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Abstract

Motivated by the increasing need to handle complex, dynamic, uncertain multidimensional data in
location-based warehouses, this paper proposes a novel probabilistic data model that can address the
complexities of such data. The model provides a foundation for handling complex hierarchical and un-
certain data, e.g., data from the location-based services domain such as transportation infrastructures
and the attached static and dynamic content such as speed limits and vehicle positions. The paper also
presents algebraic operators that support querying of such data. Use of pre-aggregation for implementa-
tion of the operators is also discussed. The work is motivated with a real-world case study, based on our
collaboration with a leading Danish vendor of location-based services.

1 Introduction

Corporate and personal use of location-based services (LBSs), e.g., traffic or tourist related services, is in-
creasing. LBSs generate massive amounts of location-based data that must be analyzed in order to optimize
and personalize the services. Of particular interest are aggregation queries that involve the transportation
infrastructure and attached content, e.g., ”How many users (in their cars) of age less that 21 will be in the
eastbound lane of Main Street five minutes from now?”. Current OLAP and data warehouse (DW) technol-
ogy [12,14,19] supports aggregation queries based on a multidimensional data model capturing hierarchies
of dimensional data. Unlike other types of data models, multidimensional models provide first-class support
for interactive, investigative aggregate queries on complex data, e.g., roll-up and drill-down queries [20].
This creates a need for location-based data warehouses (LBDWs) that can offer the benefits of traditional
DW technology for LBS data. Current DW technology, both in research and industry, can provide support
for many kinds of LBDW queries, but LBDWs have additional complexities that are not well-supported by
traditional DWs such as uncertain data. For example, in a transportation infrastructure, cars are moving
dynamically, so the future location of a car is uncertain. Moreover, the current location is sometimes also
uncertain (e.g., known only to a wireless phone grid). Since the problem domain is very complex, a formal
foundation for LBDWs is needed.

The contributions of this paper are as follows. First, the paper presents a probabilistic multidimensional
data model (extension of the deterministic model from [27]) that can manage uncertain LBS data. The
probabilities appear both in dimension hierarchies (a dimension value may partially contain another value)
and fact characterizations (facts are characterized by dimension values with certain probabilities). Second,
the paper presents a set of algebraic operators for querying the modeled uncertain data (extension of the
operators from [20]). Third, the paper defines different types of probabilistic fact groupings for aggregation.
Fourth, the paper defines different types of probabilistic aggregation functions applied to the groups. Finally,
implementation of the data model and the algebraic operators, including the use of pre-aggregation for
query processing, is also discussed. The paper thus extends current OLAP/DW technology with means
for supporting LBDWs. The concepts presented in the paper are illustrated using a real-world case study
from the LBS domain. The work is based on an on-going collaboration with a leading Danish LBS vendor,
Euman A/S [8].

Previous related work has generally fallen into three categories: probabilistic databases, spatio-temporal
databases, and multidimensional OLAP databases. The work on probabilistic data management in gen-
eral [1, 2, 6, 9] handles basic uncertainty in the data, but does not support dimensional data with hierar-
chies and LBS specifics such as transportation infrastructures and attached content. Research in general-
purpose spatio-temporal data management considers “operational” queries on certain [22, 23, 25] or uncer-
tain [4, 5, 28, 29] spatio-temporal data in 2D spaces or transportation infrastructures, but do not consider
aggregation/analysis queries. Some papers [21, 26, 30, 31] have considered aggregation of spatial or spatio-
temporal data, but have not considered transportation infrastructures.
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Figure 1: Case Study

Previous research has also covered the modeling of moving objects [10], transportation infrastruc-
tures [17, 18], or both [24], for “operational”, i.e., non-analytical, purposes. The Euman data model [11]
handles multiple infrastructure representation based on a segment-based model that is a generalization of the
popular linear referencing technique [18]. However, none of this work captures data in a multidimensional
framework, and thus does not provide optimal support for DW-like analytical querying, nor does it address
the inherent uncertainties in LBS data.

Previous work on modeling multidimensional data, e.g., [20], does not handle the complexities of LB-
DWs. On the one hand, the data model and algebra presented in [13] support LBDW to a certain extent by
allowing partial containment dimension hierarchies, while [27] improves on [13] by additionally handling
transportation infrastructures and complex content. However, neither [13] nor [27] handles uncertainty in
the data. On the other hand, a probabilistic multidimensional data model [16] does handle uncertain data
(by assigning a single probability to a whole row of a fact table) but does not support the other mentioned
features of LBDWs. Moreover, our data model takes a more general and more flexible approach to handling
uncertainty (a probability is assigned to each attribute of a fact table row).

The remainder of the paper is structured as follows. Section 2 presents the case study, and describes con-
tent and queries. Section 3 briefly introduces the model we use as the foundation, namely the [OLAPLBS]
model from [27]. Section 4 describes our approach to handling spatial hierarchies using expected degrees of
containment, while Section 5 deals with probabilistic fact characterizations. Section 6 describes the formal
query algebra. Pre-aggregation is discussed in Section 7. Section 8 concludes the paper and points to future
work.

2 Case Study

We now discuss the requirements for an LBDW by presenting a real-world case study for which a UML
diagram can be seen in Figure 1.
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2.1 Content

We start with discussing LBS content. LBDW have both point and interval content [11]. Point content
concerns entities that are located at a specific geographic location, have no relevant spatial extent, and are
attached to specific points in the transportation infrastructure, e.g., traffic accidents, museums, gas stations,
and (users’ and other’s) vehicle positions. Interval content concerns data that is considered to relate to
a road section and is thus attached to intervals of given roads. Examples include speed limits and road
surfaces. Our model must capture both point and interval content.

Content can be further classified as dynamic (frequently evolving) or static (rarely evolving). Static
content, e.g., gas stations or speed limits, remains attached to a point or an interval of a road for a relatively
long period of time. In this paper, we focus on very dynamic (hyper-dynamic) content, e.g., vehicle positions
and their predicted trajectories (which evolve continuously). Positions of static content are usually certain,
while positions of dynamic content are usually uncertain, e.g., a vehicle position is approximated by a
wireless phone cell. Furthermore, any position prediction algorithm will have some degree of uncertainty.
Thus, we must capture content of any degree of dynamism, as well as uncertainty, in our model,

In Figure 1, hyper-dynamic content is modeled by the “USER” cluster, where the “User” class represents
users and (implicitly) their vehicles, The “User” class participates in three full containment relationships
capturing user age, preference, and gender. The users’ (vehicle) positions in the infrastructure is modeled
by the “LOCATION” cluster. The positions are captured at certain times, represented by the “TIME” cluster.
This content positioning/attachment, is modeled as a ”Content Attachment” class which is linked to users,
positions, and times. In an OLAP multidimensional model, the “Content Attachment” class would be a fact
characterized by “USER”, “LOCATION”, and “TIME” dimensions.

2.2 Transportation Infrastructure

We now discuss the aspects of the transportation infrastructure relevant to data aggregation. Different,
purpose-dedicated infrastructure representations, may be used, but most modern types of infrastructure
representations, e.g., kilometer-post and geographic, are (1) segment-based and (2) hierarchical [11]. Thus,
our data model must capture different types of segment-based and, possibly, hierarchical representations.

The “LOCATION” cluster from the UML diagram in Figure 1 contains three segment-based represen-
tations, “LN REPR”, “GEO REPR”, and “POST REPR”, which are link-node, geographic, and kilometer
post representations, respectively. All three are a refinement of real-world representations used by the LBS
company Euman A/S [8], obtained by representing lanes instead of roads. Often, lanes of the same road
have different characteristics, e.g., different traffic density, so lanes must be captured separately [24]. We
refer to segments that capture individual lanes, as lane segments. Lane segments may be further subdi-
vided into subsegments to obtain more precise positioning (see “Content”). In the “LOCATION” cluster,
each such lane segment level is a separate class. “LN REPR” has only one level, “Link”, that contain seg-
ments where the characteristics such as the speed limit remain constant. “POST REPR” has three levels:
1) the “Road Lane” class which captures particular lanes, e.g., a lane on an exit from a highway; 2) the
“Post Scope Lane” class which captures segments between two kilometer posts, i.e, subdivisions of the
road lanes above; 3) the “One Meter Interval Lane” class which captures one-meter intervals (of the post
scope segments above). The “GEO REPR” also has three levels. Here, a segment is a two-dimensional
polyline representing (part of) a lane. Thus, a segment level is a geographical map. A sequence of seg-
ments from the “Lane Poly 3” class (finest scale map), is approximated by (contained in) a segment from
the “Lane Poly 2” class (medium scale map), and similarly for “Lane Poly 2” and “Lane Poly 1” (coarsest
scale map), see [11] for details. The levels define a hierarchy of full containment (aggregation) relationships
between segments, which is denoted by empty rhombus-headed arrows in our model.

Finally, relationships between the representations must be captured, to allow content attached to one
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representation to be accessible from another. In the diagram, the relationships between the representations
are modeled as aggregation relationships labeled “map”. Due to differences in how and from what data
the representations are built, these mappings are partial containment relationships, i.e., segments from the
“One Meter Interval Lane” class are partially contained (fully contained is a special case) in segments from
the “Lane Poly 3” class. The “position” association captures attachments of user content to level-three
segments of “GEO REPR”, making content mapped to “GEO REPR” accessible from “POST REPR” .
Further aspects such as road segments, traffic directions, lane change prohibitions, and traffic exchange
directions, are discussed in [27].

2.3 Time

Time We now discuss the temporal characteristics of content. As mentioned above, content positions are
captured at certain time intervals, which are organized in a containment hierarchy of temporal granularities,
see the “TIME” cluster in Figure 1. Note that our time hierarchy consists both of full and partial containment
relationships between temporal granularities, e.g., the relationship between hours and days (weeks and
years) is full (partial). User positions are linked to their time intervals by the “time” association.

2.4 Queries

Analytical queries in LBS involve aggregations along multiple hierarchical dimensions, e.g., user content
attachments will be aggregated along the “USER” , “LOCATION”, and “TIME” dimensions. As mentioned
above, content positions may be given with some uncertainty, and we thus need to evaluate aggregate queries
over uncertain information. Consider the four sample queries below, each concerning point content at a
current or future time (the focus of this paper) and involving some kind of uncertainty. Here we give a prose
description of the query, while in Example 6.8 from Section 6.2 we give the expressions of the queries in
terms of our probabilistic algebra. The queries are:

1. as the minimum expectation, how many users of “age less than 21”, a, are possibly in “the eastbound
lane of Main Street”, lms, at the current time, t?

2. as the average expectation, what is an average age of the “male users”, m, that will possibly be in
“the second eastbound lane of I-90 highway between Moses Lake and Spokane”, l90, at the time ”five
minutes from now”, t?

3. as the maximum expectation, how many users whose locations will be known with a high degree of
confidence, will pass through “Stadium Way’s lane towards the campus”, l, during the hour between
10AM and 11AM, t?

4. (supposing some segments in “GEO REPR” only partially contain one-meter interval segments in
“POST REPR”): what is the maximum age of the users that are definitely ”between kilometer posts
45 and 46 of the eastbound lane of (Danish road) E45”, l, at the current time, t?

All these queries aggregate probabilistic data with varying degrees of uncertainty at either the current or
a future time. They can all be formulated and evaluated in our framework, which improves the state-of-
the-art by handling queries on DWs with probabilistic data and probabilistic relationships in the dimension
hierarchies, including the use of pre-aggregation for efficient query processing.

3 The [OLAPLBS] Model

We now briefly describe the data model from [27], which is the foundation for the probabilistic extension
proposed in this paper. The model has constructs for defining both the schema (types) and the data instances.
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Figure 2: Dimension types

The schema of a cube is defined by a fact schema S that consists of a fact type F (cube name) and a set D

of the dimension types Ti for each dimension.
A dimension type consists of a set CT of the category types Cj (dimension level types), a relation @T

on CT specifying the hierarchical organization of the category types, and the special category types >T

and ⊥T that denote the top and bottom category in the partial order, respectively. For example, a category
type C may be used to model a level of lane segments. The transitive and irreflexive relation @T , i.e., the
partial order extended with equivalence, specifies the partial (including full as a special case) containment
relationships among category types. The intuition is to specify whether members of a “child” category
type have to be contained in a member of a “parent” category fully, e.g., segment levels from the same
representation, or partially, e.g, segment levels from different representations. Next, a subdimension type
of a dimension type is a set of its category types. Subdimension types of the same dimension type do not
intersect except at >T category type. For example, a subdimension type is used to model a transportation
infrastructure representation. The category types from the same (different) subdimension type(s) are related
by full (partial) containment relationships.

Example 3.1. Figure 2(a) depicts dimension types Tu and Tt. In addition, Figure 2(b) depicts a dimension
type Tr. The types capture the “USER”, “TIME”, and ”LOCATION” clusters from Figure 1, respectively.
Next, the type Tr has three subdimension types Tl , Tg , and Tp , which capture “LN REPR”, “GEO REPR”,
and “POST REPR” , respectively. In the figure, the “boundary” of each type is a parralelogram and the
types are labeled by (I), (II), and (III), respectively. In the figure, full (partial) containment category type
relationships are given by empty (filled) rhombus-headed arrows. From these direct relationships we can
deduce the transitive relationships between the category types.

In the model instances, a dimension D consists of a set of categories. The Type function gives the
corresponding type for dimensions and categories. A category Cj consists of a set of dimension values
li. The transitive and irreflexive relation @ on the union of all values, D̂, i.e., the partial order extended
with equivalence, specifies the full or partial containment relationships of the values. For example, two
values that model segments from the same (different) representation(s) are usually related by a full (partial)
containment relationship. A special value > in each dimension fully contains every other value in the
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dimension.
Each relationship l1 @ l2 has an attached degree of containment, d ∈ [0; 1], written l1 @d l2. In a

given dimension, the degrees have a unique interpretation, but different interpretations are possible. In the
following definition, we present one such, conservative, interpretation (first introduced in [13]).

Definition 3.2. [Safe degree of containment] Given two dimension values l1 and l2 and a number d ∈
[0; 1], the notation l1 @ l2 ∧ Degsaf (l1, l2) = d (or l1 @d l2, for short) means that “l2 contains at least
d · 100% of l1”. The special case of d = 0 means that “l2 may contain l1, and the size of contained part is
unknown”. We term d safe degree of containment.

We abbreviate l1 @1 l2 ∧ l2 @1 l1 (equivalent values) by l1 ≡ l2. Transitive safe degrees are inferred
according to the following rules. Given three dimension values, l1, l2, and l3, and numbers d1 ∈ [0; 1] and
d2 ∈ [0; 1):

1. p-to-f transitivity:
(l1 @d1

l2) ∧ (l2 @1 l3) ⇒ (l1 @d1
l3)

While l3 may contain the part of l1 that is not in l2, the conditions of the property do not give us
information on this. We infer only what we can guarantee: what is contained in l2 is also contained
in l3.

2. p-to-p transitivity:
(l1 @d1

l2) ∧ (l2 @d2
l3) ⇒ (l1 @0 l3)

If l1 is fully or partially contained in l2 and l2 is partially contained in l3 then we can only infer that
at least “nothing” of l1 is contained in l3. In other words, we infer that l1 may be contained in l3.

Finally, subdimension is an instance of a subdimension type.

Example 3.3. Suppose we are given subdimensions Dl , Dg , and Dp of the subdimension types Tl , Tg , and
Tp , respectively. Parts of the subdimensions are depicted in Figure 2(b). In the following, we show how to
infer transitive partial containment relationships with safe degrees. In the subdimension Dg , we have values
l121 ∈ CL P 3 and l12 ∈ CL P 2 such that l121 @1 l12. Then, in the subdimension Dp , we have a value
p1111 ∈ CL O M I such that p1111 @0.3 l121. Consequently, we infer that p1111 @0.3 l12. Again, we have
l121 @1 l12. Then, in the subdimension Dl , we have value a1 ∈ CL L such that l12 @0.8 a1. Consequently,
we infer that l121 @0 a1, which means that l121 may be contained in a1. Next, in the subdimension Dp , we
have a value p1133 such that p1133 ≡ l121. Then we have already inferred that l121 @0 a1. Consequently, we
infer that p1133 @0 a1.

A multidimensional object (cube) consists of a set of facts F that are mapped to each dimension, Dj ,
with a fact-dimension relation, Rj ⊆ F × Dj . For a fact f ∈ F and a dimension value l ∈ Dj , we define (1)
a covering fact-dimension relationship (f , l) ∈ Rc

j ⊆ Rj , which is read as “f covers l”, and (2) an inside
fact-dimension relationship (f , l) ∈ R i

j ⊆ Rj , which is read as “f is inside l”. Thus, the full set of fact-
dimension relationships is Rj = Rc

j ∪ Ri
j . Next, we define three kinds of fact characterizations, or inferred

fact-dimension relationships, written f  c l , f  i l , and f  i
m l . The semantics of the first two charac-

terizations coincides with that of the corresponding fact-dimension relationships. The third characterization
means that f may be inside l.

4 Expected Degrees of Containment

In this section, we introduce a new interpretation for degrees of containment. The motivation for the new
interpretation is as follows. Assume that we are given a dimension D with its set of categories and the
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relation on its dimension values @. As mentioned in Section 3, with the safe degrees of containment, the
notation l1 @d l2, where l1 ∈ D̂, l2 ∈ D̂, and d ∈ [0; 1] means that the value l2 contains at least d · 100% of
the value l1. The disadvantage of this approach is that inferred, transitive relationships between dimension
values are very likely to receive a degree of containment equal to 0, because we infer only those degrees
that we can guarantee, see Example 3.3. This makes the data too uncertain for practical use.

In order to make the transitive relationships more useful, we introduce the expected degrees of contain-
ment. Our approach is based on probability theory [3]. We consider each dimension value as an infinite set
of points. We deal with the probabilistic events of the form “a value l1 is contained in a value l2”, which is
equivalent to “any point in l1 is contained in l2”.

Definition 4.1. [Expected degree of containment] Given two dimension values l1 and l2 and a number
d ∈ [0; 1], the notations l1 @ l2 ∧ Degexp(l1, l2) = d (or l1 @d l2, for short) mean that “l2 is expected to
contain d ·100% of l1”, or, more formally, “l1 is contained in l2 with a probability of d”. We term d expected
degree of containment.

The formal definition is particularly useful for reasoning about transitivity of partial containment and
fact characterizations. The rule of transitivity of partial containment with expected degrees is as follows:

∀(l, l1, . . . , ln, l′) ∈ D̂ × . . . × D̂

(
n∧

i=1

l @di
li ∧ li @d′i

l′ ⇒ l @ l′ ∧ Degexp(l , l
′) =

n∑

i=1

di · d
′
i)

The idea behind the rule is explained next. We will use notation P (e) for the probability of the event e. Let
us first consider a special case of the rule, when i = 1, i.e., when there is only one, unique path between
values l and l′. Then, the rule takes the following form:

∀(l1, l2, l3) ∈ D̂ × D̂ × D̂(l1 @d1
l2 ∧ l2 @d2

l3 ⇒ l1 @d1·d2
l3)

First, l1 @d1
l2 means that P (e1) = d1, where e1 is “l1 is contained in l2”. Second, l2 @d2

l3 means that
P (e2) = d2, where e2 is “l2 is contained in l3”. The conjunction of these two events, e1 ∧ e2, i.e., “l1 is
contained in l3” is equivalent to l1 @ l3. Next, having assumed that the events e1 and e2 are independent,
P (e1 ∧ e2) = d1 · d2. This means that we have inferred the relationship l1 @d1·d2

l3.
The general case of the rule allows n paths between l and l ′. The ith path goes through a value li. Then,

the event e, i.e., “l is contained in l′” is a disjunction of n disjoint events,
∨n

i=1 ei, where ei is “l is contained
in l′, given the ith path”. Thus, the general case of the rule is n applications of the rule’s special case. The
ith application concerns an ith path and infers the probability di · d′i of the event ei. This means that the
event e has the probability of d =

∑n
i=1 di · d

′
i, i.e., that there is a relationship l @d l′.

In order to produce the correct aggregates, i.e., to perform correct aggregation, a warehouse must con-
sider all relevant aggregation paths between the source and destination category. Since no aggregation path
is ignored during inferences of transitive partial containment relationships with expected degrees, the rule
offers support for correct aggregation, which is missing from the analogous rule with safe degrees. A further
support is offered by the rules for inferring fact characterizations (see Section 5).

Example 4.2. Continuing Example 3.3, we show how to infer transitive partial containment relationships
with expected degrees. First, we demonstrate the support for correct aggregation. In the subdimension Dg,
we have values l121 ∈ CL P 3, l122 ∈ CL P 3 and l12 ∈ CL P 2 such that l121 @1 l12 and l122 @1 l12 . Then,
in the subdimension Dp , we have a value p1111 ∈ CL O M I such that p1111 @0.3 l121 and p1111 @0.7 l122 .
In other words, we have two aggregation paths between values p1111 and l12. Consequently, we ”sum up”
the paths, i.e., infer that p1111 @0.3·1+0.7·1=1 l12. Second, we demonstrate the improvement in certainty of
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transitive relationships, compared to those obtained by the rule with safe degrees. Then, in the subdimension
Dl, we have value a1 ∈ CL L such that l12 @0.8 a1. Consequently, we infer that l121 @1·0.8=0.8 a1. Note
that the last relationship would have received a (much lower) safe degree of 0.

5 Probabilistic Fact Characterizations

In this section, we introduce a new kind of fact characterizations. The motivation for this is as follows.
Assume that we are given a dimension, D, with its set of categories and the relation on its dimension values,
@. Recall content attachments from the case study in Section 2. Such attachments record that a user is in
a specific location at a given time. The fact characterizations described in Section 3 allow us to express
positions of static content, which are usually certain. However, positions of dynamic content are usually
uncertain. For example, a user location may be given by a wireless phone cell, which only approximately
locates the user. Furthermore, a practical prediction algorithm would predict future user locations with some
degree of uncertainty. In addition to this location uncertainty, we may also have user and time uncertainty.
For example, we may be certain about a location, but uncertain about what user is at that position or we may
not know the time. In order to capture these possibilities, we generalize the notion of fact characterization
by defining a probabilistic fact characterization.

Our approach is based on probability theory [3]. We consider the probabilistic events of the form ”a fact
f covers (is inside) a value l”. In the following, let p represent the probability; of course, p ∈ [0; 1]. We
extend the definitions from Section 3 as follows.

Definition 5.1. [Probabilistic fact-dimension relationships] For a fact f ∈ F and a dimension value
l ∈ D̂, we define:

1. a probabilistic covering fact-dimension relationship, (f, l, pmin, pmax) ∈ Rc,p ⊆ R,
which is read as “f covers l with probability of at least pmin and of at most pmax”, and

2. a probabilistic inside fact-dimension relationship, (f, l, pmin, pmax) ∈ Ri ,p ⊆ R,
which is read as “f is inside l with a probability of at least pmin and of at most pmax”.

The full set of fact-dimension relationships is R = Rc,p ∪ Ri,p.

Given an inside fact-dimension relationship, (f, l, pmin, pmax) ∈ Ri,p, pmin is a lower bound on the
“true” probability of the relationship. Moreover, for a fact, f , and a category, C , any two events “f is inside
l1” and “f is inside l2”, where l1 ∈ C and l2 ∈ C , are disjoint. For this reason, in an MO, we impose the
following restriction on minimum probabilities: for any category, C , and any fact, f and given the restriction
of Ri,p on C and f , R

i,p

|C,f
= {(f ′, l, pl

min, pl
max)|l ∈ C ∧ f ′ = f}, we require that

∑
l∈C pl

min ≤ 1.
However, given an inside fact-dimension relationship, (f, l, pmin, pmax) ∈ Ri,p, pmax is a higher bound
on the “true” probability of the relationship. For this reason, we do not impose an analogous restriction on
maximum probabilities.

The exact probabilities of fact-dimension relationships may also be expressed. For example, the state-
ment “f covers l with probability p” is expressed as (f, l, p, p) ∈ R

p
c . The non-probabilistic fact-dimension

relationships are a special case of the probabilistic fact-dimension relationships, i.e., (f, l) ∈ Rc is expressed
as (f, l, 1, 1) ∈ R

p
c and (f, l) ∈ Ri is expressed as (f, l, 1, 1) ∈ R

p
i .

Next, we define two new kinds of fact characterizations, written f  c
[pmin;pmax] l and f  i

[pmin;pmax] l.
The non-probabilistic fact characterizations are a special case of the probabilistic characterizations, i.e., (1)
f  c l is expressed as f  c

[1;1] l, which is also read as “f covers l for sure”, (2) f  i l is expressed as
f  i

[1;1] l, which is also read as “f is inside l for sure”, and (3) f  i
m l is expressed as f  i

[0;1] l, which
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is also read as f is inside l with unknown probability. In addition, f  c
[0;1] l is also read as f covers l with

unknown probability.
The set R is stored in the data warehouse and the probabilistic fact characterizations are inferred when

needed. For the inference, the warehouse uses the rules described in Sections 5.1 and 5.2. In essence, the
rules provide a recursive definition of the notion of probabilistic fact characterization. Note that the rules are
valid both with the safe and expected degrees of containment. For this reason, the notation for containment
relationships used in the rules does not reflect the kind of degrees.

5.1 Basic Rules

In the following, we present the basic rules for inferring fact characterizations.
∀(f, l) ∈ F × D̂

1. ((f, l, pmin, pmax) ∈ R
p
c ⇒ f  c

[pmin;pmax] l)

2. ((f, l, pmin, pmax) ∈ R
p
i ⇒ f  i

[pmin;pmax] l)

If a fact f is attached to and covers (is inside) a segment l with the probability of at least pmin and of
at most pmax , then we can infer that f covers (is inside) l with the probability of at least pmin and of
at most pmax.

3. (f  c
[pmin;pmax] l ⇒ f  i

[pmin;pmax] l)

If a fact f covers a segment l with the probability of at least pmin and of at most pmax, then f is
also inside l with the same probability. The idea behind the rule is as follows. If a piece of content
covers a segment with some probability, i.e., between pmin and pmax, then it is possible to state that
the piece is also inside that segment with the same or even greater probabilities. However, the data at
hand, i.e., the probabilities that we can use for arguing, only allows us to record the lowest possible
probabilities, i.e., those between pmin and pmax.

∀(f, l1, l2, . . . , ln, l) ∈ F × D × . . . × D

4. (l1 ≡ l2 ∧ f  i
[pmin;pmax] l1 ⇒ f  i

[pmin;pmax] l2)

5. (l1 ≡ l2 ∧ f  c
[pmin;pmax] l1 ⇒ f  c

[pmin;pmax] l2)

If two values are equivalent, then they characterize the same facts in the same way.

5.2 The Characterization Sum Rule

In the following, we present the most important rule for inferring fact characterizations, called the charac-
terization sum rule. Among other things, the rule provides support for correct aggregation.

Definition 5.2. [Characterization sum rule] For any fact, f , and dimension values, l1, l2, . . ., ln, and l,
the following holds:

(

n∧

i=1

(li @di
l ∧ f  i

[pi

min
;pi

max ] li ) ⇒ f  i
[pmin ;pmax ] l)),

where pmin =
∑n

i=1 di · p
i
min and pmax = min(

∑n
i=1 di · p

i
max, 1)
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In the following, we explain what the rule does. Let a fact f be inside values l1, l2, . . ., ln with
probabilities at least p1, p2, . . ., pn, respectively. Then, if l1, l2, . . ., ln are contained in a value l, with
minimum (with the “safe” approach) or expected (with the “expected” approach) sizes of the contained
parts being d1, d2, . . ., dn, then f is also inside the containing value l with probability of at least p1

min ·d1 +
p2

min · d2 + . . . + pn
min · dn and of at most p1

max · d1 + p2
max · d2 + . . . + pn

max · dn (if the sum is lower than
1) or 1 (if the sum is equal to or greater than 1).

The basic idea behind the rule is that we obtain the probability for a fact characterization by summing
up probabilities for that fact characterization obtained through n different aggregation paths. A more formal
explanation is as follows. We use the notation P (e) for the probability of the event e and P (e ∧ e ′) for the
conjunction of the events e and e′. First, let the event e1 be “a piece of content is inside a segment l”, i.e., is
“f  i l”. We need to compute pmin, which is a lower bound on P (e1). Clearly, P (e1) =

∑n
i=1 P (ei

2∧ei
3),

where ei
2 is “f  i li” and ei

3 is “li @ l”. Since events ei
2 and ei

3 are independent, P (ei
2∧ei

3) = P (ei
2)·P (ei

3).
Next, P (ei

2) ≥ pi
min and P (ei

3) ≥ di or P (ei
3) = di, if di is an expected or safe degree, respectively. This

means that P (e1) ≥
∑n

i=1 di · pi
min. So, pmin =

∑n
i=1 di · pi

min. The case of pmax, i.e., the maximum
probability that a piece of content is inside a segment l, is analogous except if the resulting probability is
higher than 1, we “cut” it down to 1.

Since no aggregation path is ignored in the process of inferring fact characterizations, the characteriza-
tion sum rule offers significant support for correct aggregation. Furthermore, if expected degrees are used
for constructing an MO, the rule for inferring transitive relationships between dimension values (see Sec-
tion 4) provides additional support. In particular, combined effect of these two rules is that a query engine
may perform inferences on an MO in any order without losing any information, i.e., transitive relationships
between values first, then fact characterizations, or in the reverse order.

Example 5.3. Given a dimension hierarchy from Figure 2(b), we exemplify the use of the characterization
sum rule. Suppose our data warehouse has data on (uncertain) positions of a user in the kilometer-post
representation, which are stored as (f1, p1111, 0, 0.1) ∈ R

p
i and (f1, p1133, 0.9, 1) ∈ R

p
i . Then, the positions

of the user in the link-node representation are deduced as follows. First, assuming that the degrees from
Figure 2(b) are expected degrees, we infer the relationships p1111 @0.8 a1, p1111 @0.2 a2, p1133 @0.8 a1, and
p1133 @0.2 a2. Second, by basic rule 2, we obtain the fact characterizations f1  

i
[0;0.1] p1111 and f1  

i
[0.9;1]

p1133. Finally, by the characterization sum rule, we infer f1  
i
[p1

min;p1
max]

a1 and f1  
i
[p2

min;p2
max]

a2, where

p1
min = 0.8 · 0 + 0.8 · 0.9 = 0.72, p1

max = 0.8 · 0.1 + 0.8 · 1 = 0.88, p2
min = 0.2 · 0 + 0.2 · 0.9 = 0.18, and

p2
max = 0.2 · 0.1 + 0.2 · 1 = 0.22.

6 The Algebra

In this section, we present a set of algebraic operators, i.e., algebra, that is a formal foundation for querying
the data captured by our model. The operators allow us to formulate queries for probabilistic fact-dimension
characterizations.

We base our algebra on the deterministic algebra from [20], which is proven to be at least as powerful
as the relational algebra with aggregation functions [15]. The operators from [20] need to be extended to
handle probabilistic aspects of our model. Intuitively, after the extension, our algebra will be at least as
powerful as a probabilistic relational algebra (e.g., from [1]).

Let i range from 1 to n. For unary operators, we assume a single n-dimensional MO M = {S, F,DM , RM},
where DM = {Di} and RM = {Ri}. For binary operators, we assume two n-dimensional MO’s M1 =
(S1, F1, DM1

, RM1
) and M2 = (S2, F2, DM2

, RM2
), where DM1

= {D1
i }, DM2

= {D2
i }, RM1

= {R1
i },

and RM2
= {R2

i }. In addition, we use the notation D̂i for the union of all the dimension values from Di.
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6.1 Selection Operator

The selection operator is used to select a subset of the facts in an MO based on a predicate.
Let K = {i, c}, where the symbols i and c stand for “inside” and “covering”, respectively. The selection

operator, σ, uses a predicate q : D̂1×. . .×D̂n×([0; 1]×[0; 1])n×Kn� {true , false}. Thus, the parameters
of the predicate q are n dimension values, each from a different dimension, n intervals of probability values,
and n “inside” or “covering” symbols. The resulting set of facts is:

F ′ = {f ∈ F |

∃(l1, . . . , ln) ∈ D̂1 × . . . × D̂n

(∃([p1
min; p1

max], . . . , [pn
min; pn

max]) ∈ ([0; 1] × [0; 1])n

(∃(k1, . . . , kn) ∈ Kn

(q(l1, [p
1
min; p1

max], k1, . . . , ln, [pn
min; pn

max], kn) ∧
n∧

j=1

f  
kj

[pj
min;pj

max]
lj)))}

We thus restrict the set of facts to those that are characterized by dimension values where q evaluates to
true . This operator supports probabilistic covering/inside fact characterizations. Specifically, the operator
allows us to formulate queries that select facts that are characterized (1) with given intervals of uncertainty,
i.e., [pi

min; pi
max] for a characterization by the dimension Di, and (2) kind of characterization, i.e., inside,

covering, or both by means of ki for a characterization by the dimension Di. In addition, we restrict the
fact-dimension relations accordingly, while the dimensions and the fact schema stay the same.

Example 6.1. [Selection operator] Continuing Example 5.3, suppose that we would like to select reliable
data on male users, m ∈ CGender , on a link, a1 ∈ CL L, at a future time, t ∈ CSecond . For this, the predicate
q could be defined as follows:

q(l1, [p
1
min; p1

max], k1, l2, [p
2
min; p2

max], k2, l3, [p
3
min; p3

max], k3) = true ⇔

(l1 = m ∧ p1
min = p1

max = 1 ∧ k1 = i)∧

(l2 = a1 ∧ [p2
min; p2

max] ⊆ [0.5; 1] ∧ k2 = i∧

(l3 = t ∧ p3
min = p3

max = 1 ∧ k3 = i)

The predicate defines the reliable data as the fact characterizations such as: (1) in the USER and TIME
dimension, the minimum and maximum probability equals to 1, (2) in the LOCATION dimension, the
minimum probability is at least 0.5 and the maximum probability is any, i.e., up to 1.

Suppose we have characterizations f1  
i
[1;1] m and f1  

i
[1;1] t in the USER and TIME dimension, re-

spectively. This means that the value of the predicate q depends on the characterizations in the LOCATION
dimension. Since we have inferred the characterization f1  

i
[0.72;0.88] a1, the fact f1 would contribute to

the result, i.e. f1 ∈ F ′. However, if we replace a1 with a2 in the query, then the fact f1 would be outside
the result, because of the characterization f1  

i
[0.18;0.22] a2. As another example, we could select all data

that is unreliable with respect to positioning, for instance, to remove it from a subsequent computation, as
follows:

q(l1, [p
1
min; p1

max], k1, l2, [p
2
min; p2

max], k2, l3, [p
3
min; p3

max], k3) = true ⇔ [p2
min; p2

max] ⊆ [0; 0.5)

11



6.2 Aggregate Formation Operator

The unary aggregate formation operator is used when applying aggregate functions to an MO. We assume
a set of traditional aggregation functions, H =

⋃n
i=1{SUM i,AVG i,MIN i,MAX i} ∪ {COUNT}. The

COUNT function works by considering fact-dimension relationships for all dimensions, while other func-
tions “look up” the required data for the facts in the relevant fact-dimension relation. For example, SUM 1

finds its data in the fact-dimension relation R1 and sums them.
In addition, the operator Group : D1 × . . . × Dn � 2F is defined. In general, the operator groups the

facts characterized by the same dimension values, i.e., Group(l1, . . . , ln) = {f ∈ F | f  l1 ∧ . . . ∧ f  

ln}. Later in this section, we present more elaborate definitions of the grouping operator.

6.2.1 Aggregate Formation Operator Definition

Next, we restate a generic definition of the aggregate formation operator from [13], which is also suitable
in our context of uncertain data. In the definition, we denote (l1, . . . , ln) and Group(l1, . . . , ln) by ~l and G,
respetively. Also, we assume that ~l ∈ C1 × . . . × Cn.

Definition 6.2. [Aggregate formation operator] Given a new (result) dimension Dn+1 of a new (re-
sult) type Tn+1, an aggregation function h : 2F � Dn+1 from the set H , and a set of grouping cat-
egories {Ci ∈ Di, i = 1, . . . n}, the aggregate formation operator, α, is defined as follows: M ′ =
α[Dn+1, h, C1, . . . , Cn](M) = (S′ = (F′,D′), F ′, D′

M ′ , R
′
M ′), where

1. F′ = 2F

2. D′ = {T′
i, i = 1, . . . , n} ∪ {Tn+1}

3. T′
i = (C′

i,@
′
Ti

,⊥′
Ti

,>′
Ti

)

4. C′
i = {Cij ∈ Ti | Ci @Ti

Cij} ∪ {Ci}

5. @′
Ti

=@Ti|C′

i

with ⊥′
Ti

= Ci and >′
Ti

= >Ti

6. F ′ = {G 6= ∅}

7. D′ = {D′
i, i = 1, . . . , n} ∪ {Dn+1}

8. D′
i = (C ′

D′

i
,@′

D′

i
)

9. C ′
D′

i
= {C ′

ij ∈ Di | C′
ij ∈ C′

i}

10. @′
D′

i
=@Di|D′

i

11. R′
M ′ = {R′

i, i = 1, . . . , n} ∪ {R′
n+1}

12. R′
i = {(f ′, li) | ∃~l(f

′ = G}, R′
n+1 =

⋃
~l
{(G 6= ∅, h(G)}

Thus, for every combination of dimension values ~l = (l1, . . . , ln) in the given grouping categories, the
aggregation function h is applied to the set of facts characterized by ~l, i.e., to the group G = Group(~l), and
the result is placed in the new dimension Dn+1.

The new facts from the set F ′ are of type F′, which denotes sets of the argument fact type, and the
resulting dimensions types from D′ are obtained by restricting argument dimension types to the category
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types that are greater than or equal to the types of the grouping categories. The new dimension type Tn+1

for the result is added to the set of dimension types.
The new set of facts F ′ consists of sets of the original facts, where original facts in a set share a

combination of characterizing dimension values. The argument dimensions are restricted to the remain-
ing category types, and the result dimension Dn+1 is added. The fact-dimension relations for the argument
dimensions now link sets of facts directly to their corresponding combination of dimension values, and the
fact-dimension relation R′

n+1 for the result dimension links sets of facts to the function results for these
sets.

6.2.2 Grouping

In Section 5, we introduced probabilistic fact characterizations, which allows us to group facts with an
arbitrary degree of confidence, i.e., with arbitrary requirements to the probabilities of the characterizations
of the grouped facts. Next, we define different kinds of grouping, considering inside fact characterizations
only. The cases of covering characterizations are analogous.

Definition 6.3. [Grouping operators] We define the following grouping operators.

1. Degree-of-confidence grouping operator, Group d:

Groupd(l1, . . . , ln, [p1
min′ , p

1
max′ ] . . . , [pn

min′ , p
n
max′ ]) =

{f ∈ F |
n∧

k=1

f  i
[pk

min;pk
max]

lk ∧ [pk
min; pk

max] ⊆ [pk
min′ ; pk

max′ ]}

2. Conservative grouping operator, Group c:

Groupc(l1, . . . , ln) = Groupd(l1, . . . ln, [1; 1], . . . , [1; 1])

3. Liberal grouping operator, Group l:

Group l(l1, . . . , ln) = Groupd(l1, . . . ln, [0; 1], . . . , [0; 1])

In the degree-of-confidence grouping, a group is formed from the facts that belong to the group with a
probability given by the parameters of Group d operator.

We define the following special cases of the operator. First, in the conservative grouping, a group is
formed from the facts that definitely belong to the group. Since only precise data will be used in calculations
and the remaining data discarded, this kind of grouping is useful for computing a “lower bound” for a query
result, in the sense that the query result contains as little data as possible.

Second, in liberal grouping, a group is formed from the facts that possibly belong to the group. Liberal
grouping can be used for computing an “upper bound” for a query result, in the sense that the query result
contains as much data as possible, because all the data, both precise and imprecise, are taken into con-
sideration. This means that our definition of conservative and liberal grouping corresponds to the general
understanding of the terms introduced in [20].

Example 6.4. Continuing Example 5.3, suppose we also have a fact f2 characterized as follows: f2  
i
[1;1]

m, f2  
i
[1;1] a1, and f2  

i
[1;1] t. Then, suppose we wish to aggregate the certain data to the level of

CGender , CL L, and CSecond , and discard everything else, e.g., in order to decrease the chance of overcount-
ing. Then, we will use the conservative grouping operator and obtain the groups Group c(m,a1, t) = {f2}
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and Groupc(m,a2, t) = ∅. Next, if we wish to aggregate all data, e.g., in order to decrease the chance of
undercounting, then we will use the liberal grouping operator and obtain the groups Group l(m,a1, t) =
Group l(m,a2, t) = {f1, f2}. Finally, if we wish to aggregate the data given with a reliable degree of
confidence, e.g., in order to balance the chances of undercounting and overcounting, then we will use
a degree-of-confidence grouping operator, e.g., Group d(l, [0.5; 1]). In this case, we obtain the groups
Groupd(m,a1, t, [1; 1], [0.5; 1], [1; 1]) = {f1, f2} and Groupd(m,a2, t, [1; 1], [0.5; 1], [1; 1]) = ∅.

6.2.3 Aggregation Functions

In the following, we discuss aggregation functions. We assume a group

G = {fj ∈ F |
n∧

k=1

fj  
i

[pk,j
min;pk,j

max]
lk}.

We start with the COUNT function, which counts minimum expected, maximum expected, average expected,
definite, and possible number of facts that belong to the group G.

Definition 6.5. [COUNT function] Below we define different kinds of counts.

1. The minimum expected count is:

COUNTmin(G) =

N∑

j=1

(p1 ,j
min · . . . · pn,j

min)

where N is the number of facts in the group G.

2. The maximum expected count is:

COUNTmax (G) =
N∑

j=1

(p1 ,j
max · . . . · pn,j

max )

3. The average expected count is:

COUNT avg(G) =
COUNTmax (G) + COUNTmin(G)

2

4. If G is formed according to the conservative grouping, then the definite count is:

COUNT def (G) = N

5. If G is formed according to the liberal grouping, then the possible count is:

COUNT pos(G) = N

Note that the procedure of computing the expected counts assigns degrees of group membership to facts,
so with expected counts any grouping including the special cases of the liberal and conservative groupings
may be considered weighted groupings.
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Example 6.6. [COUNT function] Continuing Example 6.4, we consider the following three groups:
Gc = Groupc(m,a1, t), Gl = Group l(m,a1, t), and Gd = Groupd(m,a1, t, [1; 1], [0.5; 1], [1; 1]).

Then, COUNTmin(Gc) = 1 · 1 · 1 = 1, COUNTmin(Gl) = 1 · 0.72 · 1 + 1 · 1 · 1 = 1.72, and
COUNTmin(Gd) = 0.72 + 1 = 1.72. Also, COUNTmax (Gc) = 1, COUNTmax (Gl) = 0.88 + 1 = 1.88,
and COUNTmax (Gd) = 0.88 + 1 = 1.88.

As may be seen from Example 6.6, different COUNT functions, in combination with different kinds of
grouping, produce different values. For example, the difference between COUNTmin(Gc), and COUNTmax (Gl)
is 88%. The former (latter) value is useful when the user wishes to maximally not overcount (undercount).
In case the user wishes to obtain less extreme values, he/she may use an “intermediate” combination of
a COUNT function and grouping, such as COUNTmin(Gl), COUNTavg(Gc), etc., that produce values
between COUNTmin(Gc) and COUNTmax (Gl). Thus, the introduced means of querying flexibly adapt to
concrete situation.

Due to space constraints, we only briefly discuss other aggregation functions. First, we consider the
SUM function, which is, in essense, a generalization of the COUNT function. Intuitively, the former sums
arbitrary values of a measure, while the latter sums values of 1. Suppose, in an MO, the nth dimension sup-
plies data for the function. We assume that this dimension is regular, i.e. (1) there are only full containment
relationships in the dimension hierarchy and (2) facts are only mapped to this dimension deterministically.
Then, given the group G, we define the minimum expected sum by modifying the definition of the minimum
expected count as follows:

SUMmin(G) =
N∑

j=1

(p1 ,j
min · . . . · pn−1 ,j

min · v(ln , fj ))

where v(ln, fj) is a numerical value assigned to a dimension value l such that l @ ln and (f, l, 1, 1) ∈ Rn.
This way we sum the most precise data. Definitions of maximum or average expected and possible or
definite sums can be obtained by modifying the definitions of the corresponding counts analogously.

Example 6.7. [SUM function] For example, suppose in our case study, we added a fourth dimension that
captured weights of user cars. In addition, suppose (1) values w5 ∈ D̂4, w2.5 ∈ D̂4, and w1.75 ∈ D̂4, stand
for 5, 2.5, and 1.75 tons, respectively, (2) w2.5 @ w5 and w1.75 @ w5, and (3) (f1, w1.75, 1, 1) ∈ R4 and
(f2, w2.5, 1, 1) ∈ R4. Thus, v(w5, f1) = 1.75 and v(w10, f2) = 2.5. Then, we could find the minimum
expected sum of weights of cars of users from the group G′

l = Group(m,a1, t, w5) (see Example 6.6), as
follows: SUMmin(G′

l) = 1 · 0.72 · 1 · 1 · 1.75 + 1 · 1 · 1 · 1 · 2.5 = 1.26 + 2.5 = 3.76.

Second, we consider the AVG function. Given the group G, we define (different kinds of) the function
as follows:

AVGmod(G) =
SUM mod(G)

COUNTmod(G)

where mod is one of the following: min, max, avg, def , and pos.
Finally, we consider the MIN function. Given the group G, we define the possible and definite minimum

as follows:
MIN mod(G) = min({v(ln, fj), j = 1, . . . , N})

where mod is either pos or def and min is a function that returns the minimum number from a set of num-
bers. Analogously with the COUNT function, MIN pos (MIN def ) is defined, if G is a liberal (conservative)
group.

Example 6.8. [Queries] In this example, we express queries from Section 2.4 with the operators of our
probabilistic algebra. The queries and their corresponding expressions are:
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1. as the minimum expectation, how many users of “age less than 21”, a, are possibly in “the eastbound
lane of Main Street”, lms, at the current time, t?

COUNTmin(GROUP l(a, lms, t))

2. as the average expectation, what is an average age of the “male users”, m, that will possibly be in
“the second eastbound lane of I-90 highway between Moses Lake and Spokane”, l90, at the time ”five
minutes from now”, t?

AVGavg(GROUP l(m, l90, t))

3. as the maximum expectation, how many users whose locations will be known with a high degree of
confidence, will pass through “Stadium Way’s lane towards the campus”, l, during the hour between
10AM and 11AM, t?

COUNTmax(GROUPd(>, l, t, [1; 1], [0.75; 1], [1; 1]))

4. (supposing some segments in “GEO REPR” only partially contain one-meter interval segments in
“POST REPR”): what is the maximum age of the users that are definitely ”between kilometer posts
45 and 46 of the eastbound lane of (Danish road) E45”, l, at the current time, t?

MAX def (GROUP c(>, l, t))

6.3 Union Operator

The union operator is used to take the union of two MOs. Prior to defining the operator itself, we define two
helper union operators, union on dimensions and union on fact-dimension relations.

The union operator is used to take the union of two MOs. Prior to defining the operator itself, we define
two helper union operators, union on dimensions and union on fact-dimension relations.

In the next definition, we assume two dimensions of the same type T: (1) D1 with its set of categories
CD1

and relation �D1 and (2) D2 with its set of categories CD2
and �D2 . Let us assume that CD1

=
{C1

j , j = 1, . . . ,m} and CD2
= {C2

j , j = 1, . . . ,m}.

Definition 6.9. The union operator on dimensions,
⋃D, is defined as follows:

D′ = D1

D⋃
D2 = (CD′ ,@D′

)

where CD′ = {C1
j

⋃
C2

j , j = 1, . . . ,m}.
The relation @D′

is defined as follows:

∀(l1, l2) ∈ (D1 ∪ D2) × (D1 ∪ D2)(l1 ∈ Desc(l2) ∧ l1 @
D′

d l2 ⇔ l1 @
D1

d1
l2 ∨ l1 @

D2

d2
l2)

where Desc(l2) is a set of immediate predecessors of l2 and d depends on d1 and d2.

Stated less formally, given two dimensions of the same type, the union operator on dimensions performs
set union on corresponding categories and builds a new relation on dimension values: there exists a direct
relationship between two dimension values if there exists a direct relationship between the values in the
first dimension, in the second dimension, or in both. The degree of containment for a resulting relationship
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may be determined in different ways. We discuss this issue later in this section. Note that only the degrees
of containment for the direct relationships are found using these rules. The indirect relationships between
values in the resulting dimension are inferred using our transitivity rules from Section 5.

In the next definition, we assume two fact-dimension relations: (1) R1 that relates facts from a set F1

with dimension values from a dimension D1 and (2) R2 that relates facts from a set F2 with dimension
values from a dimension D2. The sets of facts are of the same fact type and the dimensions are of the same
dimension type.

Definition 6.10. The union operator on fact-dimension relations,
⋃R, is defined as follows:

R′ = R1

R⋃
R2 = {(f, l, p′min, p′max) : (f, l, p1

min, p1
max) ∈ R1 ∨ (f, l, p2

min, p2
max) ∈ R2}

where p′min and p′max depend on p1
min, p1

max, p2
min, and p2

max.

Stated less formally, given two fact-dimension relations, relating facts and dimensions of the same type,
the union operator on the relations builds new fact-dimension relation: the new relation relates a fact and
a dimension value if the first relation, the second relation, or both the relations relate(s) the fact and the
value from the first dimension, from the second dimension, or from both. The probabilities for a resulting
relationship may be determined in different ways. We discuss this issue later in this section. Note that only
fact-dimension relations are found using these rules. The fact characterizations are inferred using the rules
from Section 5.

Definition 6.11. Consider two n-dimensional MO’s with the same fact schema, i.e., S1 = S2. The union
operator on MOs,

⋃
, is defined as:

M ′ = M1

⋃
M2 = (S′, F ′, D′

M ′ , R
′
M ′)

where

1. S′ = S1,

2. F ′ = F1
⋃

F2,

3. D′
M ′ = {D1

i

⋃D D2
i , i = 1, . . . , n},

4. R′
M ′ = {R1

i

⋃R
R2

i , i = 1, . . . , n}.

Stated less formally, given two MO’s with common fact schemas, the union operator combines dimen-
sions and fact-dimension relations with the help of the

⋃D and
⋃R operator, respectively.

Next, we refer to Definition 6.9 and consider the dependency of the resulting degrees of containment d

on the given ones d1 and d2. We present several ideas on the issue. First, if a user believes that dimension
hierarchies from the first MO are less precise than those from the second MO, then d should be equal to d2.
Second, if a user wants to decrease the chance of overcounting (undercounting) facts in the resulting MO,
then d should be equal to the minimum (maximum) of d1 and d2. Finally, d may be computed by applying
weights to d1 and d2 and summing the weighted values. Note that in any case normalization of the resulting
degrees (probabilities) may be necessary.

Next, we refer to Definition 6.10 and consider the dependency of the resulting probabilities p ′
min and

p′max on the given ones p1
min, p1

max, p2
min, and p2

max. We present several ideas on the issue. First, if
the facts-dimension relationships from the first MO are less precise than those from the second MO, then
p′min and p′max should be equal to p2

min and p2
max, respectively. Second, if a user wants to decrease the
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chance of overcounting (undercounting) facts in the resulting MO, then p′
min and p′max should be equal

to the minimum (maximum) of p1
min, p2

min and p1
max, p2

max, respectively. Finally, p′min and p′max may be
computed by applying weights to p1

min, p1
max, p2

min, and p2
max, and combining the weighted values. Note

that in any case normalization of the resulting probabilities may be necessary.

6.4 Other Operators

Given argument MOs, difference, projection, and identity-based join operators are not meant to transform
the probabilities of the fact characterizations or the degrees of containment in the dimensions. The only
requirement is to preserve the probabilities. Therefore, we define the probabilistic version of these opera-
tors as their deterministic counterparts in [20] except the probabilistic operators take probabilistic MOs as
arguments and produce probabilistic MOs in the result.

7 Query Processing with Pre-Aggregation

7.1 Minimum Expected Count

Pre-aggregation means pre-computing aggregates for one category and using them to compute aggregates
for higher categories. In this section, we present a method for computing the minimum expected count,
COUNTmin . We assume that all the fact characterizations in our data warehouse are inside characteriza-
tions. Therefore, the computations are based on the characterization sum rule from Section 5.2. In this
section, we consider one-dimensional MOs only, but our method may be easily extended to multidimen-
sional MOs.

Suppose C1 is the pre-aggregated category and we need to compute COUNT min(G), where G =
Groupd(l, pmin, pmax) such that l ∈ C2 and C1 @T C2. Next, suppose that K = {li : li ∈ C1 ∧ li @di

l},
i.e., K is the set of all the descendants of l at the pre-aggregated category C1. We assume that the pre-
aggregated values are COUNTmin(Gi), where Gi = Groupd(li, [0; 1]) for each li ∈ K .

We distinguish between two cases: (1) [pmin; pmax] = [0; 1] and (2) [pmin; pmax] ⊂ [0; 1].
Case (1) In this case, the group G is formed according to the liberal grouping, i.e, all the facts regardless

of their minimum probabilities are included in the group. Therefore, we precisely compute the minimum
expected count as follows:

COUNTmin(G) =

|K|∑

i=1

di · COUNTmin(Gi)

This computation corresponds directly to the characterization sum rule from Section 5.2.
Case (2) In this case the group G is a subset of the liberal group Group(l, [0; 1]), which we denote as

G′. So it is impossible to come up with the precise value of the minimum expected count. However, given
only the pre-aggregate values, we have no precise information on which facts belong to the group G. For
this reason, we come up with a method for estimating the difference between the minimum expected counts
for the groups G′ and G, which we present next.

The method is based on the idea that at a given aggregation level the data has a certain uncertainty level.
For a given category, this uncertainty level is described by the probability distribution of the minimum and
maximum probabilities of fact characterizations by the values from this category. For example, we may say
for values from the category C2, how many facts (in percentage) are characterized with the probability of
at least 0.5 and of at most 1. Such distributions may be computed from the historical data. A more formal
definition of the distribution is presented next.
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Definition 7.1. [Uncertainty distribution] For a category being aggregated, C2, we maintain an uncer-
tainty distribution, P : [0; 1]× [0; 1]� [0; 1]. For a given pair (p1, p2), P (p1, p2) is a probability that a fact
is characterized by a value from C2 with the probability of at least p1 and of at most p2.

In order to make our method more practical, we assume that an uncertainty distribution is a finite discrete
distribution, i.e., it is defined on a finite set of pairs (p1, p2), e.g., on the following set:

S = {(0, 0), (0, 0.1), (0, 0.2), . . . , (0, 1), (0.1, 0.1), . . . , (1, 1)}

Having defined the uncertainty distribution, we also assume that the facts in our warehouse may only be
characterized with a pair of probabilities that belong to the set S. Obviously, this is a practical assumption.

Getting back to the actual computation of the minimum expected count in case (2), given an uncertainty
distribution P : S� [0; 1]:

1. We define a set S ′ = {(p1, p2) ∈ S|p1 ≥ pmin ∧ p2 ≤ pmax}. The set contains only those pairs of
minimum and maximum probabilities that the facts from the group G will be characterized with.

2. Thus, the probability for a fact to belong to the group G is P (G) =
∑

(p1,p2)∈S′ P (p1, p2).

3. Next, if a number of facts in the group G′ is N , then we may assume that for each fact its expected
contribution to the group G′ is COUNTmin(G′)

N
.

4. This means that for each fact from the group G′ its expected contribution to the group G is P (G) ·
COUNTmin(G′)

N
.

5. By summing up the expected contributions of all the facts, we approximately compute the minimum
expected count as follows:

COUNTmin(G) ≈ P (G) · COUNTmin(G′),

where (just like in case (1) ) COUNTmin(G′) =
∑|K|

i=1 di · COUNTmin(Gi).

Next, we discuss the error of the method. First, when no facts belong to the group G, i.e., when
COUNTmin(G) = 0, maximal overcounting occurs, and the error is equal to P (G) · COUNTmin(G′).
Second, when all the facts belong to the group G, i.e., when COUNT min(G) = COUNTmin(G′), maximal
undercounting occurs, and the error is equal to (1 − P (G)) · COUNT min(G′). It is possible to inform the
user about the amount of the undercounting prior to query processing: the undercounting will amount up to
(1 − P (G)) % of the ”true” value.

7.2 Maximum and Average Expected Counts

As in Section 7.1, suppose C1 is a pre-aggregated category and we need to compute COUNTmax (G) and
COUNTavg(G), where G = Groupd(l, pmin, pmax) such that l ∈ C2 and C1 �T C2. Next, suppose that
K = {li : li ∈ C1 ∧ li �di

l}, i.e., K is a set of all the descendants of l at the pre-aggregated category C1.
If we inspect the characterization sum rule from Section 5.2, we notice that unlike the minimum prob-

ability the maximum probability of a fact f being characterized by the value l is obtained not only by
summing up the maximum probabilities of the same fact being characterized by the values from the set K .
In addition to the summation, the resulting maximum probability must be “cut” down to 1. This means
that compared to the case of the minimum expected count, with the maximum expected count, we have
an additional problem of estimating the values to be “cut”. We leave this estimation for the future work.
Consequently, we leave the complete methods for computing the maximum and average expected counts
for the future work.

19



8 Conclusions and Future Work

Motivated by the increasing use of location-based data warehouses (LBDWs) in industry, and the need to
handle complex, dynamic, uncertain multidimensional data in such LBDWs, we have proposed a powerful,
probabilistic data model that is able to capture the complexity of such data. The model provides a foundation
for handling complex, hierarchical, and uncertain data, e.g., LBS data such as transportation infrastructures
and the attached static and dynamic content, for example speed limits and vehicle positions. The paper
also formally defines a set of algebraic query operators that support querying of the afore-mentioned data.
Finally, the paper outlines a real-world case study, based on our collaboration with a leading Danish vendor
of location-based services.

To our knowledge, this paper is the first to address the management of complex, hierarchical, and
uncertain location-based data. More specifically, this paper is the first to describe a formal multidimensional
data model, a query algebra, and query processing techniques for such data.

In future work, it is interesting to develop the theoretical framework by generalizing the expected degree
of containment approach to intervals. On the implementation side, the most interesting directions concern
pre-aggregation issues such as methods for using pre-aggregation to compute a wider range of aggregate
functions, developing probabilistic pre-aggregation techniques, and finally developing pre-aggregation tech-
niques for dynamic content such as user positions, including an embedded probabilistic position prediction
method.
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