
What can Hierarchies do for Data Streams

Xuepeng Yin and Torben Bach Pedersen

October 2, 2005

TR-12

A DB Technical Report

Title What can Hierarchies do for Data Streams

Copyright c© 2005 Xuepeng Yin and Torben Bach Pedersen. All rights
reserved.

Author(s) Xuepeng Yin and Torben Bach Pedersen

Publication History October 2005. ADB Technical Report

For additional information, see theDB TECH REPORTShomepage:〈www.cs.aau.dk/DBTR 〉.

Any software made available viaDB TECH REPORTS is provided “as is” and without any express or
implied warranties, including, without limitation, the implied warranty of merchantability and fitness for a
particular purpose.

The DB TECH REPORTSicon is made from two letters in an early version of the Rune alphabet, which
was used by the Vikings, among others. Runes have angular shapes and lack horizontal lines because the
primary storage medium was wood, although they may also be found on jewelry, tools, and weapons. Runes
were perceived as having magic, hidden powers. The first letter in the logo is “Dagaz,” the rune for day
or daylight and the phonetic equivalent of “d.” Its meanings include happiness, activity, and satisfaction.
The second letter is “Berkano,” which is associated with the birch tree. Its divinatory meanings include
health, new beginnings, growth, plenty, and clearance. It is associated with Idun, goddess of Spring, and
with fertility. It is the phonetic equivalent of “b.”

Abstract

Much effort has been put into building data streams management systems for querying data streams.
Here, data streams have been viewed as a flow of low-level data items, e.g., sensor readings or IP packet
data. Stream query languages have mostly been SQL-based, with the STREAM and TelegraphCQ lan-
guages as examples. However, there has been little work on supporting OLAP-like queries that pro-
vide multi-dimensional and summarized views of stream data. In this paper, we introduce a multi-
dimensional stream query language and its formal semantics. Our approach enables powerful OLAP
queries against data streams with dimension hierarchies, thus turning low-level data streams into infor-
mative high-level aggregates. A comparison with STREAM shows that our approach is more flexible
and powerful for high-level OLAP queries, as well as far more compact and concise.

1 Introduction

Pervasive Computing is the newest wave within the IT world. The concept can be summarized as IT in
everything, and refers to that we in the near future will witness computers integrated in most of the things
we are surrounded by. Examples are temperature and noise sensors that can measure whether the environ-
ment behave as expected, and report irregularities. These small, “intelligent” devices will increasingly be
on-line on the Internet, and will thus be interesting data sources for varying analyses. The data produced
by these small and wide-spread devices arrive in multiple, rapid, time-varying, possibly unpredictable and
unbounded streams, and therefore are termeddata streams. Due to the different characteristics (e.g., contin-
uous, unbounded, fast, etc.) from those of traditional, static data, it will most often be infeasible to handle
the total data stream from a large number of devices using traditional data management technologies, and
new techniques must therefore be introduced.

Recent studies have been focusing on building Data Stream Management Systems (DSMSes) similar
to the traditional DBMSes, where techniques for continuous query processing, data shedding, data approx-
imation, etc. are being developed. However, queries in these systems have to a large extent been based
on SQL and targeted for low-level data, and therefore are not suitable in performing OLAP-like operations
to provide multi-dimensional and multi-granular summaries of data streams. For example, to know how
much the temperatures in a large building are affected by different factors, e.g., the outside environment, air
conditioning, etc., analysts might be more interested in facts aggregated to higher levels, e.g., temperatures
per floor, or per room, perhaps only for specific rooms. These tasks can be easily handled by OLAP queries.
In comparison, SQL-like stream queries for monitoring how the temperature goes within a limited space
around the sensors are not very suitable for the above tasks. Even though these stream query results could
be joined with external static tables and sub-queres can be unioned, the whole query would be much more
complicated and difficult to compose, and also very possibly degrade the query processing performance.

The solution presented in this paper is to build a multi-dimensional stream query language with built-in
support for hierarchies, enabling the OLAP functionalities such as slice, roll-up and drill-down queries for
powerful analysis on data streams. That is, using the pre-defined hierarchical structure on data streams, we
can naturally divide the continuous data into subsets of different scales along the time dimension, aggregate
the stream data to higher levels, inspect the aggregated data with respect to different dimensions, monitor
high-level summaries together with the composing lower-level details, and pose different conditions on
different levels of aggregated results. For example, for a stream of temperature readings from the sensors
throughout the building, an example query could be “monitor the average temperatures per hour per floor
only for floors two and three, if the hourly temperatures exceeds a threshold, also report the hourly room
temperatures over a certain percentage beyond the threshold on the hot floors.” Moreover, the potentially
infinite characteristic makes raw low-level data streams infeasible to store as historical data. However,
when selected, projected and aggregated to certain levels by OLAP queries, the stream data is significantly
reduced in size, thereby making data streams feasible to store and more valuable for future analysis.

1

In this paper, we present the following novel issues: 1) a new cube algebra that enables multi-dimensional
and multi-granular queries against static OLAP cubes. That is, high-level and low-level facts representing
summaries and details can be presented together in a query result and different levels of selection criteria
can also be applied. 2) conversion operators that transfer a continuous data stream into conventional cubes
and also the other way around. With the stream-to-cube operator, a data stream is divided into subsets of
any specified time periods, which are converted to storable static cubes processable by the cube operators.
The cube-to-stream operator turns static data into data streams, enabling historical data to participate in
stream queries. 3) stream operators that perform OLAP operations on data streams. These operators can be
looked as cube operators on snapshots of a data stream; thus, OLAP operations, e.g., aggregates, roll-ups
and drill-downs, can be performed on streaming data. 4) comparisons with the Stanford STREAM language
for roll-up and drill-down queries, suggesting that our approach is more compact and concise, and more ef-
fective in multi-dimensional and multi-granular analysis. The work is performed in cooperation with the
Danish BI tool vendor TARGIT [16].

We believe we are the first to present a multi-dimensional stream query language capable of performing
typical OLAP operations against data streams, and the concrete query semantics for the above operators.
The comparison results with STREAM query language reveal for the first time that our stream query lan-
guage is more powerful in performing high-level stream analysis.

There has been a substantial amount of work on the general topic of OLAP [8]. Relevant work includes
OLAP data modeling and querying [5, 10, 11, 12, 13, 14]. Gray et al. [10] presents adata cubeand a rollup
operator in an extended SQL algebra, that allows n-dimensional aggregates over relational data, but does not
support OLAP hierarchies. Chatziantoniou and Ross [5] define an extension to SQL syntax that allows the
succinct representation of various aggregate queries. The paper [11] proposes the SQL(H) model permitting
flexible modeling of structural and schematic heterogeneity in dimension hierarchies over relational data and
extends SQL with the capabilities of performing a large variety of OLAP queries. The Multi-Dimensional
Expressions (MDX) introduced in [14] is a query language for Microsoft Analysis Services databases, which
is powerful in accessing and analyzing multi-dimensional data for decision support. However, all this work
build their solutions for static data, e.g., stored relational data. A more related topic is data integration of
OLAP databases with dynamic XML data [19], which performs OLAP queries on OLAP data decorated
with (enriched by the integration of) external XML data. However, the system proposed is targeted for
B2B business data published on the web, which has far smaller data volumes and update frequencies in
comparison with data streams.

Recent interests in building data stream management system has generated a number of projects, in-
cluding Aurora [2], Gigascope [9], NiagaraCQ [6], STREAM [17], TelegraphCQ [3], and Tribeca [15].
Aurora is oriented to monitoring applications, dealing mainly with on-line scheduling and load shedding.
Gigascope is a distributed network monitoring architecture that proposes a two-level architecture for query
processing, i.e., pushing some query operators to the sources (e.g., network interface card). NiagaraCQ is
an early systematic approach for processing continuous queries over distributed XML files on the Internet.
The query language is XML-QL for semistructured data. STREAM is a general-purpose DSMS focusing
on resource management and approximate continuous query processing. TelegraphCQ aims at adaptive
and shared processing of multiple simultaneous continuous queries over multiple data streams. The query
language CQL used by STREAM and the languages used in Gigascope and TelegraphCQ have SQL-like
syntax, where data fields from the stream schema are presented in the sub-clauses such as SELECT and
WHERE. The operators supported by the Aurora [S]tream [Qu]ery [Al]gebra (SQuAl) and Tribeca are
analogous to operators in the relational algebra. Therefore, OLAP-like queries involving hierarchical struc-
tures upon the basic stream schema have not yet been supported by current DSMSes. NESTREAM [4] is
aimed for data streams organized in sessions, e.g., log streams from call centers with call sessions and sub-
sessions, and aggregates the data in a hierarchy of sessions. In comparison, our approach is more general
and enables aggregates over multiple hierarchies defined on not only the sessions but also other data fields.

2

Moreover, our model includes selection and projection operations, which are not covered by NESTREAM.
A data mining system, MAIDS [1], claims to support OLAP queries on astream data cubeusing the H-tree
data structure [7] which is basically a network with nodes computing different levels of aggregates contin-
uously on data streams and answering queries through paths. However, there has been no work introducing
the syntax and semantics of their stream language and details of query processing.

The rest of the paper is organized as follows. We first introduce the temperature streams used in the
illustrations in Section 2. We then present a running example to give an idea of how our solution works
in Section 3. The whole problem is then decomposed into parts and introduced step by step. Section 4
first formalizes a static cube model. Then Sections 5 and 6 introduce the query algebra and the semantics
of a multi-dimensional query language on cubes. Based on the cube model, the formal streams model is
presented in Section 7, followed by an overview on our stream query framework in Section 8. Sections 9
and 10 formalize the stream-to-cube, cube-to-stream and stream-to-stream operators, which are used in
Section 11 to describe the semantics of the stream query language. Section 12 compares our language with
STREAM CQL with respect to OLAP-like analysis. We finally conclude in Section 13.

2 Case Study

In the following sections, data from a sensor network is used in the illustrations of queries and their results.
The sensor motes are deployed on/in the floors and rooms in a building to measure temperature every thirty
seconds, and produce a data stream with the following schema.

SensorStream(Id /* unique identifier of the sensor */,
Temperature /* the current temperature reading */,
Timestamp /* time of measurement */);

Based on the stream schema, we define the measure Temperature which is characterized by the dimensions
Location(All-Floor-Room-Id), and Time(All-Day-Hour-Minute-Timestamp), where the bottom levels are
the attributes from the stream schema. For example, the level Room contains all the rooms in which sensors
are installed and the level Floor contains the floors on which the rooms are located. Figure 1 shows the
hierarchy of the location dimension and Figure 2 shows the hierarchy of the time dimension. Both only show
example dimension data. A regular OLAP database, SensorCube, contains all the stream data produced on
June 15, 2005, which can be queried by the multi-dimensional query language SQLM (see below). A multi-
dimensional stream query language, SQLMS , is also introduced to query data streams, e.g., SensorStream,
where measure values are contained in each stream tuple and characterized by values from Location and
Time.

room#12 room#21 room#22room#11

s#2 s#3 s#4 s#5 s#6 s#7 s#8s#1

floor#1 floor#2

>

Figure 1: Hierarchy of Location

3 A Running Example

To give a quick and intuitive look on our approach, this example demonstrates the general process of select-
ing satisfying minutely average room temperatures (i.e., average temperatures per minute). The input tuples

3

2005−6−15 00 2005−6−15 24

2005−6−15 00:00 2005−6−15 00:59 2005−6−15 24:00 2005−6−15 24:59

2005−6−15

2005−6−15 00:59:59 2005−6−15 24:00:002005−6−15 00:59:00 2005−6−15 24:00:59. . .
.

. . .

>

. . .

Figure 2: Hierarchy of Time

are shown to the left in Figure 3, wherer1, . . . , r8 are the tuples with sensor readings andp1, . . . , p4 are
the punctuations marking the end of the tuples with smaller timestamps from the same sensor. The input
tuples are first grouped by room and minute. Based on the hierarchy definition in Figure 1, sensor ids in the
tuples can be mapped to the source rooms. The punctuations delimit the tuples so that the tuples between
two punctuations from the same sensor are produced during the same minute. Therefore, the input tuples
are divided into two groups and then the average values of temperature are computed, yielding the two
tuplesr1′ andr2′ between the two arrows with the Location and Time dimensions rolled up to the Room
and Minute levels. The two tuples are then filtered such that only the tuple with temperature higher than 25
degrees Celsius is allowed to pass. Therefore, the final result isr2′.

then aggregate

group by room
and minute

higher than 25
temperature

r2′ (25.6, room#11, 08:01)

r1′ (23.2, room#11, 08:00)
r2′ (25.6, room#11, 08:01)

r3 (23.3, s#1, 08:00:30)

r1 (23.0, s#2, 08:00:00)

p2 (∗, s#2, 08:01:00)

r6 (25.0, s#2, 08:01:00)
r5 (25.0, s#1, 08:01:00)

r2 (23.1, s#1, 08:00:00)

r4 (23.4, s#2, 08:00:30)
p1 (∗, s#1, 08:01:00)

r7 (26.3, s#1, 08:01:30)
p3 (∗, s#1, 08:02:00)
r8 (26.1, s#2, 08:01:30)
p4 (∗, s#2, 08:02:00)

Figure 3: An example query execution

4 The Cube Data Model

This section formalizes the terms used in the previous sections.

Definition 4.1 (Dimension) A dimensionDi has a hierarchy oflevelsLi1, . . . , Liki . A level is a set of
dimension values. There exists a partial order, denoted@i such that for two levels in a dimension,Lil and
Lik, we sayLil @i Lik holds if and only if the values of the higher levelLik contain the values of the lower
level Lil. For example, suppose thatDi is a time dimension.Day @i Year because years contain days.
Similarly, a partial order also exists between dimension values. We say thate1 @Di e2 if e2 can be said to
containe1. For example, the year 2004 has the date, February 29th 2004, is denoted Feb-29-2004@Di 2004.
Like ≤, we also definev to denote a dimension value contained or equal to another.

Formally, a dimensionDi is a two tuple(LDi , EDi), whereLDi represents the hierarchy of levels and
EDi the hierarchy of dimension values.LDi is the four-tuple(LSi, @i,>i,⊥i), whereLSi = {Li1, . . . , Lik}
is a set of levels and>i and⊥i are the unique top and bottom elements of the ordering. As a shorthand,
Lij is used to represent the set of dimension values from the same level.EDi is a two-tuple(

⋃
j Lij , @Di),

consisting of the set of all dimension values and a partial ordering defining the containmentship of the di-

4

mension values. We useei ∈ Di as a shorthand for an arbitrary dimension valueei from dimensionDi if
ei ∈

⋃
j Lij andeij as an arbitrary value from levelLij .

Example 4.1 Letting Loc denoteLocationthe Location dimension consists of the levelsLSLoc = {>Loc ,
Floor ,Room, Id}, which are ordered as follows:@Loc= {(Floor ,>Loc), (Room,>Loc), (Id ,>Loc), (
Room,Floor), (Id ,Floor), (Id ,Room)}. Thus, the hierarchy of levels isLDLoc

= (LSLoc ,@Loc,>Loc , Id).
The hierarchy of dimension values areEDLoc = ({>DLoc , room#11, . . . , room#22 , s#1 , . . . , s#8},@DLoc),
where@DLoc

= {(floor#1,>DLoc
), (floor#2,>DLoc

), (room#11,>DLoc
), . . . , (room#22,>DLoc

), (s#1,
>DLoc

), . . . , (s#8,>DLoc
), (room#11, f loor#1), (room#12, f loor#1), (room#21, f loor#2), (room#22,

f loor#2), (s#1, room#11), (s#2, room#11), . . ., (s#7, room#22), (s#8, room#22)}. Hence, the formal
definition of the Location dimension shown in Figure 1 is given by:DLoc = (LDLoc ,EDLoc).

Definition 4.2 (Measure) A measureMj is a set of numeric values that are being analyzed, e.g., sales,
quantity, etc. A measure value can be calculated based on other measure values, that is, suppose the domain
of the measure values isVj , a measure is associated with adefault aggregate functionfj : P(Vj) 7→ Vj ,
where the input is a multi-set. The aggregate functions ignore NULL values as in SQL.

In the case study, Temperature is a measure, and we associate it with the aggregate function AVG.

Definition 4.3 (Fact and Fact Table)A fact contains measure and dimension values. Formally, a fact is a
tuple with the schema(M1, . . . , Mm, D1, . . . , Dn) whereMj is a measure andDi is a dimension. A fact
is r = (v1, . . . , vm, e1, . . . , en), wherevi is a measure value characterized by dimension valuese1, . . . , en.
Moreover,(v1, . . . , vm) ∈ V1 × . . . × Vm whereVi is the domain of thei’th measure. Also, a fact can
have any granularity in any dimension, meaning that a characterizing dimension value can be from any
level in the dimension, i.e., we just require(e1, . . . , en) ∈ D1 × . . . ×Dn. Fact tuples that have the finest
granularities in all dimension arebase facts, i.e.,(e1, . . . , en) ∈ ⊥1 × . . .×⊥n.

A fact tableR is a set of facts with the schema(M1, . . . , Mm, D1, . . . , Dn), such that in each fact, the
measure valuesv1, . . . , vm are characterized by the values from the same set of dimensionsD1, . . . , Dn.

Example 4.2 The following table is a fact table and each row in the table is a fact. In each fact, the measure
Temperature is characterized by the values from the Location and Time dimensions (here, we call them
dimensions instead of columns). Note that in a fact table, dimension values in each fact can be of any
granularity, i.e., from different levels. In Table 1, there exist facts for the hourly temperatures of floors as
well as rooms.

Temperature Location Time
28.0 floor#1 2005-06-15 08
29.0 room#11 2005-06-15 08
27.0 room#12 2005-06-15 08
31.0 floor#2 2005-06-15 09
33.0 room#21 2005-06-15 09
29.0 room#22 2005-06-15 09

Table 1: Example fact table

Definition 4.4 (Cube) A cube is a three tupleC = (N,D, R) consisting of the name of the cubeN , a
non-empty set of dimensionsD = {D1, . . . , Dn} and a fact tableF .

Example 4.3 The formal definition of SensorCube from the case study is:(SensorCube,D ,F), where
D = {DLocation ,DTime} andF contains all the tuples produced on June 15, 2005 with the schema (Tem-
perature, Location, Time).

5

In the next section we present an algebra over the cube data model presented in this section. The algebra
is used to define the semantics of the multi-dimensional SQL language (SQLM) over cubes.

5 The Cube Algebra

The cube generalized projection operator turns the facts in a cube into higher level facts and aggregates the
measures correspondingly. Intuitively, it can be seen as a generalization of a SQL SELECT statement with
a GROUP BY clause. Facts are grouped and the measures are aggregated over the groups. Each fact in
the result corresponds to one group and contains the aggregated measure values and the grouping values.
However, facts from the same group do not necessarily have the same dimension values as the grouping
values. When the partial order is considered, a fact also belongs to a group when, for every grouping value,
there exists a value in the fact as a descendant from the same dimension. For example, using the dimension
definition in Example 4.1, we know which fact in SensorCube is sent by the sensors on floor one, therefore,
to compute the hourly average temperature for the floor, all the facts from s#1, s#2, s#3, and s#4 in the same
hour must be gathered. Moreover, another feature that distinguishes the operator from SQL is the possibility
of multi-granular results. That is, we allow the result facts to have any granularity in any dimension to enable
roll-up and drill-down operations, meaning that there might be multiple combinations of grouping values
where the values from the same dimension in different combinations may be from different levels.

However, the model gives the possibility that there might exist multi-granular facts in the same group.
Particularly, a group may contain facts where some facts are contained in other facts in the same group.
Formally, we say a factr′ is contained in another factr, i.e., r′ v r, if r = (v1, . . . , vm, e1, . . . , en) and
r′ = (v′1, . . . , v

′
m, e′1, . . . , e

′
n) wheree′1 vD1 e1 ∧ . . . ∧ e′n vDn en, meaning that the values ofr′ are the

descendants of the values ofr from the corresponding dimensions. For example, in Table 1, the facts (29.0,
room#11, 2005-06-15 08) and (27.0, room#12, 2005-06-15 08) are contained in the fact (28.0, floor#1,
2005-06-15 08). Consequently, a problem arises as to what facts in the group should be used to compute
the aggregates, because measure values may be aggregated multiple times when lower-level facts are added
up with containing higher-level facts. Usually, safe aggregation can be ensured by using base facts, i.e.,
bottom-level facts such as stream data directly from the sensors. However, such data might not always be
available in cubes. In this situation, thelowest-levelfacts are considered as base facts and used in computing
aggregates. These facts refer to the facts with no contained facts in the same group. For example, when
facts containing both aggregated room temperatures and direct sensor readings are present, we use the direct
sensor readings to compute the floor temperature. This method applies to the standard aggregate functions,
SUM, COUNT, MAX, and MIN. Here, we also use it on AVG, since we assume the floors are similar in
size, as are the rooms, and the air is floating and heat-conductive. If we are sure to obtain the same results,
we can use aggregated data instead, in order to improve performance

Definition 5.1 (Cube Generalized Projection)Suppose thatC = (N,D, R) is the input cube, the gen-
eralized projection operator is defined as:Πcube[{ei11,...,ei1n1

},...,{eik1,...,eiknk
}]<fj1

(Mj1
),...,fjl

(Mjl
)>(C) =

(N, D,R′), whereN and D are not changed except for the new fact tableF ′, {eih1, . . . , eihnh
} is a

set of dimension values from dimensionDih and fj1 , . . . , fjl
are the given aggregate functions for the

specified measures{Mj1 , . . . , Mjl
}. Similar to the relational aggregate operator, a combination of the

dimension values (i.e. grouping values) from each of the given sets constitutes a group of fact tuples
over which the measures are aggregated. A group is denoted asg(ei1j1

,...,eikjk
) where(ei1j1 , . . . , eikjk

) ∈
{ei11, . . . , ei1n1} × . . .× {eik1, . . . , eiknk

}. A groupg(ei1j1
,...,eikjk

) is the set of tuples such that the values
from the dimensionsDi1 , . . . , Dik in the tuple are contained in the valuesei1j1 , . . . , eikjk

from the same
dimensions, i.e.,g(ei1j1

,...,eikjk
) = {(v1, . . . , vm, e1, . . . , en) ∈ F |∃ei1 , . . . , eik ∈ {e1, . . . , en}(ei1 vDi1

ei1j1 ∧ . . . ∧ eik vDik
eikjk

)}.

6

Temperature Location Time
28.0 s#1 2005-06-15 08:00:00
28.0 s#2 2005-06-15 08:00:00
27.0 s#3 2005-06-15 08:00:00
27.0 s#4 2005-06-15 08:00:00
28.2 s#1 2005-06-15 08:00:30
28.2 s#2 2005-06-15 08:00:30
27.2 s#3 2005-06-15 08:00:30
27.2 s#4 2005-06-15 08:00:30

(a) The fact table before selection

Temperature Location Time
27.6 floor#1 2005-06-15 08:00
28.1 room#11 2005-06-15 08:00
27.1 room#12 2005-06-15 08:00
(b) The fact table after the operation

Figure 4: The fact tables before and after the cube generalized projection

Each group produces one fact tuple consisting of the measures calculated over the tuples in the group.
To ensure that any changes made in the low-level facts can be reflected correctly in the result tuples, ag-
gregates are calcluated from the lowest levels in each group. A fact is a lowest-level fact, if for any di-
mension valueeih in such a tuple, no descendants ofeih exists in any other fact of the group, and the
group of such tuples isglowest , i.e., for a groupg(ei1j1

,...,eikjk
), glowest = {(v1, . . . , vm, e1, . . . , en) ∈

g(ei1j1
,...,eikjk

)|@(v′1, . . . , v′m, e′1, . . . , e
′
n) ∈ g(ei1j1

,...,eikjk
), e′ih ∈ {e′1, . . . , e′n}, eih ∈ {e1, . . . , en}(e′ih @

eih)}. The fact tuple produced over the group isr = (v′j1 , . . . , v
′
jl
, ei1j1 , . . . , eikjk

), wherev′jq
= fMjq

({vjq |
(v1, . . . , vjq , . . . , vm, e1, . . . , en) ∈ glowest}) and the input to the aggregate function is a multiset. We use
g(ei1j1

,...,eikjk
) 7→ r to denote the relation between the group and the result tuple. The result fact table isR′ =

{r|g ∈ G ∧ g 7→ r}, whereG is the set of all the non-empty groups, i.e.,G = {g(ei1j1
,...,eikjk

)|(ei1j1 , . . . ,

eikjk
) ∈ {ei11, . . . , eiin1} × . . .× {eik1, . . . , eiknk

} ∧ g(ei1j1
,...,eikjk

) 6= ∅}.

Example 5.1 Let the table in Figure 4(a) be the current fact table of SensorCube. The cube generalized pro-
jection operatorΠcube[{floor#1, room#11, room#12}, {2005-06-15 08:00}] computes the average temperature per minute
for floor#1, room#11, and room#12. The fact table after the operation is shown in Figure 4(b). The operator
constructs the groups:g(floor#1, 2005-06-15 08:00), g(room#11, 2005-06-15 08:00), andg(room#12, 2005-06-15 08:00), where
g(floor#1,2005-06-15 08:00)contains all the facts in the table,g(room#11, 2005-06-15 08:00)contains the facts from sen-
sors s#1 and s#2, andg(room#12, 2005-06-15 08:00)contains the facts from sensors s#3 and s#4. After the average
temperatures are computed, each group outputs a tuple with the grouping values and the temperature, which
yields the fact table in Figure 4(b). Later, when another operatorΠcube[{floor#1}, {2005-06-15 08:00}] is applied on
the fact table in Figure 4(b), the lowest-level facts, (28.1, room#11, 2005-06-15 08:00) and (27.1, room#12,
2005-06-15 08:00), will be used to compute the average temperature for floor#1.

Basically, the syntax of the predicates in the SQLM WHERE clause is the same as those of regular SQL,
e.g., the predicate shown in the WHERE clause in Figure 5; thus, similar to the relational selection operator
σ, the so-calledcube selectionoperatorσcube is used to process the facts, where measure values of a fact
as well as the dimension values characterizing the measures must satisfy certain criteria to be selected into
the result. For example, in Figure 5, the predicate “Time.Hour BETWEEN 8 AM AND 9 AM” evaluates to
true on the facts with timestamps between 8 AM and 9 AM.

SELECT AVG(Temperature) AS averagetemperature, Room, Hour
FROM SensorCube
WHERE Hour BETWEEN 8 AND 9
HAVING averagetemperature(Room, Hour)>30

Figure 5: Example SQLM query

7

Moreover, a predicate of SQL referencing an aggregated value is evaluated on all the groups formed by
the GROUP BY clause where the grouping columns are fixed. However, in our situation, grouping values
may have any granularity in any dimension as shown in Definition 5.1, meaning that, in terms of SQL,
we may have several combinations of different grouping columns. For example, a query may return the
hourly average temperature for each floor and each room to discover how the room temperatures affect the
overall temperatures of a floor. Therefore, one criterion on all the aggregated measures of the entire result
after the cube generalized projection no longer suits the multi-granular nature of the language. Therefore,
a special construct, the so-calledparameterized measure, is used in the HAVING clause to specify sub-
sets of the aggregated facts such that facts of different levels can be filtered according to different criteria.
Formally, a parameterized measure isMj(e1, . . . , en), whereMj is a measure ande1, . . . , en are the di-
mension values in a fact. Intuitively, the dimension values in the parentheses are like coordinates which
locate a unique fact. However, for simplicity, a parameter can be a set of dimension values, a wildcard or
even a dimension level representing all its member values, e.g.,M1({e11, e12, e13}, e2) is an abbreviation
of M1(e11, e2),M1(e12, e2), andM1(e13, e2). For example, the predicate in the HAVING clause in Fig-
ure 5 evaluates to true on the facts with an average temperature per hour per room which is larger than 30
degrees Celsius. Here, averagetemperature is an alias of the aggregated measure, AVG(Temperature). For
simplicity, aliases are used for a shorter expression.

With the parameterized measures, certain facts can be explicitly specified and decided whether or not to
be selected for output, whereas the other facts in the same result set after aggregation are selected based on
the hierarchical relationship with the specified facts. In other words, the HAVING clause of SQLM removes
not only the facts that do not satisfy the predicates in the HAVING clause, but also the facts whose dimension
values are descendants of the values of the unsatisfying facts. Intuitively, it is similar to the situation where,
given several choices, people usually do not go into details of these that do not satisfy some high-level
criteria. For example, suppose a query calculating the hourly temperature per floor has a condition that
only the floors with average temperatures higher than 30 degree Celsius will be shown, then the result will
only include the satisfying floors and those cooler than the threshold will be excluded. Moreover, the query
drills on the location dimension from the floor down to the room level; thus, rooms on the hot floors will
be shown but not the others, because it does not make much sense to show the details of the rooms when
they contribute to something not interesting at all. Therefore, if a factr = (v1, . . . , vm, e1, . . . , en) with
aggregated measuresv1, . . . , vm does not satisfy a predicate, then all the facts contained inr in the form
(v′1, . . . , v

′
m, e′1, . . . , e

′
n) wheree′1 v1 e1 ∧ . . . ∧ e′n vn en will also be removed from the result set.

Definition 5.2 (Cube Selection)SupposeR is the fact table in cubeC = (N, D, R). The selection operator
is defined as:σcube[θ](C) = (N,D, R′), where the cube nameN and the dimensionsD are not changed,
and the output fact tableR′ = {r′|r′ ∈ R ∧ @r ∈ R(θ(r) = false ∧ r′ v r)} if θ represents a simple
or composite predicate with parameterized measures. Otherwise,R′ = {r|r ∈ R ∧ θ(r) = true}. The
negation in the first set ensures that the following facts are not selected into the result: 1) the facts directly
specified by the parameters of the parameterized measures that make the predicate false and 2) the facts
contained in any fact from the first part.

Note that a simple predicateθ(r) with a parameterized measure is considered to be true ifθ is not a
predicate forr, i.e., the dimension values ofr are not equal to the parameters of the parameterized measure.
For example, “avgtemperature(room#1, 2005-6-15 08)>30.0” evaluates to true on the fact (28.0, room#2,
2005-6-15 08) where 28.0 is the average temperature. Intuitively, the predicate can be interpreted by the
logical formula “it is the fact for room#1 at 2005-6-15 08→ the temperature must be higher than 30.0”;
thus, when the fact does not match the condition before the logical operator implies (→), the whole formula
is true.

Example 5.2 Suppose the fact table before the selection is shown in Figure 6(a), where hourly average tem-

8

peratures for the floors and rooms are listed. The cube selection operatorσcube[averagetemperature(Floor,Hour)>30]

removes the fact with the location value as floor#1 because the temperature does not fulfill the requirement.
As a consequence defined by Definition 5.2 when parameterized measures are involved, the facts with the
location values as floor#1’s child values room#11 and room#12 are also removed even though the predicate
on these facts themselves is evaluated to true. The final result is shown in Figure 6(b), where all the facts
that satisfy the condition both directly and hierarchically are retained.

Temperature Location Time
28.0 floor#1 2005-06-15 08
29.0 room#11 2005-06-15 08
27.0 room#12 2005-06-15 08
31.0 floor#2 2005-06-15 09
33.0 room#21 2005-06-15 09
29.0 room#22 2005-06-15 09
(a) The fact table before selection

Temperature Location Time
31.0 floor#2 2005-06-15 09
33.0 room#21 2005-06-15 09
29.0 room#22 2005-06-15 09
(b) The fact table after selection

Figure 6: Fact tables before and after selection

The extension operator characterizes the measures in the fact tuples with additional dimensions so that
the cube data can be analyzed in more flexible scales or from more perspectives of interests. For example, in
some situations, the hourly average temperatures might not be sensitive enough and the average temperature
per minute might be too frequent to reflect the temperature changes; thus a Quarter dimension can be defined
to analyze the temperature in an appropriately timely fashion. Moreover, when analyzing temperatures, it
might be necessary to consider other factors in addition to the physical locations of the sensors, e.g., the
numbers of windows of the rooms where the sensors are located; therefore, the fact tuples can be extended
by a Window dimension where each sensor id is accompanied by values like “2-window room” or “no
window room” so that queries such as “how is the average temperature of 2-window rooms compared with
that of 3-window rooms” can be posed.

The additional dimension values can be any data as long as there exists a link that maps the values of
an existing dimension level to the external data (i.e., data that does not exist in the current dimensions). For
example, to extend the fact tuples with the Window dimension above, each room from the Room level is
mapped to the corresponding number of windows; then, based on the hierarchical definition between sensor
IDs and rooms, the base facts are extended as above. Currently, we assume that an existing dimension value
is only mapped to one external value. This assumption works in many cases, where, e.g., a room can be said
to either have two windows or three. The language construct of the extension operator is the WITH clause,
where the tables that link the existing dimension values and external data are given as arguments.

Definition 5.3 (Cube Extension)Arguments in the WITH clause map existing dimension values ofLij

to a set of new values by a relationRa = {(eijp, ew1), . . . , (eijq, ewl)}. which defines a new levelLw =
{ew1, . . . , ewl, N/A} based on an existing dimension levelLij . Here, “N/A” refers to the new dimension
value mapped to the values inLij that are not found in relationR. The extension operator is defined as:
εcube[Ra](C) = C ′, which adds avirtual dimension containingLw to the cube and extend each fact with a
value fromLw.

Suppose, the cube before the operation isC = (N, D, R). The new cube isC ′ = (N ′, D′, R′), where
N ′ is the new cube’s name and the new dimensions areD′ = D ∪ {Dw}. Note if Dw is already inD,
thenN ′ = N andD′ = D besides thatR′ = R still remains the same. Further, the new dimension
is Dw = (LDw , EDw). Here,LDw = (LSw,vw,>w, Lw), where>w = {>Dw} is the unique ALL
level, LSw = {>w, Lw} andvw= {(Lw,>w)}. Moreover,EDw = (Lw

⋃>w,vDw), wherevDw=
{(ew1,>Dw), . . . , (ewl,>Dw), (N/A,>Dw)}.

9

The new fact table is given byR′ = {rw}, where for all(v1, . . . , vm, e1, . . . , en) ∈ R:

rw =

(v1, . . . , vm, e1, . . . , en, ewh) if ∃ei ∈ {e1, . . . , en}∃eijk ∈ {eijp, . . . , eijq}
(ei vDi eijk ∧ (eijk, ewh) ∈ Ra)

(v1, . . . , vm, e1, . . . , en, N/A) otherwise

Example 5.3 Suppose a table that contains the tuples (room#11, 2-window room) and (room#12, 3-window
room) is given. A cube extension operator builds the Window dimensionDWindow with LDWindow

=
(LSWindow ,vWindow ,>Window , LWindow), >Window = {ALL}, LWindow = {2-window room, 3-window
room, N/A}, LSWindow = {LWindow , LWindows}, vWindow= {(LWindows ,>Window)}, EDWindow

= (
LWindows

⋃>Window ,vDWindow
), andvDWindow

= {(2-window room,ALL), (3-window room, ALL), (N/A,
ALL) }. In Figure 7(b), the fact tuples from the original fact table on the left are extended with the values
from the bottom level of the Window dimension, based on the given table and the hierarchical definition in
the Location dimension that each sensor corresponds to only one room.

Temperature Location Time
28.0 s#1 08:00:00
28.0 s#2 08:00:00
27.0 s#3 08:00:00
27.0 s#4 08:00:00

(a) The fact table before extention

Temperature Location Time Window
28.0 s#1 08:00:00 2-window room
28.0 s#2 08:00:00 2-window room
27.0 s#3 08:00:00 3-window room
27.0 s#4 08:00:00 3-window room

(b) The fact table after the operation

Figure 7: The fact tables before and after the cube generalized projection

6 The Multi-dimensional SQL Language

The general form of a SQLM query can be stated as follows:

[WITH RLw1
, . . ., RLwv

]
SELECT Li1 r1 , . . . ,Lik rk , fj1 (Mj1), . . . , fjl (Mjl)
FROM C
[WHERE θ1]
[DRILLDOWN DESCENDANTS(ei1r1s1 , Li1p1),. . ., DESCENDANTS(ei1r1t1 , Li1q1),

...
DESCENDANTS(eikrksk

, Li1pk
),. . ., DESCENDANTS(eikrktk , Likqk

)]
[HAVING θ2]

where,

• RLw1
, . . . , RLwv

are the relations mapping existing dimension values to new dimension values of
Lw1 , . . . , Lwv from dimensionsDw1 , . . . , Dwv . A relationRLwi

is defined through expressions like
“Time.Minute DIV 15 as Quarters”. The WITH clause is optional.

• Li1r1 , . . . , Likrk
are dimension levels from dimensionsDi1 , . . . , Dik .

• fj1 , . . . , fjl
are aggregate functions on measuresMj1 , . . . , Mjl

.

• C is the input cube.

10

• θ1 is the select predicate on dimensions and base measures, whereasθ2 is the select predicate on
aggregated measure values. Note that the WHERE and the HAVING clauses including the argument
predicatesθ1 andθ2 are optional.

• eihrhsh
, . . . , eihrhth are some dimension values from the levelLihrh

.

• Lihph
in DESCENDANTS(eihrhsh

, Lihph
) is another level lower thanLihrh

in the same dimension
Dih . Note that the DRILLDOWN clause is also optional.

For each query on this form, we define the query semantics to be the following:

σcube[θ2](Πcube[{ei11,...,ei1n1
},...,{eik1,...,eiknk

}]<fj1
(Mj1

),...,fjl
(Mjl

)>(

σcube[θ1](εcube[RLw1
](. . . (εcube[RLwv

](I)) . . .))))

whereσcube[θ1] andσcube[θ2] are the selection operators for the WHERE clause and the HAVING clause,
respectively, andεcube[R1], . . . , εcube[Rv] are the cube extension operators. The cube selection and extension
operators are optional, dependent on the query specified. Further,{eih1, . . . , eihn1} is a set of dimension
values from the dimensionDih , which consists of all the dimension values from the levelLihrh

as specified
in the SELECT clause if the DRILLDOWN clause is not present, otherwise it also contains the descendant
dimension values foreihrhsh

, . . . , eihrhth from the levelsLihph
, . . . , Lihqh

, respectively, as specified in the
DRILLDOWN clause.

SELECT AVG(Temperature) AS avgtemp, Room, Minute
FROM SensorCube
WHERE Time.Hour BETWEEN 8 AND 9 AND Room IN (’room#11’, ’room#12’)
HAVING avg temp(Room, Minute)>20

Figure 8: Example SQLM query

Example 6.1 The query in Figure 8 calculates the average temperature per minute for each room between
08:00:00 and 09:00:00, and only lists those where the average temperature is higher than 20 degrees Celsius.
Figure 9 shows a evaluation plan for the example query. The algebra expression for the query is:

σcube2[avg temp(Room, Minute)>20](

Πcube[{room#11, room#12, room#21, room#22},{08:00,...,08:59}]<AVG(Temperature)>(

σcube1 [Time.Hour BETWEEN 8 AND 9∧ Room IN (’room#11’, ’room#12’)](SensorCube)))

where the outer select operator isσcube2 and the inner select operator isσcube1 in the figure. The timestamps,
e.g., 08:00 and 08:59, represent the Time dimension values at the Minute level. The bottom selection
operator filters the cube and only passes on the sensor data emitted in room#11 and room#12 between
08:00:00 and 09:00:00. The cube generalized projection operator constructs the groups for each room and
each minute. However, only half of the groups contain facts from the selected cube and the others are
empty. The projection operator rolls up the cube to the Room and Minute level and computes the average
temperatures per room per minute. The aggregated facts are then filtered by the top selection operator and
the qualifying facts are finally output in the result cube.

11

σcube2

Πcube

C

σcube1

Figure 9: Example SQLM query plan

7 The Streams Data Model

Definition 7.1 (Stream Fact)A stream fact is a timestamped regular fact with the schema(M1, . . . ,Mm,
D1, . . . , Dn−1, T), whereT is a dimension forapplication time. A dimension valuet ∈ T is anapplication
timestamp.

Application timestamps here refer to the timestamps assigned by the data sources before the tuples are
sent to the stream query processor. For example, sensor readings include the timestamps denoting the time
at which a reading was taken, e.g., 2005-06-15 07:01:00,000 in the pattern of yyyy-mm-dd hh:mm:ss.xxx.
Like a regular fact, a stream fact can have any granularity in any dimension. Therefore, a timestamp may
refer to a time value coarser than the basic timestamps. That is, a time period associated with aggregated
measure values. For example, 2005-06-15 07 represents the duration of an hour from 7:00AM, which
includes 60 minutes directly as child values. 2005-06-15 07:01 represents the duration of a minute from
7:01AM, which includes 60 seconds as child values.

Definition 7.2 (Punctuation Fact) A punctuation factis a special stream fact, which denotes the end of
a subset of stream facts. Same as in [18], a punctuation fact can be seen as a predicate. A factr is said
to matcha punctuation factp if r evaluates to true for the predicate described byp. We denote this as a
function: match(r , p). A punctuation tuple is represented as a series of patterns over data items in the
stream facts. The defined patterns are listed below:

1. ∗ for the wildcard matching any value. This symbol is used to represent any unimportant values with
respect to dividing streams. Note that all the measure values in a punctuation fact are represented
by the wildcard, because only the dimension values that characterize the measure values are used to
delimit subsets of stream facts. A stream fact therefore can be determined to be a punctuation fact by
the measure values all being∗.

2. c for a constant that matches onlyc. This pattern explicitly specifies the matching value, and can
therefore be used to restrict the matching facts within narrow limits. Note whenc is a timestamp, then
any value smaller than or equal toc on the same column is said to matchc.

3. ei for any dimension valuev with a partial order relationship toei, i.e., v vDi ei along dimension
Di. This pattern defines the range of the matching values in terms of the hierarchy. In the following,
the current pattern can be distinguished from pattern 2 by the applied operators, i.e.,v and@.

Punctuation tuples are usually inserted into streams in two ways. First, some stream sources, such as
sensors, are smart enough to embed punctuation facts into the stream data when emissions of special subsets
of stream tuples are finished. For example, a punctuation with the timestamp 09:00:00 indicates that no
stream facts with the timestamps smaller than 09:00:00 will come after the punctuation. Second, operators
in the stream processing system are designed to perform the task. For example, an operator embeds a

12

r1 (26.0, s#1, 2005-06-15 08:59:30)
r2 (25.0, s#2, 2005-06-15 08:59:30)
r3 (26.2, s#3, 2005-06-15 08:59:30)
p1 (∗, room#11, 2005-06-15 08)
r4 (25.1, s#4, 2005-06-15 08:59:30)
p2 (∗, room#12, 2005-06-15 08)
r5 (26.3, s#1, 2005-06-15 09:00:00)
r6 (25.2, s#3, 2005-06-15 09:00:00)

Figure 10: Example stream and punctuations facts

punctuation fact with a special timestamp into the input stream marking that all the facts emitted by the
stream source within a certain period of time are all received. In this case, an example punctuation fact is in
the formp = (∗, . . . , ∗, tp) and‖ (∗, . . . , ∗, tp) ‖= m + n wherem andn are the numbers of measures and
dimensions, respectively. Moreover, no stream fact(v1, . . . , vm, e1, . . . , en−1, t) with t vT tp will come
after p and all the facts that come later all have timestampst > tp. Here,t might be a descendant of a
larger value on the same level astp or the large value itself. For example, 2005-06-15 09:01> 2005-06-15
08 because 2005-06-15 09>2005-06-15 08 and 2005-06-15 09:01@T 2005-06-15 09.

Example 7.1 A more concrete example of stream facts is shown in Figure 10, where the facts have the
schema (Temperature, Location, Time) and aligned top-down in the sequence of arrival. The punctuationp1
marks the end of the facts (e.g.,r1 andr2) emitted from the sensors in room#11 during 08:00:00-08:59:59
andp2 does the same to the facts (e.g.,r3 andr4) from the sensors in room#12.

Currently, to divide a continuous stream into subsets of stream facts along the time dimension, a punc-
tuation fact must at least contain a constant representing a timestamp. Therefore the punctuation facts can
be used to unblock certain blocking operators, e.g., aggregates.

Definition 7.3 (Fact Stream) A fact streamS is an ordered multiset of stream facts{r1, . . . , rk} where
facts are aligned from left to right in the sequence of their arrivals in the stream. Moreover, facts in the stream
have the schema(M1, . . . ,Mm, D1, . . . , Dn), where measure values in each stream fact are characterized
by the same set of dimensions.

Example 7.2 The stream facts shown in Figure 10 form a fact streamS = {r1, r2, r3, p1, r4, p2, r5, r6},
wherer1 is sent to the stream by sensor s#1, followed by the other facts who join in the stream later. All the
facts have the same schema (Temperature, Location, Timestamp), even though values in the same dimension
might have different granularities, e.g, s#1 at the Id level and room#11 at the Room level.

When processed by operators (see below), a stream factri is added to the end of a fact streamS1 by
the functionappend(S1 , ri) and removed byremove(S1 , i) wherei is the index. Note thatremove(S1 , i)
returnsri afterri is removed fromS1. Further, stream facts in a fact streamS2 can be added toS1 by the
functions append(S1 ,S2), which appends each fact inS2 to the end ofS1 in the order of the facts inS2.

8 Querying Data Streams

The multi-dimensional SQL queries and the cube operators above areone-timeoperations, i.e., they con-
sume input and produce output only once in their lifetime. Based on these notions, we view the execution of
stream queries as continuously consecutive runs of one-time queries on a data stream. Each run/invocation
is triggered by an event (or “execute button” intuitively) and consumes as much data as possible. The

13

event could be time-based or tuple-based. For example, events might happen randomly, at a fixed fre-
quency or whenever a new tuple comes in. Even as one-time operations, the cube operators are also driven
by events/execute buttons, which, however, are triggered only once (at execution time). For the continu-
ous stream queries, the operators composing the execution plans are special cube operators equipped with
“multiple-invocation-enabled” buttons and input/output fact streams, meaning that executions of the oper-
ators in a plan can be coordinated and triggered by the same execute button or several distinct buttons for
more flexible controls. We only discuss the first case in this paper. Therefore, the plan evaluation is very
flexible as it can be either lazy or eager. In lazy mode, stream data is processed as large batches, each
of which contains everything received between the last and current runs, whereas in eager mode, batches
are much smaller in size, and sometimes may contain only one tuple. Evaluation modes ranging between
the above two modes are also possible, thereby allowing stream data processed in patches of any sizes as
required and giving the potentials for tuning and optimizing query evaluations for better performance.

The operators for stream queries arestream-to-stream(streamin short) operators whose inputs and out-
puts are streams. Unlike the STREAM project, we explicitly introduce stream-to-stream operators besides
the conversion operators (i.e., stream-to-cube and cube-to-stream operators) so that the data-flows in a query
plan of such operators are always streams. With the built-in execute buttons and streamed inter-operator data
flows, it is possible to physically distribute and execute the operators of a query plan on different computing
devices; thus, instead of sharing the limited resources on one location, stream query execution can take
the advantage of multiple processing and memory units. Also, the distributed pattern allows Gigascope’s
two or even multiple layer architecture for query processing to be applied, e.g., a stream query is split into
two parts communicating with streams, 1) simple low-level queries processed on nodes with limited com-
puting power, e.g., a network interface card, and 2) high-level queries processed in a host machine’s main
memory. Moreover, intermediate outputs of the stream operators of some queries can be redirected to other
operators, thereby giving the potentials for multiple-query optimization. Therefore, for a plan of stream
operators, query evaluation is more flexible than for a plan with a stream-to-cube operator at the bottom,
a cube-to-stream operator at the top, and cube operators in between. All in all, stream operators make a
plan much easier to construct and understand, and also give a potential for more effective intermediate data
sharing and query optimization. Note that in the following we define the semantics of stream operators
using the conversion and cube operators to get well defined correspondence.

Next, we introduce the conversion operators, which are used to make conversions between continuous
data streams and static cubes.

9 Conversion Operators

In this section, we describe the explicit semantics of the two conversion operators, i.e., the stream-to-cube
operator and the cube-to-stream operator (similar to the STREAM stream-to-relation and relation-to-stream
operators.) The stream-to-cube operator extracts and converts tuples from the continuous input stream into
cubes. By this means, stream data can be stored in conventional OLAP databases as historical data and
queried by the cube operators later. The cube-to-stream operator does the conversion the other way around,
which enables the aggregated/selected cubes to be presented in a streamed fashion; thus, historical data can
participate in a stream query together with fresh data, thereby providing more powerful analysis on data
streams.

The stream-to-cube operator, when executed, produces a cube using the data from the input stream.
Intuitively, the cube is a multi-dimensional snapshot of the input stream, i.e., columns of the stream tuples
are divided into measures and dimensions and hierarchical data including the dimension values in the stream
tuples are used to characterize the measure values. The snapshot may contain all the stream tuples in the
current stream which are then processed to reveal the latest status. For example, when added up, counts of

14

the stream facts in the consecutive snapshots over the input stream yields the overall count of the stream facts
received so far. We say that the stream-to-cube operator producing such snapshots is in CONTINUOUS
mode. However, in some situations, not all the input stream facts are selected into the result cube. For
example, if the facts emitted in a certain time period (e.g., peak time in traffic) are required by an aggregate
to be applied later, the stream-to-cube operator is then blocking for these facts at the current execution and
let the other facts (i.e., the facts with timestamps outside of the required time period) received since the last
execution free to pass as in the CONTINUOUS mode. At a later execution, the result cube will contain
these facts if the subset of the facts for the time period is complete, i.e., the subset contains all the facts
emitted in that period. We say that the stream-to-cube operator with such constraints on input facts is in
PERIODIC mode.

Definition 9.1 (Stream-to-Cube) The stream-to-cube operator takes a fact streamS with the schema
(M1, . . . , Mm, D1, . . . , Dn) as input and generates a cube. Formally, a stream-to-cube operator is de-
fined as:SC[{t1 ,...,tk},OUTPUT MODE](S) = C , where{t1, . . . , tk} are the timestamps representing the time
periods to divide the input stream facts into subsets. Moreover,C = (N,D, R) is the new cube, whereN
is the new cube name,D = {D1, . . . , Dn} are the dimensions characterizing the measures of the stream
facts, andR is the fact table which contains the facts that are selected from the input stream according to
the parameter OUTPUTMODE. In the following, supposer = (v1, . . . , vm, e1, . . . , en−1, tr) is a stream
fact andtr is the timestamp,P is the set of punctuation facts inS, p ∈ P is a punctuation fact, andtp is the
timestamp ofp marking the end of a subset of stream facts.

1. When OUTPUTMODE=PERIODIC, the operator is blocking for the facts emitted in a given time
period until their punctuations are received. In other words, for each execution, if all the stream
facts having the timestamps within the specified periods of time are received, i.e., the subsets for
the parameters are complete, they are converted into cube facts, and those without matching punc-
tuations will be left in the input stream until at a later execution the operator finds that the subset
they belong to is complete. Note that the complete subsets in the result cube ensure the correct
results of future operations, e.g., aggregates, over the facts of the given time periods. Formally, sup-
poseSt1 , . . . , Stk are the subsets for the parameterst1, . . . , tk, respectively, andSfree are thefree
facts that do not belong to any given parameters and thus free to be moved to the result cube. i.e.,
St1 = {r|r ∈ S ∧ tr vT t1}, . . . , Stk = {r|r ∈ S ∧ tr vT tk}, andSfree = {r ∈ S ∧ @ti ∈
{t1, . . . , tk}(tr vT ti)}, then the fact table of the result cube isR =

⋃
i∈{1,...,k}

Sti ∪ Sfree , if

∀r ∈ Sti ∃p ∈ S(match(r, p) ∧ tp ≥ ti), meaning that the cube only contains the facts from the
complete subsets for the given time periods and the facts with no containing time periods. Mean-
while, the stream facts that are output to the result cube will be removed fromS unless they also
belong to an incomplete subset for a parameter at a higher level. The removed facts areRremoved =⋃
i∈{1,...,k}

Sti ∪ Sfree , if ∀r ∈ Sti ∃p ∈ S (match(r, p) ∧ tp ≥ ti) and@t′i ∈ {t1, . . . , tk}(ti @T t′i).

Moreover, the punctuation facts matching the removed facts are also filtered out, which constitute the
setPremoved = {p|p ∈ P ∧ ∃r ∈ Rremoved (match(r, p) = true)}. Therefore, the input stream after
the operation isS ′ = S\Rremoved\Premoved .

2. When OUTPUTMODE=CONTINUOUS, the operator is non-blocking. That is to say, whenever the
operator is invoked, all the facts except the punctuations in the input stream will be output to the result
cube, which is defined asR = S\P . Therefore, for the aggregate functions, e.g., SUM and COUNT,
the output gives the up-to-date summary of the input stream. Similar to the first case, the input
stream after the operation isS ′ = S\Rremoved\Premoved , whereRremoved andPremoved have the same
definitions as in the first case. Note that the facts from an incomplete subset are retained inS′ and will

15

be inserted to the same cube eventually when it is complete, thereby making the aggregated measures
over the time period gradually reach the final values. Particularly, when the set of the timestamps is
empty, i.e., the operator isSC[{},CONTINUOUS], thenRremoved ∪ Premoved includes everything in the
input stream, thereby yieldingS′ = ∅.

We use the conversion operators and cube operators to describe the semantics of the stream operators
in Section 10, where the stream-to-cube operator explains what data is actually processed by the stream
operator and cube operators explain how the data is processed; therefore, the parameters of the stream-to-
cube operators are decided by the explained stream operators. For example, to compute the hourly average
temperatures from 08:00:00 to 12:59:59, the parameters representing the time periods at the Hour level are
2005-06-15 08,. . ., 2005-6-15 12. If we also want the minutely average temperatures at 12:00:00-12:59:59,
the parameters are 2005-06-15 08,. . ., 2005-6-15 12, 2005-6-15 12:00,. . ., 2005-6-15 12:59, where new
timestamps are the time periods at the Minute level. We explicitly use the timestamps as parameters for the
stream-to-cube operators instead of the levels, because the levels are too general for drill-down operations
on very specific dimension values and lead to unnecessary overhead, e.g., if the stream-to-cube operator is
SC[{Hour, Minute},PERIODIC] for the above case, the operator would generate unnecessary cubes for the minutes
from 08:00:00 to 11:59:59 even though they are not needed (see Section 10 for more details).

Execution at 08:02:32

PERIODIC mode CONTINUOUS mode

Execution at 08:01:20

CONTINUOUS modePERIODIC mode

p1 (∗, s#1, 08:01:00)

r3 (23.3, s#1, 08:30:00)
r4 (23.4, s#2, 08:30:00)

r2 (23.1, s#1, 08:00:00)

r5 (25.0, s#1, 08:01:00)
r6 (25.0, s#2, 08:01:00)

r1 (23.0, s#2, 08:00:00)

r4 (23.4, s#2, 08:30:00)

r2 (23.1, s#1, 08:00:00)
r3 (23.3, s#1, 08:30:00)

r5 (25.0, s#1, 08:01:00)
r6 (25.0, s#2, 08:01:00)
r7 (26.3, s#1, 08:01:30)
r8 (26.1, s#2, 08:01:30)

r5 (25.0, s#1, 08:01:00)
r6 (25.0, s#2, 08:01:00)
r7 (26.3, s#1, 08:01:30)
r8 (26.1, s#2, 08:01:30)
r9 (26.6, s#1, 08:02:00)

r10 (26.6, s#1, 08:02:30)
r9 (26.6, s#1, 08:02:00)

p4 (∗, s#2, 08:02:00)

r6 (25.0, s#2, 08:01:00)
r5 (25.0, s#1, 08:01:00)

r9 (26.6, s#1, 08:02:00)

r7 (26.3, s#1, 08:01:30)
p3 (∗, s#1, 08:02:00)
r8 (26.1, s#2, 08:01:30)

r10 (26.6, s#1, 08:02:30)

r10 (26.6, s#1, 08:02:30)

r3 (23.3, s#1, 08:00:30)

r1 (23.0, s#2, 08:00:00)

p2 (∗, s#2, 08:01:00)

r6 (25.0, s#2, 08:01:00)
r5 (25.0, s#1, 08:01:00)

r2 (23.1, s#1, 08:00:00)

r4 (23.4, s#2, 08:00:30)

r1 (23.0, s#2, 08:00:00)

Figure 11: Tuples processed by the stream-to-cube operator in PERIODIC/CONTINUOUS mode

Example 9.1 This example shows how a stream is converted into cubes containing at minimum the facts
produced in a one-minute interval from 2005-06-15 08:00:00 to 2005-06-15 08:02:00. Figure 11 shows
the input and the output facts for just two working sensors, where facts in the top blocks are from the input
stream and those at the bottom are the facts in the result cubes (the same alignment also appears in Figures 13
and 14.) The facts all have the schema (Temperature, Id, Timestamp). Note that in the following examples
the Year-Month-Day part of the timestamp values may be omitted to save space. For each execution, the
selected facts on the left are the results of the PERIODIC mode and those on the right are results of the
CONTINUOUS mode. The stream-to-cube operators producing the cubes to be aggregated upon behave as
follows, respectively:

• When the operatorSC[{2005-6-15 08:00,2005-6-15 08:01,},PERIODIC](S) is invoked, it outputs a cube contain-
ing the stream facts from the complete subsets for the past minutes. Suppose the operator is invoked
at 08:01:20 , the stream factsr1, r2, r3, andr4 with timestamps included in the minute 08:00 (i.e.,
08:00:00-08:00:59), andr5 andr6 with timestamps included in 08:01 (i.e., 08:01:00-08:01:59) have

16

been received; thus, the facts in the input stream are divided intoS08:00 = {r1, r2, r3, r4}, and
S08:01 = {r5, r6}. Becausep1 andp2 mark the setS08:00 complete and the punctuations for the facts
in S08:01have not been received, the converted facts areS08:00 = {r1, r2, r3, r4}. Because there does
not exist a parameter at a higher level containing the timestamps ofr1, r2, r3, or r4, e.g., 08 at the
Hour level, these facts do not have to be kept for the subsets for the longer periods to be complete
and are removed from the input stream as well as the matching punctuations after the first execution.
At 08:02:32, the input facts are divided intoS08:01 = {r5, r6, r7, r8}, andSfree = {r9, r10}. The
punctuationsp3 andp4 mark the end of the facts emitted before 08:02:00. Therefore, the result cube
of the second execution contains the factsS08:01∪ Sfree = {r5, r6, r7, r8, r9, r10}, which are all
removed from the input stream with their punctuations after the execution.

• When the CONTINUOUS output mode is applied, the operatorSC[{2005-6-15 08:00,2005-6-15 08:01,

CONTINUOUS](S) outputs a cube containing all the facts in the current input stream every time the
operator is invoked. Like the PERIODIC execution, facts from the complete subsets for the given
time periods will also be removed from the input stream after the executions, e.g.,r1, r2, r3, andr4
from S08:00 at the first execution andr5, r6, r7, andr8 from S08:01 at the second execution. Note
that there exist duplicate facts in the two result cubes, e.g.,r5 andr6, because these facts are not
removable from the input stream at the first execution since no punctuations marking the end of the
facts in the minute 08:01 have arrived.

Stream-to-cube and cube-to-stream operators are symmetric, which means one operator produces the
data that can be accepted by the other. Because a cube does not contain punctuation facts, a cube-to-stream
operator explicitly generates punctuation tuples for the output stream.

Definition 9.2 (Cube-to-Stream)A cube-to-stream operator takes a cube as a parameter and appends the
fact tuples into a fact stream. Moreover, for each fact in the cube, a matching punctuation fact is also
appended to the output cube. SupposeC = (N, D,R) is the input cube,O is the output stream, a
cube-to-stream operator is defined as:CS(C) = O′, whereO′ is the output stream with the new facts.
Formally,O ′ = s append(O , sort(R ∪ Rp)), whereRp is the set of punctuations for the facts inR, i.e.,
Rp = {(∗1, . . . , ∗m, e1, . . . , en)|(v1, . . . , vm, e1, . . . , en) ∈ R}. The functionsort is used to transform a
regular set of facts into an ordered multiset. Here, the result multiset just has the sequence as they appear in
R on the physical storage and each punctuation fact is placed after the fact with the same dimension values
(see below). The function specification could be application dependent, which means the tuples in the result
can also be sorted by attribute(s) in the tuples, e.g., timestamp.

Punctuations duplicate the facts except for the measure values, because we might not have pre-knowledge
about the cube data. For example, the cube facts may have been aggregated, divided into subsets or selected
by some criteria; thus there are no general patterns that can summarize the facts. Also, a punctuation fact
defined as above identifies a unique fact, which also holds when streams are merged.

Example 9.2 Let CS(C) be the cube-to-stream operator where the fact table ofC is shown in Figure 12(a).
The schema of the result stream shown in Figure 12(b) remains the same after conversion, that is, the
Temperature measure is characterized by the dimensions Location and Time. Moreover, the result stream
contains the same facts as in the fact table except that the punctuations are added for each fact from the
original fact table.

10 Stream Operators

Intuitively, the stream selection operator works like a cube selection operator on a subset of stream facts.
More specifically, the selection can be performed on all the arrived facts in the input stream if the predicate

17

Temperature Location Time
30.0 floor#1 2005-06-15 08
31.0 floor#2 2005-06-15 09
31.5 floor#1 2005-06-15 10
(a) The fact table before conversion

(Temperature, Location, Time)
(30.0, floor#1, 2005-06-15 08)
(∗, floor#1, 2005-06-15 08)
(31.0, floor#2, 2005-06-15 09)
(∗, floor#2, 2005-06-15 09)
(31.5, floor#1, 2005-06-15 10)
(∗, floor#1, 2005-06-15 10)

(b) The fact stream

Figure 12: The fact table and stream facts after conversion

references only basic measures or dimension values. For example, the predicate “Time.Hour BETWEEN
8 AND 9” is evaluated on incoming facts one by one in a straightforward way. Otherwise, if aggregated
measures are involved, the operator processes the facts when all the facts aggregated over the same time
period are received. Usually, the aggregate functions on these facts can only be performed when the time
period is over; thus, waiting for all the aggregated facts to come does not affect the maximum output
rate. Moreover, when drill-down is performed on some dimensions, in which case these facts have varying
granularity, waiting for all the facts aggregated over the same period to come is necessary, since the lower-
level factsr will also be removed if the higher-level factsr′ abover, i.e.,r @ r′, do not satisfy the condition
(see Definition 5.2). Especially, when a drill-down in the time dimension has been performed and conditions
are set on the aggregated measures over the longer time periods, the selection operator waits until the longer
time period is over before evaluating the conditions. For example, if the minutely average temperatures (i.e.,
average temperatures per minute) are calculated along with the hourly temperatures which are required to
be higher than a threshold in order to be displayed, then the selection operator has to wait for all the facts
with the minutely temperatures until the hourly temperature is calculated in order to decide whether to show
all the temperatures for the current hour and the composing minutes in the result.

Definition 10.1 (Stream Selection)The stream selection operator takes a streamI as input and outputs the
result in a streamO. The formal definition is:σstream[θ](I) = O ′, whereO′ is the output stream with the
selected stream facts. Intuitively, the stream selection operator can be interpreted as a composition of a bot-
tom stream-to-cube operator transferring subsets of stream facts from the input stream into a cube, a cube
selection operator in the middle filtering the cube, and a top cube-to-stream operator converting the filtered
cube into the output stream. Formally, the output stream isO′ = CS(σcube[θ](SC[{tp,...,tq},PERIODIC](I))),
if θ involves aggregated measures. Otherwise,O′ = CS(σcube[θ](SC[{ },CONTINUOUS](I))). In the first
situation, the parameters{tp, . . . , tq} is a subset of the time dimension values{tj , . . . , tk} from the param-
eterized measuresMj(e1j , . . . , elj , tj), . . . , Mk(e1k

, . . . , elk , tk) referenced byθ such that{tp, . . . , tq} =
{t|t ∈ {tj , . . . , tk} ∧ @t′ ∈ {tj , . . . , tk}(t @T t′)}, meaning that facts with the timestamps contained in a
timestamp at a higher level are not processed by the operator until the facts with the higher timestamp are
received.

Example 10.1 The predicate “avgtemperature(room#1, 2005-06-15 08)> 26 and avgtemperature(room#1,
2005-06-15 09)> 27 AND avg temperature(room#1, Minute)>27” is used to select the temperatures of the
overheating minutes which contribute to the hourly temperatures above certain levels. The stream selection
operator for the predicate isσstream[avg temperature(room#1, 2005-06-15 08)>26 AND avg temperature(room#1, 2005-06-15 09)>

27 AND avg temperature(Room, Minute)>28](SensorStream), which outputs the result equal toCS(σcube[avg temperature(

room#1, 2005-06-15 08)>25 AND avg temperature(room#1, 2005-06-15 09)>27 ANDavg temperature(Room, Minute)>28](SC[{2005-06-15

08, 2005-06-15 09, PERIODIC}](SensorStream). The parameter, 2005-06-15 08, of the stream-to-cube operator in-
dicates that the facts with the average temperatures for the minutes between 08:00 to 08:59 can only be
converted into cube facts when the punctuation marking the end of the tuples in the range is received,

18

i.e.,p1 in Figure 13 (where facts have the schema (Temperature, Location, Time)). Likewise, the parame-
ter, 2005-06-15 09, also requests thatp2 in Figure 13 must be received before any tuples can be converted.
Therefore, the selection at 09:31:00 evaluates the predicate on the stream factr3, which yields false, thereby
making the factsr1 andr2 containing the child values of 08 on the time dimension also false; thus, the re-
sult stream is empty. After the execution,r1, r2, andr3 are removed from the input stream because these
facts are not required to evaluate the predicate further. The execution at 10:00:03 evaluates the predicate
on the stream facts with the timestamps from 09:00:00 to 09:59:59, i.e.,r4, r5 andr6 which all satisfy the
condition and output into the result stream.

Execution at 09:31:00 Execution at 10:00:03

p2 (∗, room#1, 09)

r4 (27.8, room#1, 09:01)

r6 (27.8, room#1, 09)

r4 (27.8, room#1, 09:01)
r5 (28.1, room#1, 09:30)
r6 (27.8, room#1, 09)

r1 (23.0, room#1, 08:01)
r2 (27.1, room#1, 08:40)
r3 (24.5, room#1, 08)
p1 (∗, room#1, 08)
r4 (27.8, room#1, 09:01)
r5 (28.1, room#1, 09:30)

r5 (28.1, room#1, 09:30)

Figure 13: Example input and output facts for stream selection)

The stream generalized projection operator rolls up the dimensions of the input stream facts to higher
levels and aggregates the measures correspondingly, thereby turning basic stream facts containing sensor
readings into a more understandable and summarized form. For example, a stream generalized projection
operator gathers the stream facts emitted between 08:00:00 and 08:59:59, groups the facts by the rooms
where the sensors are installed, and aggregates the temperatures over the groups. Then each group produces
one tuple representing the hourly average temperature of the corresponding room; thus, the facts containing
the direct sensor readings are rolled up on the dimensions Location and Time. Moreover, the stream gen-
eralized projection operator allows multiple granularity on the dimensions of its output facts. For example,
with the data emitted by the sensors throughout floor#1, we can compute the hourly average temperatures
for the entire floor. We can also break the same set of facts into smaller groups to compute the average
temperatures of the rooms on that floor. By this means, we are able to view summary and drill-down details
together, thereby having the opportunities for more powerful analysis.

Definition 10.2 (Stream Generalized Projection (SGP))The SGP operator takes a streamI as input and
outputs the result into an output streamO. Formally, the operator is defined as:Πstream[({ei11,...,ei1n1

},...,
{eik1,...,eiknk

},{tl,...,th}),OUTPUT MODE]<fj1 (Mj1),...,fjl (Mjl
)>(I) = O ′ wheretl, . . . , th are the timestamps from

the time dimension, i.e., time periods to divide the stream facts into subsets,O′ is the output stream with the
aggregated facts, and OUTPUTMODE is PERIODIC or CONTINUOUS. Similar to the stream selection
operator, the SGP operator is also interpreted as a stream-to-cube operator at the bottom, a cube generalized
projection operator in the middle, and a top cube-to-stream operator converting the aggregated cube into a
streamed output. Formally, the output isO′ = CS(Πcube[{ei11,...,ei1n1

},...,{eik1,...,eiknk
},{tl,...,th}]<fj1

(Mj1
),...,

fjl
(Mjl

)>(SC[{tl,...,th}, OUTPUT MODE](I))).

Example 10.2 Figure 14 shows the input and output facts (with the schema (Temperature, Location, Time))
of a SGP operator in PERIODIC and CONTINUOUS modes for two different executions.

• The SGP operator in PERIODIC mode,Πstream[({room#11},{2005-6-15 08, 2005-6-15 09}),PERIODIC]<AVG(

temperature)>(SensorStream), produces the streamed output asCS(Πcube[{room#11},{2005-6-15 08, 2005-6-15

19

CONTINUOUS mode

Execution at 10:00:03

CONTINUOUS modePERIODIC mode

Execution at 09:25:00

PERIODIC mode

r2′ (25.0, room#11, 09)

r5 (25.0, s#1, 09:00:00)
r6 (25.0, s#2, 09:00:00)
r7 (26.3, s#1, 09:30:00)
r8 (26.1, s#2, 09:30:00)
p3 (∗, s#1, 10:00:00)
p4 (∗, s#2, 10:00:00)

r2′ (25.6, room#11, 09) r2′ (25.6, room#11, 09)

r2 (23.1, s#1, 08:00:00)
r3 (23.3, s#1, 08:30:00)

r1 (23.0, s#2, 08:00:00)

r4 (23.4, s#2, 08:30:00)

p2 (∗, s#2, 09:00:00)
p1 (∗, s#1, 09:00:00)

r6 (25.0, s#2, 09:00:00)
r5 (25.0, s#1, 09:00:00)

r1′ (23.2, room#11, 08) r1′ (23.2, room#11, 08)

Figure 14: Example input and output facts of the SGP operator

09}]<AVG(temperature)>(SC[{2005-6-15 08, 2005-6-15 09},PERIODIC](SensorStream))). In Figure 14, each exe-
cution in PERIODIC mode only outputs one fact, each of which contains the average temperature
value aggregated over the entire subset of the stream facts emitted in 08:00:00-08:59:59 or 09:00:00-
09:59:59.

• The SGP operator in CONTINUOUS mode,Πstream[({room#11},{2005-6-15 08, 2005-6-15 09}),CONTINUOUS]

<AVG(temperature)>(SensorStream), produces the streamed output asCS(Πcube[{room#11},{2005-6-15 08, 2005

-6-15 09}] < AVG(temperature)>(SC[{2005-6-15 08, 2005-6-15 09} , CONTINUOUS](SensorStream))). In Figure 14,
the execution in CONTINUOUS mode at 09:25:00 produces two facts, wherer1′ is same as ther1′

in PERIODIC mode sincep1 andp2 for both sensors in room#11 have arrived. However,r2′ is
produced using the received stream facts in 09:00:00-09:25:00 and contains the temperature value
showing the latest status. After the punctuations forr5, r6, r7 andr8 have arrived, the second exe-
cution updatesr2′, which reflects the exact average temperature for the hour.

A stream extension operator extends every tuple that are buffered between every two executions in
a non-blocking manner. During each execution, a stream extension operator works as a cube extension
operator, that is, it adds the new dimensions according to the arguments of the WITH clause and extends
the stream facts with the new dimension values. We only give the formal definition here since the way the
operator works is straightforward.

Definition 10.3 (Stream Extension)The stream extension operator takes an input streamI, extends the
stream facts with a new column and outputs the result facts in a streamO. Formally, the operator is
defined as:εstream[Ra](I) = O′, whereRa is the relation mapping the extension values of the new col-
umn to the existing values characterizing the measures andO′ is the output stream with the extended
stream facts. Intuitively, the stream extension operator is interpreted as a composition of a bottom stream-
to-cube operator, a middle cube extension operator and a top cube-to-stream operator. The output is
O′ = CS(εCube[Ra](SC[{},CONTINUOUS](I))).

11 The Multi-dimensional Stream Query Language: SQLMS

Based on SQLM , the general form of a SQLMS query can be stated as follows:

20

[WITH RLw1
, . . ., RLwv

]
SELECT {PERIODIC|CONTINUOUS} Li1 r1 , . . . ,Lik rk , fj1 (Mj1), . . . , fjl (Mjl)
FROM I
[WHERE θ1]
[DRILLDOWN DESCENDANTS(ei1r1s1 , Li1p1),. . ., DESCENDANTS(ei1r1t1 , Li1q1),

...
DESCENDANTS(eikrksk

, Li1pk
),. . ., DESCENDANTS(eikrktk , Likqk

)]
[HAVING θ2]

where,

• I is the input stream, and the other symbols are the same as in Section 6.

• PERIODIC and CONTINUOUS are the new keywords that control the behaviors of the generalized
projection operator.

• Like in Section 6,RLw1
, . . . , RLwv

are the relations mapping existing dimension values to new di-
mension values ofLw1 , . . . , Lwv from dimensionsDw1 , . . . , Dwv . Li1r1 , . . . , Likrk

are dimension
levels from dimensionsDi1 , . . . , Dik . fj1 , . . . , fjl

are aggregate functions on measuresMj1 , . . . ,Mjl
.

θ1 is the select predicate on dimensions and base measures, andθ2 is the select predicate on pa-
rameterized measures.eihrhsh

, . . . , eihrhth are the dimension values from the levelLihrh
. Lihph

in
DESCENDANTS(eihrhsh

, Lihph
) is another level lower thanLihrh

in the same dimensionDih . Note
that the WITH, WHERE, DRILLDOWN, and HAVING clauses are optional.

For each query on this form, we define the query semantics to be the following:

σstream[θ2](Πstream[({ei11,...,ei1n1
},...,{eik1,...,eiknk

}),OUTPUT MODE]<fj1
(Mj1

),...,fjl
(Mjl

)>(

σstream[θ1](εstream[R1](. . . (εstream[Rv](I)) . . .))))

whereσstream[θ1] andσstream[θ2] are the selection operators for the WHERE clause and the HAVING clause,
respectively, andεstream[R1], . . . , εstream[Rv] are the stream extension operators. The stream selection and
extension operators are optional, dependent on the query specified.

SELECT PERIODIC AVG(Temperature) AS avgtemp, Room, Minute
FROM SensorStream
WHERE Time.Hour BETWEEN 8 AND 9 AND

Room IN (’room#11’,’room#12’)
HAVING avg temp(Room, Minute)>20

Figure 15: Example SQLMS query

Example 11.1 Example 6.1 shows the SQLM query on stored sensor data on June 15, 2005, whereas a
similar SQLMS query can be issued on the continuous temperature data emitted by the same sensors. The
query in Figure 15 calculates the average temperature per minute for each room between 8 AM and 9 AM,
and only lists those where the average temperature is higher than 20 degrees Celsius. Figure 16 shows
a evaluation plan for the example query where arrows show the direction of the data flow. The algebra
expression for the query is:

σstream2[avg temp(Room, Minute)>20](

Πstream[({room#11, room#12, room#21, room#22},{08:00,...,08:59}),PERIODIC]<AVG(Temperature)>(

σstream1 [Time.Hour BETWEEN 8 AND 9∧ Room IN (’room#11’, ’room#12’)](SensorStream)))

21

Suppose the execution is triggered at a fixed frequency. The input stream of the bottom selection operator
buffers the data between executions. When an execution is started, the selection operatorσstream1 filters the
received stream facts in a non-blocking manner and appends all the satisfying facts to the output stream,
which is the input stream of the above SGP operator. The same groups as in Example 6.1, are constructed
by the SGP operator for the 240 combinations of 4 rooms and 60 minutes by the SGP operator. However,
not all the input facts participate in the aggregate, because the execution mode is set to PERIODIC, meaning
that only the facts from the complete subsets for the past minutes will be used and then removed from the
input stream. The aggregated facts are sent to the top selection operatorσstream2 and then selected. The
qualifying facts are appended toO′ and output in a streamed fashion.

σstream2

O′

Πstream

σstream1

I

Figure 16: Example query plan

12 Comparison with STREAM CQL

A SQLMS query uses dimension levels in its clauses and predicates, whereas the Continuous Query Lan-
guage (CQL) from the STREAM project uses only the columns defined in the stream schema (basic columns
in short). Since the hierarchical structure of the dimensions can always be defined to include these columns
as, e.g. bottom levels, SQLMS queries have similar expressive power to CQL in querying the basic columns.
However, when performing analysis requiring multiple views and different levels of details on stream data,
the multi-dimensional and multi-granular characteristics of SQLMS are considerably more powerful. More
specifically, the numerical values in the data streams, e.g., sensor readings in a sensor network and bid prices
of on-line auctions, are interesting data that can be characterized by multiple dimensions, e.g., geographi-
cal location, time, and product category, thereby providing views of data from different angles. Moreover,
the multi-level hierarchical structure allows multiple granularities on each dimension, e.g., adjacent sensors
spread in a building can be grouped into sectors which then can be combined into larger areas. Therefore,
data can be aggregated on different levels and presented together for better analysis. In comparison, CQL,
whose semantics to a large extent is based on SQL, does not fit the requirements of complex analysis over
data stream very well. For example, when the stream data is required to be presented along with values of
the columns other than the basic ones, i.e., higher levels as in SQLMS , tables are required to be joined with
the input streams and queries have to be unioned in order to provide similar results (see below) to SQLMS ,
thereby yielding more complex CQL queries.

Three examples are shown to compare the two languages in the wireless sensor networks application.
The table below shows the three tasks which can be performed in both languages but with different com-
plexity. The tasks monitor the temperatures of large areas of the building rather than the readings from one
or two specific sensors, because it is usually more easy to understand the numeric values from numerous
sensors at higher levels. For example, task 1 monitors the hourly temperatures of all the floors. When
displayed graphically, the result shows dynamically how the temperatures change over time for each floor

22

and compares the floor temperatures. Moreover, tasks 2 and 3 demands more detailed views in addition to
the highly summarized data. More specifically, task 2 monitors the temperatures at different levels, i.e., the
whole building and all the floors, as well as the rooms on floor two (the top floor), where we know that the
temperatures are more easily affected by weather. Task 3 monitors the whole building, and only shows the
result when it overheats, which includes the details of the areas that affect the overall temperature most, i.e.,
the temperatures of the floors hotter than a threshold and the rooms on them. In the following, the CQL
query will always be shown first, followed by the SQLMS query performing the same task.

Task 1 Show the average temperature per hour per floor
Task 2 Show the average temperatures per hour and minute for the entire building,

all the floors and the rooms on floor two.
Task 3 If the average temperature of the whole building exceeds the threshold,

30 degrees Celsius per minute, then show the floors that have the average
temperatures higher than 32 degrees Celsius, and also the temperatures of
each room on these floors.

Task 1 can be performed by CQL (see Figure 17) with the extra information about mapping between the
sensor locations and the floors provided by the table SensorLocation(location, room, floor, building); thus,
a join is explicitly required in the query. With the hierarchies defined on the location and time dimensions,
the SQLMS query has enough information to divide the input stream facts into groups for the combinations
of floors and hours, thereby yielding a much more compact and concise query. Suppose the queries are
evaluated on June 15, 2005 from 8 AM to 10 AM, the tuples from the output streams of the two queries are
shown in Figure 181. The schemas of the two results are different in that the columns in Figure 18(a) are the
relational attributes from the tables participating in the join, whereas columns in Figure 18(b) are measures
and dimensions, meaning that values of various granularities may appear in one column. Therefore, unlike
the exact seconds of computing the average temperatures in the result of CQL query, the time dimension
in the result of the SQLMS query shows the values at the Hour level so that the temperature in each fact
intuitively corresponds to the hourly average value.

CQL: SELECT Rstream(AVG(Temperature) as temp, floor as floor)
FROM SensorStream[Range 1 Hour Slide 1 Hour], SensorLocation S
WHERE T.location=S.location
GROUP BY floor

SQLMS : SELECT PERIODIC AVG(Temperature) as temp, Location.Floor, Time.Hour
FROM SensorStream

Figure 17: Queries for Task 1

For task 2, the CQL query (see Figure 19) unions six tables for the combinations of two time units
and three levels of sensor locations. The predicate for selecting the sensor readings from floor two appears
in two sub-queries whenever the temperature values are aggregated for the rooms. In comparison, the
SQLMS query is considerably more compact and concise for the drill-down operations. The arguments
in the SELECT clause indicate the coarsest granularity of the output along each dimension. In addition,

1The output tuples are accumulated and sorted for clear comparison. Currently, we do not explicitly introduce an ordering clause
in SQLMS . Instead, results are produced whenever required punctuation tuples have arrived; thus, if the data stream contains no
out-of-order data, the output tuples are usually generated in the order of the arrival timestamps. Moreover, facts with dimension
values of lower levels tend to be generated earlier than those with higher level values, because the more punctuations are required
to determine the completion of a subset, the longer the stream operator has to wait.

23

(temp, floor, timestamp)
(30.0, floor#1, 2005-06-15 08:59:59)
(31.0, floor#2, 2005-06-15 08:59:59)
(31.5, floor#1, 2005-06-15 09:59:59)
(32.0, floor#2, 2005-06-15 09:59:59)

(a) Result of the CQL query

(Temperature, Location, Time)
(30.0, floor#1, 2005-06-15 08)
(31.0, floor#2, 2005-06-15 08)
(31.5, floor#1, 2005-06-15 09)
(32.0, floor#2, 2005-06-15 09)

(b) Result of the SQLMS query

Figure 18: Results for Task 1

CQL: SELECT Rstream(AVG(Temperature) AS temp, NULL AS room,
NULL AS floor, ’Overall’ AS building)

FROM SensorStream[Range 1 Hour, Slide 1 Hour]
UNION

SELECT Rstream(AVG(Temperature) AS temp, NULL AS room,
floor AS floor, NULL AS building)

FROM SensorStream[Range 1 Hour, Slide 1 Hour] T, SensorLocation S
WHERE T.location=S.location
GROUP BY floor

UNION
SELECT Rstream(AVG(Temperature) AS temp, room AS room,

NULL AS floor, NULL AS building)
FROM SensorStream[Range 1 Hour, Slide 1 Hour] T, SensorLocation S
WHERE T.location=S.location AND S.floor=’floor#2’
GROUP BY room

UNION
SELECT Rstream(AVG(Temperature) AS temp, NULL AS room,

NULL AS floor,’Overall’ AS building)
FROM SensorStream[Range 1 Minute, Slide 1 Minute]

UNION
SELECT Rstream(AVG(Temperature) AS temp, NULL AS room,

floor AS floor,NULL AS building))
FROM SensorStream[Range 1 Minute, Slide 1 Minute] T, SensorLocation S
WHERE T.location=S.location
GROUP BY floor

UNION
SELECT Rstream(AVG(Temperature) temp, room AS room,

NULL AS floor, NULL AS building)
FROM SensorStream[Range 1 Minute, Slide 1 Minute] T, SensorLocation S
WHERE T.location=S.location AND S.floor=’floor#2’
GROUP BY room

SQLMS : SELECT PERIODIC AVG(Temperature), Location.All, Time.Hour
FROM SensorStream
DRILLDOWN DESCENDANTS(Location.All, Location.Floor),

DESCENDANTS(Location.’floor#2’, Location.Room),
DESCENDANTS(Time.Hour, Time.Minute)

Figure 19: Queries for Task 2

24

(temp, room, floor, building, timestamp)
(26.0, room#21, NULL, NULL, 2005-06-15 08:00:59)
(26.2, room#22, NULL, NULL, 2005-06-15 08:00:59)
(24.5, NULL, floor#1, NULL, 2005-06-15 08:00:59)
(26.1, NULL, floor#2, NULL, 2005-06-15 08:00:59)
(25.3, NULL, NULL, Overall, 2005-06-15 08:00:59)

.
(26.4, room#21, floor#2, NULL, 2005-06-15 12:59:59)
(26.8, room#22, floor#2, NULL, 2005-06-15 12:59:59)
(25.0, NULL, floor#1, NULL, 2005-06-15 12:59:59)
(25.8, NULL, floor#2, NULL, 2005-06-15 12:59:59)
(25.4, NULL, NULL, Overall, 2005-06-15 12:59:59)

(a) Result of the CQL query

(Temperature, Location, Time)
(26.0, room#21, 2005-06-15 08:00)
(26.2, room#22, 2005-06-15 08:00)
(24.5, floor#1, 2005-06-15 08:00)
(26.1, floor#2, 2005-06-15 08:00)
(25.3, overall, 2005-06-15 08:00)

.
(26.4, room#21, 2005-06-15 12)
(26.8, room#22, 2005-06-15 12)
(25.0, floor#1, 2005-06-15 12)
(25.8, floor#2, 2005-06-15 12)
(25.4, overall, 2005-06-15 12)

(b) Result of the SQLMS query

Figure 20: Results for Task 2

through the DESCENDANTS functions, the DRILLDOWN clause specifies other lower levels that will be
used to group the input stream facts. Therefore, aggregates can be performed on the groups formed by
the combinations of Hour or Minute in the time dimension and the top level (the whole building), Floor
or Room in the location dimension. Specially, to restrict the temperatures of the rooms not on floor#2
from being computed, the SQLMS query specifies the drill-down operation on floor#2 explicitly using the
DESCENDANTS function, which is much more concise than the predicates used in the sub-queries of the
CQL query. Figure 20 shows partially the output tuples of the queries running from 8 AM to 12 AM on June
15, 2005. Like the results of Task 1, the timestamps in Figure 20(a) are exactly the time points when the
aggregate values are computed and the values in the Time dimension in Figure 20(b) are the durations over
which the average temperatures are computed. Moreover, each tuple in Figure 20(a) has three columns for
different levels of location, where two of them are always NULL. This is because the only meaningful value
is the place that contains the sensors whose temperature readings are used to compute the aggregates. In
comparison, the SQLMS output is much more dense, where the Location dimension includes all the non-null
locations from the CQL output, which all represent physical locations of sensors at different levels.

For task 3, temperatures of the entire building, floors and rooms over certain thresholds will be shown
together. The CQL query (see Figure 21) first uses three sub-queries to generate the average temperature
streams for the entire building, floors and rooms. However, the last two streams will only have data when
the previous sub-query generates satisfying results. The last query outputs the union of the three streams.
Unlike the CQL query where predicates have to be distributed in the sub-queries, the SQLMS query is
very easy to construct using the HAVING clause where conditions on different levels of aggregates are
allowed by using parameterized measures. The query also uses the DESCENDANTS functions to drill
down to the room level; thus, stream facts are divided to those that are emitted by sensors in different
rooms, on different floors and in the entire building. Moreover, the predicates in the HAVING clause filters
the facts with granularities up to the specified parameter levels, i.e., if the predicate evaluates to false on
high-level facts, the low level facts having every column value contained in the corresponding parameter
are also removed. Therefore, no temperature will be displayed if the entire building is cooler than 30 degree
Celsius. Similarly, no temperatures of the rooms will be displayed if the floor on which the rooms are is not
hotter than 32 degree Celsius. Figure 22 shows partially the output tuples of the queries running from 1 PM
on June 15, 2005. The outputs begin at 13:31 when the overall temperature exceeds 30 degrees Celsius.

From the above examples, we can see that the multi-dimensional and multi-granular features of SQLMS

queries are more close to the natural human thought which usually view objects in dimensions, and also
make the queries considerably easier to construct for OLAP-like queries and are much more compact and
concise, therefore, giving the potentials for more efficient query evaluation.

25

CQL: OverallTemperature:
SELECT Rstream(AVG(Temperature) AS temp)
FROM SensorStream[Range 1 Minute]
HAVING AVG(Temperature) temp> 30

FloorTemperature:
SELECT Rstream(AVG(Temperature) AS temp, floor)
FROM SensorStream[Range 1 Minute] T, SensorLocation S,

OverallTemperature O
WHERE T.location=S.location AND O.temp>30
GROUP BY S.floor

RoomTemperature:
SELECT Rstream(AVG(Temperature) AS temp, S.room)
FROM SensorStream[Range 1 Minute] T, SensorLocation S,

FloorTemperature F
WHERE T.location=S.location AND S.floor=F.floor AND

F.temp>32
GROUP BY S.room

SELECT R.temp AS temperature, R.room AS room, S.floor AS floor, NULL AS building
FROM RoomTemperature R, SensorLocation S
WHERE R.room=S.room

UNION
SELECT F.temp AS temperature, NULL AS room, F.floor AS floor, NULL AS building
FROM FloorTemperature F, SensorLocation S
WHERE F.floor=S.floor

UNION
SELECT O.temp AS temperature, NULL AS room, NULL AS floor,’Overall’ AS building
FROM OverallTemperature O

SQLMS : SELECT PERIODIC AVG(Temperature) AS avgtemp, Location.All, Time.Minute
FROM SensorStream
DRILLDOWN DESCENDANTS(Location.All, Location.Floor),

DESCENDANTS(Location.Floor, Location.Room),
HAVING avg temp(Location.All, Time.Minute)>30 AND

avg temp(Location.Floor, Time.Minute)>32

Figure 21: Queries for Task 3

(temp, room, floor, building, timestamp)
(34.0, room#11, NULL, NULL, 2005-06-15 13:31:59)
(32.0, room#12, NULL, NULL, 2005-06-15 13:31:59)
(33.0, NULL, floor#1, NULL, 2005-06-15 13:31:59)
(31.0, NULL, NULL, Overall, 2005-06-15 13:31:59)
(34.1, room#11, NULL, NULL, 2005-06-15 13:32:59)
(32.1, room#12, NULL, NULL, 2005-06-15 13:32:59)
(33.1, NULL, floor#1, NULL, 2005-06-15 13:32:59)
(31.0, NULL, NULL, Overall, 2005-06-15 13:32:59)

· · · · · ·
(a) Result of the CQL query

(Temperature, Location, Time)
(34.0, room#11, 2005-06-15 13:31)
(32.0, room#12, 2005-06-15 13:31)
(33.0, floor#1, 2005-06-15 13:31)
(31.0, Overall, 2005-06-15 13:31)
(34.1, room#11, 2005-06-15 13:32)
(32.1, room#12, 2005-06-15 13:32)
(33.1, floor#1, 2005-06-15 13:32)
(31.0, Overall, 2005-06-15 13:32)

· · · · · ·
(b) Result of the SQLMS query

Figure 22: Results for Task 3

26

13 Conclusion

Stream data, e.g., sensor data, network traffic flow and telecommunication, are low-level data and it is
necessary to perform multi-dimensional analysis on such data at appropriate levels of abstraction to find
more interesting and valuable information. Due to its distinct characteristics (e.g., continuous, unbounded,
fast, etc.) from finite persistent data, traditional data analysis systems are not suitable. Recent data stream
management systems are to a large extent SQL-based and do not support OLAP-like stream analysis.

In this paper, we have introduced an approach to perform multi-dimensional and multi-granular analysis
on data streams. With this approach, dimensions are built on data fields of the input stream to associate data
values in stream tuples with hierarchies. With the time dimension, a continuous data stream is decomposable
into subsets of different scales, e.g., minute, quarter, hour, etc.; also, tuples with common high-level values
in some dimensions can be grouped and aggregated into one summarized tuple; thus, the raw low-level data
stream can be turned into a flow of summary data. We have presented the following issues. First, cube
operators on persistent data cubes. Second, conversion operators turning a data stream into static cubes.
Third, we use these operators to describe the semantics of stream queries as consecutive executions of cube
operators on snapshots of data streams. Finally, we compare our stream queries with those of the Stanford
STREAM and conclude that our approach is more flexible and powerful for OLAP analysis.

Our next step is to implement a straightforward prototype that executes SQLMS queries over real or
synthetic data, and exploit optimization techniques to maximize the stream query engine’s throughput and
minimize resource consumption. For example, to reduce memory assumption, some data approximation
and compression methods can be used to decrease the amount of stream data stored for aggregations over
a long time period; to improve multiple-query performance, methods to increase the amount of data shared
between stream operators from different query plans will be introduced; to increase throughput, work will
be done on query rewriting rules, query execution mode (e.g, eager or lazy), implementation algorithms, etc.
Finally, the multi-dimensional stream query engine will be integrated into a commercial business analysis
tool from the Danish BI tool vendor, TARGIT.

14 Acknowledgements

This work was supported by the Danish Technical Research Council under grant no. 26-02-0277.

References

[1] Y. Dora Cai, David Clutter, Greg Pape, Jiawei Han, Michael Welge, and Loretta Auvil. MAIDS:
Mining Alarming Incidents from Data Streams. InProc. of SIGMOD, pages 919–920, 2004.

[2] Don Carney, Ugur Cetintemel, Mitch Cherniack, Christian Convey, Sangdon Lee, Greg Seidman,
Michael Stonebraker, Nesime Tatbul, and Stan Zdonik. Monitoring Streams - A New Class of Data
Management Applications. InProc. of VLDB, pages 215–226, 2002.

[3] Sirish Chandrasekaran, Owen Cooper, Amol Deshpande, Michael J. Franklin, Joseph M. Heller-
stein, Wei Hong, Sailesh Krishnamurthy, Samuel Madden, Vijayshankar Raman, Frederick Reiss, and
Mehul A. Shah. TelegraphCQ: Continuous Dataflow Processing for an Uncertain World. InProc. of
CIDR, pages 269–280, 2003.

[4] Damianos Chatziantoniou and Achilleas Anagnostopoulos. Nestream: Querying nested streams.SIG-
MOD Record, 33(3):71–78, 2004.

27

[5] Damianos Chatziantoniou and Kenneth A. Ross. Querying Multiple Features of Groups in Relational
Databases. InProc. of VLDB, pages 295–306, 1996.

[6] Jianjun Chen, David J. DeWitt, Feng Tian, and Yuan Wang. NiagaraCQ: A Scalable Continuous Query
System for Internet Databases. InProc. of SIGMOD, pages 379–390, 2000.

[7] Yixin Chen, Guozhu Dong, Jiawei Han, Benjamin W. Wah, and Jianyong Wang. Multi-Dimensional
Regression Analysis of Time-Series Data Streams. InProc. of VLDB, pages 323–334, 2002.

[8] Edgar F. Codd, Sharon B. Codd, and Clynch T. Salley. Providing
OLAP (Online Analytical Processing) to User-Analysts: An IT Mandate.
www.essbase.com/resourcelibrary/white papers/providingolap to useranalysts0.cfm, 2005.
Current as of Aug. 15, 2005.

[9] Charles D. Cranor, Yuan Gao, Theodore Johnson, Vladislav Shkapenyuk, and Oliver Spatscheck. Gi-
gascope: High Performance Network Monitoring with an SQL Interface. InProc. of SIGMOD, page
623, 2002.

[10] Jim Gray, Surajit Chaudhuri, Adam Bosworth, Andrew Layman, Don Reichart, Murali Venkatrao,
Frank Pellow, and Hamid Pirahesh. Data Cube: A Relational Aggregation Operator Generalizing
Group-By, Cross-Tab, and Sub-Totals.Data Mining and Knowledge Discovery, 1(1):29–53, 1997.

[11] H. V. Jagadish, Laks V. S. Lakshmanan, and Divesh Srivastava. What can Hierarchies do for Data
Warehouses? InProc. of VLDB, pages 530–541, 1999.

[12] Christian S. Jensen, Augustas Kligys, Torben Bach Pedersen, and Igor Timko. Multidimensional Data
Modeling for Location-Based Services.VLDB J., 13(1):1–21, 2004.

[13] Mikael R. Jensen, Thomas Holmgren, and Torben Bach Pedersen. Discovering Multidimensional
Structure in Relational Data. InProc. of DaWaK, pages 138–148, 2004.

[14] George Spofford.MDX Solutions: With Microsoft SQL Server Analysis Services. Wiley, 2001.

[15] Mark Sullivan and Andrew Heybey. Tribeca: A System for Managing Large Databases of Network
Traffic. In Proc. of USENIX Technical Conf., pages 13–24, 1998.

[16] TARGIT. TARGIT Analysis Suite. www.targit.com/Products/TARGITAnalysisSuite.aspx, 2005.
Current as of Aug. 15, 2005.

[17] The STREAM group. STREAM: The Stanford Stream Data Manager.IEEE Data Engineering Bul-
letin, 26(1):19–26, 2003.

[18] Peter A. Tucker, David Maier, and Tim Sheard. Applying Punctuation Schemes to Queries Over
Continuous Data Streams.IEEE Data Engineering Bulletin, 26(1):33–40, 2003.

[19] Xuepeng Yin and Torben Bach Pedersen. Evaluating XML-Extended OLAP Queries Based on a
Physical Algebra. InProc. of DOLAP, pages 73–82, 2004.

28

