Import test 2 – 4 columns

of rows Average Run 1 Run 2 Run 3 Run 4 Run 5
10 1685 1690 1674 1673 1690 1690

1000 3803 3881 3806 3788 3790 3813
2500 6206 6167 6268 6468 6183 6009
5000 9799 9547 9922 9764 10991 9712

10000 17005 17110 17751 17018 16888 16884

Table 14: Import test 2 – 6 columns

of rows Average Run 1 Run 2 Run 3 Run 4 Run 5
10 1685 1690 1674 1673 1690 1690

1000 3803 3881 3806 3788 3790 3813
2500 6206 6167 6268 6468 6183 6009
5000 9799 9547 9922 9764 10991 9712

10000 17005 17110 17751 17018 16888 16884

28

