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1 Introduction

Uncertainty is a very important aspect of business data analysis. For example, location-based ser-
vices (LBSs), e.g., traffic or tourist related services, generate massive amounts of location-based
data that must be analyzed in order to optimize and personalize the services. The location-based
data is inherently uncertain. For example, in a transportation infrastructure, cars are moving dy-
namically, so the future location of a car is uncertain. Moreover, the current location is sometimes
also uncertain (e.g., known only to a wireless phone cell). For the analysis, of particular interest
are aggregation queries, e.g., ”For each street in Pullman, WA, how many users (in their cars) are
in the street?”. Current OLAP and data warehouse (DW) technology [14, 16, 27] supports aggre-
gation queries based on a multidimensional data model capturing hierarchies of dimensional data.
However, the uncertain data cannot be successfully analyzed with conventional, deterministic ag-
gregation queries that do not take the probabilistic nature of this kind of data into consideration.
Instead, we need to apply new types of aggregation queries. One such type would compute ex-
pected aggregate values (see [26]). However, by computing expected values, a user loses a lot
of important information such as extreme cases of aggregate values. Consequently, queries that
provide more information must be supported.

The contributions of this chapter are as follows. First, the paper generalizes the notion of mea-
sures in OLAP data cubes. Specifically, we propose to use probability distributions as aggregate
values instead of deterministic aggregate values. This approach captures much more information,
because a probability distribution can capture a whole range of possibilities of an aggregate value
together with their probabilities, while a deterministic aggregate value can only capture either a
summary of the whole range (e.g., an expected value) or one characteristic value from the range
(e.g., the maximum value). Second, the paper proposes new types of probabilistic OLAP queries
that operate on the generalized measure and techniques for processing these queries. Specifically,
aggregation queries ask for whole probability distributions (e.g., “For each street in Pullman, WA,
how many cars are in the street?”) and probability queries ask for summaries about the distributions
(e.g., “For each street in Pullman, WA, what is the probability that the number of cars in the street
exceeds 50?”). Third, the paper proposes a method for creating probability distributions from fact
data. The method enables pre-aggregation of our generalized measures. Fourth, the paper proposes
a method for using pre-aggregated probability distributions in order to compute higher-level aggre-
gate values based on convolution, or ”summation”, of the probability distributions. Both mentioned
methods provide mechanisms for approximate computation of the probability distributions, which
makes the computation time and space efficient. The methods are implemented in a prototype sys-
tem and the paper reports on results of initial experiments with the system. The paper thus extends
current OLAP/DW technology with means for probabilistic data management. The concepts pre-
sented in the paper are illustrated using a real-world case study from the LBS domain. The work is
based on an on-going collaboration with a leading Danish LBS vendor, Euman A/S [8].

Unlike this paper, which deals with uncertain, or probabilistic data, where probabilities are as-
signed to facts, previous work on incomplete data in multidimensional databases [7,17,18] focuses
on imprecise data, where deterministic facts are recorded with different granularities. Deterministic
aggregate values are sufficient for analyses of this kind of data. For this reason, unlike this paper,
the mentioned papers do not deal with probability distributions as aggregate values. This paper is
one of the first to deal with modeling and querying of probabilistic multidimensional data. To our
best knowledge, apart from our previous paper [26] and this paper, there is only one paper [15] that
deals with modeling and querying of this kind of data. However, unlike this paper, the paper [15]
deals with deterministic dimensions only and the implementation of the modeling and querying
techniques is still in progress.

There is a lot of previous research on deterministic aggregation queries (including the men-
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tioned work on incomplete data in multidimensional databases), both for multidimensional and
conventional data. However, unlike this paper, much of this work (e.g., the work on spatio-temporal
aggregation [19, 29, 30]) does not consider approximate query answering, which is very important
in dynamic environments where queries have to be answered very quickly or the query result is
outdated (e.g., in mobile location-based services). Some papers [11,20,21,25,28] do introduce the
approximate query answering into aggregation techniques. However, the probabilistic data is still
not considered. This paper extends the topics of the mentioned previous research by considering
fast, approximate probabilistic aggregation query answering techniques over probabilistic data.

Previous work on probabilistic data management in general [2, 4, 5, 9] handles uncertainty in
the data, including joins of relational tables that capture probability distributions. These joins can
be used to perform convolution of probability distributions. However, the work on joins does not
consider fast, approximate convolution. This paper does deal with approximate convolution. Out-
side data management domain, the efficient approximate convolution of probability distributions is
considered (e.g., in [22,23]), but this work makes strict assumptions about the distributions such as
the number of distributions approaching infinity [22] or uniform samples of their cumulative den-
sity functions [23]. This paper considers convolution in more general settings ( i.e., convolution of
arbitrary finite number of complex cumulative density functions).

The methods presented in this paper are developed for a particular powerful multidimensional
model (e.g., a model from paper [26]). The model is an extension of a deterministic multidimen-
sional model from [18].
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Figure 1: Case Study

The remainder of the paper is structured as follows. Section 2 presents the case study, and
describes content and queries. Section 3 briefly introduces the multidimensional data model used
as the foundation for the techniques presented in this paper, namely the multidimensional model
from paper [26]. Section 4 describes our method for using pre-aggregated probability distributions
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for further aggregation. Section 5 presents the method for computing the distributions from fact
data. Section 6 describes query processing techniques. Section 7 presents result of our experiments
with the methods from Sections 4 and 5. Finally, Section 8 concludes the paper and points to future
work.

2 Case Study: Location-Based Services

We now discuss the requirements for probabilistic data warehouses by presenting a real-world
case study of location-based services (LBS) for which a UML diagram can be seen in Figure 1.
First, we discuss the LBS content. Next, we discuss the data that may characterize the content.
This data includes content positions within the transportation infrastructure and the time when
the positions were reported/recorded. Specifically, we present a transportation infrastructure. We
describe two distinct representations of a road network and show how they are related. Content
positions are associated with the lowest level in one of the representations. The content and the
transportation infrastructure are captured by the data model from paper [26], which we briefly
describe in Section 3. This paper focuses on processing of several types of queries, for which the
model serves as the foundation. The queries are also discussed in this section.

2.1 Content

We start with discussing content. LBS have both point and interval content [10]. Point content,
which is the focus of our paper, concerns entities that are located at a specific geographic location,
have no relevant spatial extent, and are attached to specific points in the transportation infrastruc-
ture, e.g., traffic accidents, gas stations, and (users’ and other’s) vehicle positions. Interval content
concerns data that is considered to relate to a road section and is thus attached to intervals of given
roads. Examples include speed limits and road surfaces.

Content can be further classified as dynamic (frequently evolving) or static (rarely evolving).
Static content, e.g., gas stations or speed limits, remains attached to a point or an interval of a road
for a relatively long period of time. In this paper, we focus on very dynamic (hyper-dynamic) con-
tent, e.g., vehicle positions and their predicted trajectories (which evolve continuously). Positions
of static content are usually certain, i.e., deterministic, while positions of dynamic content are usu-
ally uncertain, i.e., probabilistic. For example, if a vehicle position is approximated by a wireless
phone cell that covers several roads, then the vehicle may be assumed to be on each of the roads
with some probability. Furthermore, any position prediction algorithm (for future time queries)
will have some degree of uncertainty.

In Figure 1, hyper-dynamic content is modeled by the “USER” cluster, where the “User” class
represents users and (implicitly) their vehicles, The “User” class participates in three full con-
tainment relationships capturing user age, preference, and gender. The users’ (vehicle) positions
in the infrastructure is modeled by the “LOCATION” cluster. The positions are captured at cer-
tain times, represented by the “TIME” cluster. This content positioning/attachment, is modeled
as a ”Content Attachment” class which is linked to users, positions, and times. In a probabilistic
data warehouse, the “Content Attachment” class would be a fact probabilistically characterized by
“USER”, “LOCATION”, and “TIME” dimensions.

2.2 Transportation Infrastructure

We now discuss the aspects of the transportation infrastructure relevant to data aggregation. Dif-
ferent, purpose-dedicated infrastructure representations, may be used, but most modern types of
infrastructure representations, e.g., kilometer-post and geographic, are (1) segment-based and (2)
hierarchical [10].
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The “LOCATION” cluster from the UML diagram in Figure 1(a) contains two segment-based
representations, “GEO REPR” and “POST REPR”. The two representations are based on real-
world representations used by the LBS company Euman A/S [8]. A detailed discussion of the
Euman’s representations can be found in [10]. The “GEO REPR” and “POST REPR” are obtained
from the corresponding Euman’s representations by representing lanes instead of roads. Often,
lanes of the same road have different characteristics, e.g., different traffic density, so lanes must
be captured separately [24]. We refer to segments that capture individual lanes, as lane segments.
Lane segments may be further subdivided into subsegments to obtain more precise positioning
(see Section 2.1). In the “LOCATION” cluster, each such lane segment level is a separate class.
“POST REPR” has three levels: 1) the “Lane” class which captures particular lanes, e.g., a lane
on an exit from a highway; 2) the “Scope” class which captures segments between two kilometer
posts, which we call post scopes, i.e, subdivisions of the road lanes above; 3) the “Interval” class
which captures one-meter intervals (of the post scopes above). The “GEO REPR” also has three
levels (but it could have more levels or less levels if needed). Here, a segment is a two-dimensional
polyline representing (a part of) a lane. Thus, a segment level is a geographical map. A sequence of
segments from the “Poly 3” class (finest scale map), is approximated by (contained in) a segment
from the “Poly 2” class (medium scale map), and similarly for “Poly 2” and “Poly 1” (coarsest
scale map). The levels define a hierarchy of full containment (aggregation) relationships between
segments, which is denoted by empty rhombus-headed arrows in our model.

Finally, relationships between the representations must be captured, to allow content attached
to one representation to be accessible from another. In the diagram, the relationships between the
representations are modeled as ”map” aggregations. Due to differences in how and from what
data the representations are built, these mappings are partial containment relationships, i.e., seg-
ments from the class “Interval” partially contain (fully contain is a special case) segments from the
“Poly 3” class. A partial containment relationship can also be considered a probabilistic relation-
ship. For example, suppose 10% of a segment from the level “Poly 3” is contained in a segment
from the level “Interval”. In a probabilistic data warehouse, we may convert this partial contain-
ment relationship into the following probabilistic containment relationship: a segment from the
level “Poly 3” is contained in a segment from the level “Interval” with the probability of 0.1.

The “position” association captures attachments of user content to level-three segments of
“GEO REPR”, making content mapped to “GEO REPR” accessible from “POST REPR”.

2.3 Time

We now discuss the temporal characteristics of content. As mentioned above, content positions
are captured at certain time intervals, which are organized in a containment hierarchy of temporal
granularities, see the “TIME” cluster in Figure 1. Our time hierarchy consists both of full and par-
tial containment relationships between temporal granularities, e.g., the relationship between hours
and days (weeks and years) is full (partial). In a probabilistic data warehouse, these relationships
will be captured as probabilistic relationships. User positions are linked to their time intervals by
the “time” association.

2.4 Queries

Analytical queries in LBS involve aggregations along multiple hierarchical dimensions, e.g., user
content attachments will be aggregated along the USER, LOCATION, and TIME dimensions. As
mentioned above, content positions may be given with some uncertainty expressed as probabil-
ity, and we thus need to evaluate aggregate queries over probabilistic data. Such data cannot be
successfully analyzed with conventional, deterministic aggregation queries that do not take the
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probabilistic nature of the data into consideration. Instead, we need to apply new types of aggrega-
tion queries. One such type would compute expected aggregate values (see paper [26]). However,
by computing expected values, a user loses a lot of important information such as extreme cases
of aggregate values. For this reason, probabilistic data warehouses should support a type of aggre-
gation queries that produce probability distributions out of base fact data. For example, the query
“For each segment e from the “Poly 2” level, how many cars are on the segment e?” should, for
each segment e, compute a probability distribution that would show a whole range of possible num-
bers of cars on the segment e along with their probabilities. We discuss processing of aggregation
queries in Section 6.3.

Next, computing probability distributions from “scratch”, i.e., from base fact data, in response
to every query could be very expensive for large data warehouses. For this reason, probabilistic data
warehouses should support pre-aggregation of probability distributions. We discuss creating pre-
aggregated data from base fact data in Section 4 and using the pre-aggregated data for answering
aggregation queries in Section 5.

Thus, aggregation query results should be probability distributions. However, there are situa-
tions where the user may not need to or will not see the whole distribution. For example, the user
may only be interested in summary about the distribution. Therefore, a probabilistic data ware-
house should support such summary queries on probability distributions, e.g., “For each segment e
from the “Poly 2” level, what is the probability that the number of cars on the segment e exceeds
50?”. We term such queries probability queries. We discuss processing of probability queries in
Section 6.2.

3 Data Model

We now briefly describe the data model from paper [26], which is the foundation for the query
processing techniques discussed in this paper. The model has constructs for defining both the
schema (types) and the data instances.

3.1 Data Model Schema

The schema of a cube is defined by a fact schema S that consists of a fact type F (cube name) and
a set D of the dimension types Ti for each dimension.

A dimension type consists of a set CT of the category types Cj (dimension level types), a
relation @T on CT specifying the hierarchical organization of the category types, and the special
category types >T and⊥T that denote the top and bottom category in the partial order, respectively.
For example, a category type C may be used to model a level of lane segments. The partial order on
category types, @T , specifies the partial (including full as a special case) containment relationships
among category types. The intuition is to specify whether members of a “child” category type have
to be contained in a member of a “parent” category type fully or partially, e.g., segments from the
same (different) representation(s). Next, a subdimension type of a dimension type is a set of its
category types. Subdimension types of the same dimension type do not intersect except at the >T

category type. For example, a subdimension type is used to model a transportation infrastructure
representation. The category types from the same (different) subdimension type(s) are related by
full (partial) containment relationships.
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Figure 2: Dimension types

Example 3.1. Figure 2(a) depicts dimension types Tu and Tt. In addition, Figure 2(b) depicts
a dimension type Tr . The types capture the “USER”, “TIME”, and ”LOCATION” clusters from
Figure 1, respectively. Next, the type Tr has two subdimension types Tg and Tp , which capture
“GEO REPR” and “POST REPR”, respectively. In Figure 2(b), the “boundary” of each subdimen-
sion type is a parallelogram and the types are labeled by (I) and (II), respectively. In the figures, an
oval represents a category type. Full (partial) containment category type relationships are given by
empty (filled) rhombus-headed arrows. From these direct relationships we can deduce the transitive
relationships between the category types.

3.2 Data Model Instance

In the model instances, a dimension D consists of a set of categories. The Type function gives the
corresponding type for dimensions and categories. A subdimension is an instance of a subdimen-
sion type.

A category Cj consists of a set of dimension values li. The partial order @ on the union of all
values, D̂, specifies the full or partial containment relationships of the values. For example, two
values that model segments from the same (different) representation(s) are usually related by a full
(partial) containment relationship. A special value > in each dimension fully contains every other
value in the dimension.

Each relationship l1 @ l2 has an attached degree of containment, d ∈ [0; 1], written l1 @d l2.
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Example 3.2. Figure 3 depicts a part of dimension Dr of type Tr . In the figure, dimension values
are represented by black circles. For each dimension values, its category is represented by an
oval that is horizontally aligned with the corresponding black circle. Full (partial) containment
relationships between dimension values are given by empty (filled) rhombus-headed arrows. The
corresponding degrees of containments are given by numbers by the arrows.

In a given dimension, the degrees have a unique interpretation, but different interpretations are
possible. In the following, we present two such interpretations. First, in the following definition,
we present a conservative interpretation.

Definition 3.3. [Safe degree of containment] Given two dimension values l1 and l2 and a number
d ∈ [0; 1], the notation l1 @ l2 ∧Degsaf (l1, l2) = d (or l1 @d l2, for short) means that “l2 contains
at least d · 100% of l1”. The special case of d = 0 means that “l2 may contain l1, and the size of
contained part is unknown”. We term d the safe degree of containment.

Transitive safe degrees are inferred according to the following principle: we infer the lowest
bound on the degree.

The safe degrees of containment are useful when the user wishes to infer only those degrees
that can be guaranteed, which may be a necessity in some situations. However, in other situations,
the user may be interested in the expected degrees of containment, which we introduce next. This
approach is based on probability theory [6]. We consider each dimension value as a set of points.
We deal with the probabilistic events of the form “a value l1 is contained in a value l2”, which is
equivalent to “any point in l1 is contained in l2”.

Definition 3.4. [Expected degree of containment] Given two dimension values l1 and l2 and a
number d ∈ [0; 1], the notation l1 @ l2 ∧Degexp(l1, l2) = d (or l1 @d l2, for short) means that
“l1 is contained in l2 with a probability of d”. We term d the expected degree of containment.

The rule of transitivity of partial containment with expected degrees infers the degrees of tran-
sitive relationships using probability theory. The basic idea behind the rule is that we obtain the
expected degree, expressed as probability, for a transitive relationship by summing up the expected
degrees (probabilities) for that relationship obtained through n different aggregation paths.

A multidimensional object (cube) consists of a set of facts F that are mapped to each dimen-
sion, Dj , with a fact-dimension relation, Rj ⊆ F ×Dj . For a fact f ∈ F and a dimension value
l ∈ Dj , a fact-dimension relationship, (f , l , pmin , pmax ) ∈ Rj , means that “f is inside l with the
probability that belongs to the interval [pmin; pmax]”. Next, fact characterizations, or inferred
fact-dimension relationships, written f  [pmin ;pmax ] l , also means that “f is inside l with the prob-
ability that belongs to the interval [pmin; pmax]”. The rules for inferring fact characterizations are
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based on probability theory. The basic idea behind the rule is that we obtain the probability for a
fact characterization by summing up probabilities for that fact characterization obtained through n
different aggregation paths.

A Note on Measures Generally, in our data model, dimensions and measures are treated
symmetrically, i.e., a dimension from a particular multidimensional object can be used as a domain
of an attribute of a multidimensional cell or as a domain of a measure. The model inherits this
property from the prototypical model [18]. Specifically, given a measure, its domain is captured
in a dimension. For example, in Figure 2(a), the dimension type Tu contains the AGE category,
which can be considered a domain of an AVG aggregation function. Then, in order to associate
a fact with a measure value, the fact is attached to the corresponding dimension value from the
measure dimension. For example, in order to record a user’s age, a fact is attached to a dimension
value from the AGE category. The same applies to the types of measures that we consider in this
paper, i.e., to probability distributions. However, for simplicity and clarity, in this paper, we hide
the “technical” details of capturing probability distributions and treat the distributions as if they
reside outside our data model.

4 Using Pre-Aggregated Probability Distributions for Aggregation

In this section, we present a method of using pre-aggregated data for a category for computation
of aggregate values for a coarser category. This method is a part of processing aggregate queries
extended to handle probability distributions (see Section 6.3). First, we develop the method under
the assumption that all of the relationships between dimension values are full, i.e., the relationships
are of the form e1 @1 e2 only. Then, in Section 4.5, we extend the method to support partial
containment. In general, the method is based on the well-known notion of convolution. The method
is general enough to handle pre-aggregated data from probabilistic data warehouses from different
domains, but we explain and exemplify the method having the LBS domain in mind.

4.1 Problem Statement

For simplicity and without loss of generality we assume that our data cube has only one dimension.
Suppose we are given two categories, Cfrom and Cto , such that Cfrom @ Cto . Next, suppose we
have pre-aggregated data for the category Cfrom . The data is given as follows. For each dimension
value e ∈ Cfrom , we have a set, Pe, called the pre-aggregated count distribution. The set describes
the probability distribution for count for e. More formally,

Pe = {([ae
1; b

e
1], p

e
1), ([a

e
2; b

e
2], p

e
2), . . . ([a

e
n; be

n], pe
n)}

where [ae
i ; b

e
i ] is the ith interval and pe

i is the probability for the count for e to belong to that
interval. The intervals are ordered by their lower bounds in ascending order, i.e., i < j ⇒ ai ≤
aj . Furthermore, we allow the intervals to overlap, because we assume an arbitrary methods of
producing the distribution. For the same reason, pe

i may be an arbitrary probability. Since counts
are usually whole numbers, we assume that the interval bounds as well as other elements of the
intervals are whole numbers. Thus, in this paper, we deal with discrete distributions.
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Example 4.1. [Dimension] In order to exemplify our method more clearly, we simplify the type
Tr from Figure 2(a). The dimension of the simplified type is smaller and has only full containment
relationships (see Figure 4). Next, suppose Cfrom = CL P 3 and Cto = CL P 2, i.e., given the pre-
aggregated data for CL P 3, we will aggregate to the level of CL P 2. In our case, the pre-aggregated
data is given by the three sets Pe121 , Pe122 , and Pe123 .

Before defining aggregate values, we present the definition of convolution, which is the basis
for our definition of aggregate values.

Definition 4.2. [Convolution] Given n random variables, X1, X2, . . ., and Xn, the convolution
of X1, X2, . . ., and Xn is the random variable Z = X1 + X2 + . . . + Xn (also denoted as
Z =

∑n
i=1 Xi).

Next, we present the definition of an aggregate value.

Definition 4.3. [Count distribution] Given a value e ∈ Cto and a set of pre-aggregated count
distributions, P = {Pe1 , Pe2 , . . . , Pem} such that ei ∈ Cfrom ∧ ei @ e, the count distribution,
Count(e), is defined as follows:

Count(e) =

m∑

i=1

Pei

According to Definition 4.3, which is a concrete case of Definition 4.2, we compute a proba-
bility distribution for a count by convolution of random variables.

Example 4.4. [Set to convolve] Continuing Example 4.1, suppose we want to compute the count
for e12, Count(e12). Then, the set of pre-aggregated count distributions (or the corresponding
variables) is P = {Pe121 , Pe122 , Pe123}. Thus, Count(e12) = Pe121 + Pe122 + Pe123 .

A set Pei
from Definition 4.3 looks similar to a histogram [21]. However, we choose to con-

sider a set to be a probability distribution of a random variable rather than a histogram. There are
several reasons for that. First, a histogram is usually used as a compact representation of a rela-
tional table or a whole set of OLAP aggregate values in a data cube, while we use the set Pei

to
represent a probability distribution of a single OLAP aggregate value. Second, we use the convolu-
tion operation to perform OLAP aggregation in a convenient way. However, convolution is defined
on random variables (or their probability distributions) and not defined on histograms.
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4.2 Convolution

In this section, we present a method for efficiently computing the count distribution from Defi-
nition 4.3. The method assumes that the distributions from the set P are independent. This is a
practical assumption, because if the distributions are, in fact, dependent, we still compute a use-
ful approximation of the count distribution. A more detailed discussion of that can be found in
Section 6.3.

It is extremely inefficient to compute the convolution according to Definition 4.2, i.e., simply
adding one variable from the set P at a time. Specifically, if the number of distributions in the
set P is m and the number of intervals in each distribution is n, after each addition the number of
intervals in the intermediate result will grow by a factor of n, reaching nm after the convolution is
finished. This means that the time needed to compute the convolution is exponential in the number
of distributions in the set P .

Thus, we need to reduce the number of intervals to consider. At the same time, we must
keep the result correct. We do that by coalescing adjacent and intersecting intervals after each
addition. Generally, coalescion takes several intervals, returns their union and assigns the sum of
their probabilities to the probability of the result. This reduces the precision of the result, but still
keeps the result correct. The pseudocode for the computation of the convolution is presented in
Algorithm 4.1.

Algorithm 4.1 Count
Require: In: P = {Pe1 , Pe2 , . . . , Pem}
Require: Out: R = {([α1, β1], r1), ([α2, β2], r2), . . . , ([αδ , βδ ], rδ)}

1: R ← Pe1

2: for all i ∈ {2, . . . ,m} do
3: R ← Add(R, Pei

)
4: δ ← GetDelta(R)
5: if |R| > δ then
6: R ← Coalesce(R, δ)
7: return R

The algorithm Count takes one parameter: a set of pre-aggregated count distributions, P ,
which is defined earlier. First, the algorithm takes the first and second distributions from P , Pe1 and
Pe2 and computes their convolution (line 3). Second, the algorithm decides on a natural number,
δ, which limits the number of elements in the resulting distributions (line 4). (In general, the lower
the value of δ, the higher the system performance is. On the other hand, the higher the value of
δ, the more informative the coalesced distribution is. Ideally, the system should aim at a balance
between the performance and the informativeness of the distribution. We leave details of strategies
for deciding on the parameter δ for future work.) Third, the algorithm coalesces the result, R, so
that the number of intervals in it is no greater than δ (line 6). Then, the algorithm repeatedly takes
the next pre-aggregated count distribution from P , Pei

, and performs the described sequence of
actions with the two distributions, Pei

and R.
In line 06, the procedure Add adds two distributions. Specifically, suppose we are given two

distributions,
P1 = {([a1; b1], p1), ([a2; b2], p2), . . . , ([an; bn], pn)}

and
P2 = {([x1; y1], q1), ([x2; y2], q2), . . . , ([xn; yn], qn)}

Then, for each i and j, we add intervals [ai; bi] and [xj; yj ] according to the rules of interval
arithmetics [13]. Specifically, for each i and j, [ai; bi] + [xj ; yj] = [αij ;βij ], where αij = ai + xj
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and βij = bi + yj . The probability pi · qj is assigned to the resulting interval. In summary, the
result of the procedure is a probability distribution defined as

R = {([αij ;βij ], pi · qj), i = 1, . . . n, j = 1, . . . , n}

Note that in R the intervals may intersect, because the intersecting intervals still correctly represent
the probability distribution for count.

Example 4.5. [Add] Continuing Example 4.1, we demonstrate the working of the procedure Add.
Suppose we have the following pre-aggregated count distributions in the collection P :

1. Pe121 = {([0; 10], 0.2), ([6; 15], 0.3), ([16; 30], 0.5} and

2. Pe122 = {([5; 12], 0.3), ([10; 20], 0.3), ([21; 25], 0.4)}.

When we convolve distributions in P by the procedure Count, the first (i = 2), iteration of the
loop in line 04, will produce the following distribution:

Rex = Add (Pe121 , Pe122)

= {([0 + 5; 10 + 12], 0.2 · 0.3), ([10; 30], 0.06), ([11; 27], 0.09),

([16; 35], 0.09), ([21; 35], 0.08), ([21; 42], 0.15), ([26; 50], 0.15),

([27; 40], 0.12), ([37; 41], 0.2)}

Note how we obtained the first interval, [5; 22], from Rex: the interval is the sum of the first interval
from Pe121 , [0; 10], and the first interval from Pe122 , [5; 12]. The interval’s lower bound, 5, is the
sum of the other two intervals’ lower bounds, 0 and 5, and, analogously, the interval’s upper bound,
22, is the sum of the other two intervals’ upper bounds, 10 and 12. The [5; 22] interval’s probability
is the product of the other two interval’s probabilities. The intuition is as follows: if we know that
the number of cars on a segment e121 is between 0 and 10 with probability of 0.2 and that the
number of cars on a segment e122 is between 5 and 12 with a probability of 0.3, then (assuming
that a car’s location is independent of other cars’ locations) we infer that the total number of cars
on both segments is between 5 and 22 with a probability of 0.6.

4.3 Coalescion

Algorithm 4.2 Coalesce
Require: In: R = {([a1; b1], p1), ([a2; b2], p2), . . . , ([an; bn], pn)}, δ ∈ N
Require: Out: Rout

1: mδ ← GetMaxBestInt(R, δ)
2: Lδ ← GetNumberOfGroups(R, δ)
3: Rbest ← FindBestIntervals(R,mδ)
4: G← BuildGroups(R,Lδ)
5: Rr ← ∅
6: for all Gj ∈ G do
7: Uj ← Unite(Gj \ Rbest)
8: Rr ← Rr ∪ Uj

9: Rout ← Rr ∪Rbest

10: return Rout

In line 6 of the procedure Count (see Algorithm 4.1), the procedure Coalesce coalesces in-
tervals from a distribution. The pseudocode of the procedure is presented in Algorithm 4.2. In the
following, we describe the algorithm in detail.
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Coalescion is performed as follows. Suppose we have to coalesce a distribution:

R = {([a1; b1], p1), ([a2; b2], p2), . . . , ([an; bn], pn)}

First, in line 3, the procedure FindBestIntervals finds a set of “best” intervals from R, Rbest, i.e.,
the intervals that should not be coalesced. In principle, we allow arbitrary definitions of a “good”
interval. However, in Example 4.6, we propose a particular definition, HIGH UNIT PROB, which
is useful from a practical point of view.

Example 4.6. [HIGH UNIT PROB] Since it is very important to preserve the “shape” of the
distribution, e.g., local maximums of its density function, a “good” interval, ([a; b], p) should have
a high unit probability, pu = p

b−a+1 . If we assume that all the elements inside the interval have the
same probability, the unit probability indicates the probability of a single element of the interval.
Thus, the procedure FindBestIntervals returns a set of intervals that have unit probabilities that
exceed a certain threshold, pth

u . The threshold, pth
u , is inversely proportional to the average unit

probability, i.e., pth
u = ρ

l
, where l =

∑n
i=1 bi − ai + 1 and ρ is a constant.

Since our primary goal is to limit the number of intervals in the resulting distribution, Rout, the
cardinality of Rbest, |Rbest|, should not exceed a number that is less than δ, mδ. This means that we
take the top mδ “best” intervals. The value of mδ is determined by the procedure GetMaxBestInt
in line 1. We leave the details of the procedure for future work.

Second, in line 4, the procedure BuildGroups partitions the set Rc into groups. A group is
a series of consecutive intervals that will be coalesced. Two intervals from different groups will
never be coalesced. Such grouping reduces overlap between the intervals that are obtained from
coalescion. The number of groups, Lδ , is determined by the procedure GetNumberOfGroups
in line 2. In principle, we allow arbitrary additional requirements for the groups. However, as in
the case of the “good” intervals, in Example 4.7, we propose a specific requirement, EQUI PROB,
which is useful from a practical point of view.

Example 4.7. [EQUI PROB] Since it is very important to preserve the “shape” of the distribution,
the sum of interval probabilities for each group should be approximately the same, i.e., approxi-
mately equal to 1

Lδ
.

In order to limit the number of intervals in Rout, Lδ should be less than δ. Moreover, for the
same reason, it should hold that Lδ + mδ = δ.

Third, the loop in line 6 iterates through a set of the groups and performs actual coalescion.
For each group, Gj , the procedure Unite unites all its intervals except for the “good” ones, i.e., the
ones from Rbest. The probability of a union is the sum of the probabilities of the united intervals.
By this, each group Gj reduces to a smaller set of intervals, Uj .

As mentioned earlier, coalescion reduces the precision of the distribution, i.e., instead of indi-
cating two shorter intervals [ai; bi] and [aj; bj ] for the probable count value, we indicate a longer
one [ai; bj ]. However, coalescion keeps the distribution correct, i.e., the probability to have a count
value from the interval [ai; bj ] is the same pi + pj before and after coalescion.

Finally, the procedure Coalesce used with our strategies HIGH UNIT PROB and EQUI PROB
is relatively fast. The procedure’s time complexity is O(n), where n is the number of intervals of
the input distribution, R. Specifically, let us assume that the procedure GetMaxBestInt runs
in constant time (e.g., mδ is determined before the procedure Coalesce starts). Next, the pro-
cedure GetNumberOfGroups runs in constant time, the procedures FindBestIntervals and
BuildGroups perform a linear scan of the set of intervals, and the loop in line 6 that unites the
intervals is also a linear scan.
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Gex
1 Gex

2

Rex [5;22] [10;30] [11;27] [16;35] [21;35] [21;42] [26;50] [27;40] [37;41]
p 0.06 0.06 0.09 0.09 0.08 0.15 0.15 0.12 0.20
pu 0.003 0.003 0.005 0.0045 0.005 0.007 0.006 0.009 0.04

Table 1: The distribution, Rex, with “best” intervals identified and groups built, but before uniting

U ex
1 U ex

2

Rex
out [5;35] [21;42] [26;50] [27;40] [37;41]

p 0.38 0.15 0.15 0.12 0.20

Table 2: The final result of coalescion, the distribution Rex
out, obtained by uniting the intervals from

Rex

Example 4.8. [Coalesce] Continuing Example 4.5, we demonstrate the working of the procedure
Coalesce. Let us continue the first, i.e., when i = 2, iteration of the loop in line 2 of the pro-
cedure Count. Table 1 depicts the distribution Rex that needs to be coalesced. Specifically, the
table present the intervals in the row marked by Rex and their corresponding probabilities and unit
probabilities in the rows marked by p and pu, respectively. Suppose we need to reduce the num-
ber of intervals to 5, i.e., δ = 5. Then, suppose we decide to guarantee that the top three “best”
intervals remain intact, i.e., mδ = 3, Furthermore, suppose a “good” interval is a one whose unit
probability, pu, exceeds 0.0055, i.e., pth

u = 0.006. Then, the number of groups, Lδ = δ −mδ = 2
and, consequently, the sum of the interval probabilities of each group must be approximately 1/2.
According to this, we form two groups, Gex

1 and Gex
2 (see Table 1). Also, we identify the set of the

three “best” intervals, Rex
best ([26; 50] is the fourth “best” interval, but it was left out, because we

need only three). The “best” intervals are shown in bold italic in Table 1.
Table 2 presents the final result of the coalescion, i.e., the distribution Rex

out. In the group Gex
1 ,

the first five intervals were united and the last, ”best” interval retained. In the group Gex
2 , nothing

was united, because there was only one “non-best” interval. The corresponding sets of united
intervals are shown under U ex

1 and U ex
2 , respectively.

Note the importance of retaining “best” intervals. For example, before coalescion, we can
see that 20% of the probability mass is concentrated in a very short interval, [37; 41], which is a
very interesting property of the distribution. Moreover, another 12% of the mass is in the interval
[27; 40]. Taking into consideration that the unit probability of [27; 40] is 0.009, we can conclude
that the probability to have more than 36 cars is more than 5 ∗ 0.009 + 0.20 = 0.245. If we had
chosen to unite [37; 41] and [27; 40], the unit probability of the resulting interval, [27; 41], would
have been almost two times smaller, 0.021. In that case, the lower limit for the probability to have
more than 36 cars would be merely 0.021 ∗ 5 = 0.105.

4.4 Data Selection

The method for using pre-aggregated data described so far may be complemented with data selec-
tion. In essence, we filter the pre-aggregated count distributions so that only data with the required
minimum degree of certainty is used for computing higher-level aggregate values. In other words,
we consider only the most likely values for counts and assume that other values are not possible at
all.

As before, suppose we are given two categories, Cfrom and Cto , such that Cfrom @ Cto . Next,
suppose we have pre-aggregated data for the category Cfrom . The data is given by the collection of
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pre-aggregated count distributions, P . For a dimension value e ∈ Cfrom , the collection contains a
pre-aggregated count distribution, i.e., a set

Pe = {([ae
1; b

e
1], p

e
1), ([a

e
2; b

e
2], p

e
2), . . . ([a

e
n; be

n], pe
n)}

where [ae
i ; b

e
i ] is the ith interval and pe

i is the probability for the count for e to belong to that interval.
Data selection works as follows. Given a value e′ ∈ Cto , we compute a count distribution by

considering a set of distributions, P = {Pe|e ∈ Cfrom ∧ e @ e′}. Given a degree of uncertainty,
pd ∈ [0; 1], for each distribution Pe ∈ P , we filter out those intervals that have a probability less
than pd. More formally, for each Pe, we construct the following new distribution:

P ′
e = {([a; b], p)|([a; b], p) ∈ Pe ∧ p ≥ pd}

Next, we define a new set of distributions as follows:

P ′ = {P n′
e |e ∈ Cfrom ∧ e @ e′}

Then, we finish the computation of a probability distribution of the count for the value e ′ by per-
forming convolution on P ′ using the algorithm Count from Algorithm 4.1 with P ′ as the algo-
rithm’s parameter. If at least one interval from any of the distributions in P has been filtered out,
the sum of interval probabilities of the result of the convolution of P ′ is less that 1. In this case, the
interval probabilities could be normalized so that their sum equals 1.

Example 4.9. [Data selection] In this example, we complement convolution from Examples 4.5
and 4.8 with data selection. If we set the number pd = 0.3, the distributions Pe121 and Pe122 reduce
to the following distributions, respectively: P ′

e121
= {([16; 30], 0.5)} and P ′

e122
= {([21; 25], 0.4)}.

Then, Rex′ = {([37; 41], 0.2)}. Obviously, in this case we do not coalesce.
Comparing the results of convolution with and without data selection, i.e., the distributions

Rex′ and Rex
out (from Example 4.8), we can say that Rex

out is a full, correct result, while Rex′ is ap-
proximate, partial result that nevertheless preserves the most interesting property of the full result,
i.e., the local maximum represented by the interval [37; 41].

The method can be easily generalized for (1) a set of degrees of uncertainty, with each degree
in the set, pg, assigned to a particular distribution, Pg , and for (2) degrees of uncertainty given as
intervals. In addition, a degree of uncertainty may be a function, e.g., pg may be the maximum
probability from the distribution Pg .

The method gives the user and/or the system a clear way of adjusting the degree of data uncer-
tainty. In addition, the data that the user and/or system is not interested in will be discarded, which
improves performance. Since some data may be discarded and, consequently, the pre-aggregate
values distorted, the method is best suited for quickly obtaining approximate, partial aggregate val-
ues that provide a hint on a correct, full aggregate values. A useful OLAP scenario would be as
follows. By first setting a high value of pd, the user will obtain a coarse query result. If the obtained
coarse result does not provide enough information to the user, in order to obtain more information,
the user may refine the result by setting a lower pd.

4.5 Handling Partial Containment during Aggregation

The method from Section 4.2 computes aggregate values under the assumption that all the rela-
tionships between dimension values are full containment relationships. In this section, we extend
the settings to also allow partial containment relationships with both safe and expected degrees of
containment, and we extend the method accordingly.
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Figure 5: Dimension of a type Tr , with partial containment relationships

In order to exemplify handling partial containment with expected degrees during aggregation,
we modify the dimension from previous examples (see Figure 4) to contain partial relationships
between dimension values instead of the full relationships. The modified dimension is presented in
Figure 5. We implicitly refer to this figure in Examples 4.11 and 4.13.

In the following, we consider cases of expected and safe degrees separately. For both cases, as
in Section 4.2, given a value e ∈ Cto , we have a collection of pre-aggregated distributions that are
used to compute an aggregate value for e. More formally, we have a set P = {Pe1 , Pe2 , . . . , Pem}
such that ei ∈ Cfrom ∧ ei @pi

e .
Expected Degrees Let us consider two cases. First, if for any i, pi = 1, i.e., if all the

relationships are full ones, each pre-aggregate value surely contributes to the aggregate value for e.
Second, however, if for some i, pi < 1, i.e., if ei is partially contained in e, then the pre-aggregate
value Pei

probabilistically contributes to the aggregate value for e. Let xi be an event “the pre-
aggregate value Pei

contributes to the aggregate value e”. The probability of xi is pi. In fact, we
also consider the first case as a probabilistic one, where the probability of xi is 1.

Next, we consider how probabilistic contributions of pre-aggregated values influence the higher
level aggregated values. Given an interval ([a; b], p) from some Pei

such that the probability of xi

is pi, we consider an event y defined as “the pre-aggregated count falls into the interval, [a; b], and
also contributes to the aggregated value for e”. The event y is a conjunction of two independent
events: xb

a (defined as “the pre-aggregated count falls into the interval [a; b]“) and xi. Since the
probability of xb

a is p and the probability of xi is pi, the probability of y is p · pi. More formally,
for pre-aggregated count distribution from the set P ,

Pei
= {([aei

1 ; bei
1 ], pe

1), ([a
ei
2 ; bei

2 ], pei
2 ), . . . ([aei

n ; bei
n ], pei

n )}

we define a probabilistic pre-aggregated count distribution, P a
ei

, as follows:

P a
ei

= {([aei

1 ; bei

1 ], pi · p
e
1), ([a

ei

2 ; bei

2 ], pi · p
ei

2 ), . . . ([aei
n ; bei

n ], pi · p
ei
n )}

Intuitively, the probabilistic pre-aggregated count distribution is a distribution of the probability
that the count belongs to certain intervals and at the same time contributes to the higher level
aggregate value.
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Next, we present the definition of an aggregate value.

Definition 4.10. [Probabilistic count distribution] Given a value e ∈ Cto and a set of pre-
aggregated count distributions, P = {Pe1 , Pe2 , . . . , Pem} such that ei ∈ Cfrom ∧ ei @pi

e, the
probabilistic count distribution, Countp(e), is defined as follows:

Countp(e) =
m∑

i=1

P a
ei

where P a
ei

is a probabilistic pre-aggregated count distribution obtained from the pre-aggregated
count distribution, Pei

.

Thus, in the case of partial containment relationships between dimension values with expected
degrees, an aggregate value is a convolution of the pre-aggregate values that applies a weight to
probabilities of the pre-aggregate values. More formally, given a value e, an aggregate value for
e is the result of convolution of the following set of distributions: P a = {P a

e1
, P a

e2
, . . . , P a

em
}.

The convolution of this set is performed exactly as described in Section 4.2, i.e., by the algorithm
Count from Algorithm 4.1 that takes the set P a as the input parameter.

Example 4.11. [Convolution with partial containment with expected degrees] Analogously to
Example 4.4, suppose we want to compute the probabilistic count for e12, Countp(e12). Then, the
set of pre-aggregated count distributions (as in the previous examples) is P = {Pe121 , Pe122 , Pe123}.
Thus, according to Definition 4.10, Countp(e12) = P a

e121
+P a

e122
+P a

e123
. For example, if we have

that
Pe121 = {([0; 10], 0.2), ([6; 15], 0.3), ([16; 30], 0.5}

then the distribution distribution P a
e121

is given as follows:

P a
e121

= {([0; 10], 0.2 · 0.5), ([6; 15], 0.3 · 0.5), ([16; 30], 0.5 · 0.5}

= {([0; 10], 0.1), ([6; 15], 0.15), ([16; 30], 0.25}

Safe Degrees If for any i, pi = 1, i.e., if all the relationships are full ones, each pre-aggregate
value fully contributes to the aggregate value for e. However, if for some i, pi < 1, i.e., if ei is only
partially contained in e, then the pre-aggregate value Pei

also partially contributes to the aggregate
value for e. The size of the contained part is pi · 100% of ei, so if a full count is c, then it is natural
to estimate the contributing part by pi · c. More formally, for any i = 1, . . . ,m, we define a partial
pre-aggregated count distribution, P a

ei
, as follows:

P a
ei

= pi · Pei
= {([pi · a

ei

1 ; pi · b
ei

1 ], pe
1), ([pi · a

ei

2 ; pi · b
ei

2 ], pei

2 ), . . . ([pi · a
ei
n ; pi · b

ei
n ], pei

n )}

Since the interval bounds are integer numbers, the results of multiplications from should include
rounding. Next, we present a definition of an aggregate value.

Definition 4.12. [Partial count distribution] Given a value e ∈ Cto and a set of pre-aggregated
count distributions, P = {Pe1 , Pe2 , . . . , Pem} such that ei ∈ Cfrom ∧ ei @pi

e, the partial count
distribution, Countp(e), is defined as follows:

Countp(e) =

m∑

i=1

pi · Pei
=

m∑

i=1

P a
ei

16



Thus, in this case, an aggregate value is a convolution of partial pre-aggregate values. More
formally, given a value e, an aggregate value for e is the result of convolution of the following set
of distributions: P a = {P a

e1
, P a

e2
, . . . , P a

em
}. The convolution is performed exactly as described

in Section 4.2, i.e., by the algorithm Count from Algorithm 4.1 that takes the set P a as the input
parameter.

Example 4.13. [Convolution with partial containment with safe degrees] Analogously to Ex-
ample 4.4, suppose we want to compute the partial count for e12, Countp(e12). Then, the set of
pre-aggregated count distributions (as in all the previous examples) is P = {Pe121 , Pe122 , Pe123}.
Thus, according to Definition 4.12, Countp(e12) = P a

e121
+P a

e122
+P a

e123
. For example, if we have

that
Pe121 = {([0; 10], 0.2), ([6; 15], 0.3), ([16; 30], 0.5}

then the distribution distribution P a
e121

is given as follows:

P a
e121

= 0.5 · {([0; 10], 0.2), ([6; 15], 0.3), ([16; 30], 0.5}

= {([0; 5], 0.2), ([3; 8], 0.3), ([8; 15], 0.25}

5 Computing Pre-Aggregated Probability Distributions

In this section, we present a method for pre-aggregating data. This method is a part of processing
aggregate queries extended to handle probability distributions (see Section 6.3). In general, the
method is an adaptation of the method for using pre-aggregated data discussed in Section 4. The
method is general enough to handle fact data from probabilistic warehouses from different domains.
However, we also extend the method to take advantage of LBS domain specifics.

5.1 Basic Method

In the following, we present the problem statement. Suppose we are given a dimension value e. Let
Fe = {f |f  [pmin;pmax] e} be the set of all facts characterized by the value e. So far, we assume
that pf

max = pf
min = pf . Our aim is to compute a probability distribution for count for e. Next, we

formally define this distribution.

Definition 5.1. [Pre-aggregated count distribution]
Given a dimension value, e, and a set Fe = {f |f  pf

e}, a pre-aggregated count distribution,
PreCount(e), is defined as follows:

PreCount(e) = {(α, pα)|α ∈ N+}

where

pα =
∑

F ′:F ′⊆Fe∧|F ′|=α

pf1 · pf2 · . . . · pfα · (1− pfα+1) · (1− pfα+2) · . . . · (1− pfn)

and, in turn, f 1, f2, . . ., and fα belong to F ′ while fα+1, fα+2, . . ., and fn belong to Fe \ F ′.

The idea behind Definition 5.1 is as follows. We will denote the probability of an event w by
P (w). Let us compute pα, i.e., the probability that the count for e is equal to α. For a value of
the count for e to be equal to α, exactly α facts must be characterized by e and others must be
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Figure 6: Creating pre-aggregated data

characterized by other values. Given a subset of the set Fe that contains α facts, F ′, let wF ′ be
the event “all the facts from the set F ′ are characterized by e and other facts are characterized by
other values”. For two facts, f1 and f2, we assume that their characterizations by a given value,
e, are disjoint and independent events. This means that if f 1, f2, . . ., and fα belong to F ′ while
fα+1, fα+2, . . ., and fn belong to Fe \ F ′, then P (wF ′) = pf1 · pf2 · . . . · pfα · (1− pfα+1) · (1−
pfα+2) · . . . · (1 − pfn). Now, let v be the event “exactly α facts are characterized by e and other
facts are characterized by other values”. The event v is the following disjunction of disjoint events:∨

F ′:F ′⊆Fe∧|F ′|=α wF ′ . Therefore,

pα = P (v)

=
∑

F ′:F ′⊆Fe∧|F ′|=α

P (wF ′)

=
∑

F ′:F ′⊆Fe∧|F ′|=α

pf1 · pf2 · . . . · pfα · (1− pfα+1) · (1− pfα+2) · . . . · (1− pfn)

In the following, we present our method. Computing the count distribution directly according
to Definition 5.1 is extremely inefficient. It requires enumerating all subsets of the set Fe. If the
number of facts in the set Fe is n, then there are 2n subsets. This means that time needed for the
convolution operation is exponential in the number of facts characterized by e. Such a complexity
cannot be handled by large modern real-world warehouses that contain millions or even billions of
facts.

In order to compute the count distribution in a more efficient way, we will adapt the method
from Section 4. As in Section 4, the efficiency is gained due to coalescion. The adaptation is done
in several steps. For a dimension value, e:

1. we consider each fact characterization, f  pf
e, to be a probability distribution, Pf , that

assigns the probability pf to the interval [1; 1] and the probability 1−pf to the interval [0; 0].
More formally,

Pf = {([0; 0], 1 − pf ), ([1; 1], pf )}
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Given the set of facts, Fe = {f |f  pf
e}, we redefine the set of distributions, P , from

Section 4 as the set of distributions Pf , one for each fact from the set Fe. More formally,

P = {Pf |f ∈ Fe}

2. we convolve the distributions from P by the procedure Count from Algorithm 4.1.

The result of the convolution from Step 2 is the pre-aggregated count distribution for the dimension
value e, PreCount(e).

Example 5.2. Figure 6 presents our method for creating pre-aggregated count distributions graph-
ically. The figure depicts three states that the fact data assumes during the process. The states are
labeled State I, State II, and State III. The fact data assumes State I before Step 1, State II after Step
1, and Step III after Step 2.

Suppose we need to create pre-aggregate values for the level L P 3. The facts characterized
by dimension values from this level can be seen under State I. The facts form the following sets:
Fe121 = {f}, Fe122 = {f, g}, and Fe123 = {g, h}. First, we transform the fact characterizations
into the following probability distributions:

f  0.6 e121 into Pf = {([0; 0], 0.4), ([1; 1], 0.6)},

f  0.4 e122 into Qf = {([0; 0], 0.6), ([1; 1], 0.4)},

g  0.7 e122 into Qg = {([0; 0], 0.3), ([1; 1], 0.7)},

g  0.6 e123 into Rg = {([0; 0], 0.7), ([1; 1], 0.3)},

h 1 e123 into Rh = {([0; 0], 0), ([1; 1], 1)}.

These distributions are grouped into the sets P = {Pf}, Q = {Qf , Qg}, and R = {Rg, Rh}, for
the values e121, e122, and e123, respectively. These sets are represented by the clouds under State
II. Finally, we convolve the distributions from P , Q, and R into the distributions P ′, Q′, and R′,
respectively, where

P ′ = {([0; 0], 0.4), ([1; 1], 0.6)},

Q′ = {([0; 0], 0.18), ([1; 1], 0.54), ([2; 2], 0.28)},

R′ = {([0; 0], 0), ([1; 1], 0.7), ([2; 2], 0.3)}.

The result can be seen under State III.
Thus, PreCount(e121) = P ′, PreCount(e122) = Q′, and PreCount(e123) = R′.

5.2 Method Extension for Location-Based Services

The basic method from Section 5.1 is quite generic in the sense that it may be applied to fact data
from any domain. However, if we consider data from a particular domain, further time-efficiency
improvements are possible. In this section, we propose such an improvement for our example
location-based services domain.

The improvement is based on the assumption that objects in transportation infrastructures, e.g.,
cars, move in groups, or units. In turn, this means that for a given segment, e, a whole unit is either
on the segment or outside it. More formally, this means that given a set of facts, Fe = {f |f  pf

e},
we partition the set into units u1, u2, . . ., uk. Given a unit ui = {f1, f2, . . . , fmi

} such that
f1  p1 e, f2  p2 e, . . . , fmi

 pmi
e, we define a unit distribution, Pui

= {(mi, qi), (0, 1 − qi)},
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where qi depends on p1, p2, . . . , pmi
. Next, by modifying Definition 5.1, we define the approximate

pre-aggregated count distribution, PreCount a(e), as

PreCounta(e) = {(β, pβ)|β ∈ N+}

where pβ =
∑

c1+c2+...+ck=β Pu1(c1) ·Pu2(c2) · . . . ·Puk
(ck). In turn, Pui

(ci) denotes qi and 1−qi,
if ci = mi and ci = 0, respectively.

Given a dimension value, e, the actual computation of PreCount a(e) may be done as in Sec-
tion 5.1 with some modifications. Specifically, we redefine the set P as the set of unit distributions,
i.e., P = {Pu1 , Pu2 , . . . , Puk

}. Then, we convolve the distributions in the set P .
The described improvement gives a user and/or a system control over time complexity and

over precision of the method from Section 5.1. More specifically, by creating groups of size m and
thereby reducing the number of distributions in the set P by the factor of m (1) the time complexity
(defined as the number of distribution summations) is reduced m times (2) precision is reduced m
times, i.e., the result is a set of possible counts {m, 2 ·m, . . . , n} instead of {1, 2, . . . n}. Note that
in this case the precision reduction is a positive feature, because when the number of facts is large,
the user will wish to decrease the amount of the received information. Decreasing the precision of
the result is a way to do that.

Now we present some ideas on which facts to unite and what probabilities to assign to the units.
In general, we believe that it is reasonable to unite those facts that capture positions of objects that
exhibit similar behavior patterns, e.g., that have the same destination and move at the same speed.
Furthermore, all cars that exhibit the same behavior pattern are likely to be close to each other
on a road segment, i.e., the cars are on the same subsegment. This means that if pre-aggregation
is performed for a value e, then the facts that are characterized by the same child, e ′, of e could
be united. Moreover, similar behavior patterns mean similar probabilities of the corresponding
facts. So, the facts with similar probabilities could be united. In summary, the best candidate
facts to be united are those, in order of priority, (1) that are marked as having the same behavior
pattern, (2) that are characterized by the same child of e, and (3) that are characterized with similar
probabilities.

As for probabilities of unit distributions, if overcounting is not desirable, then given a unit, the
system should choose the minimum of probabilities of its elements. More formally, given a unit
u = {f1, f2, . . . , fm} such that f1  p1 e, f2  p2 e, . . . , fm  pm e, , Pu = {(m, q), (0, 1 − q)},
where q = min(p1, p2, . . . , pm). Otherwise, the user could choose the average of probabilities of
the unit’s elements. More formally, given a unit u = {f1, f2, . . . , fm}, Pu = {(m, q), (0, 1 − q)},
where q = p1+p2+...+pm

m
. Furthermore, if we know the differences among individual behavior

patterns of each fact in the unit, we could assign a weight, wi, to each probability pi from the unit.

5.3 Method Generalization

The basic method from Section 5.1 assumed that for any fact generalization, f  [pmin;pmax] e, we
have pmin = pmax. Now we generalize the basic method for arbitrary minimum and maximum
probabilities of fact characterizations, i.e., given the set Fe = {f |f  

[pf
min;pf

max]
e}, we assume

that pf
max ≥ pf

min.
We replace the set Fe with two sets, F min

e = {f |f  
p

f
min

e} and F max
e = {f |f  

p
f
max

e}.

Then, we modify Definition 5.1, so that it uses F min
e and F max

e instead of Fe. Thereby, instead
of the pre-aggregated count distribution, PreCount(e), we define the minimum and maximum
pre-aggregated count distributions, denoted PreCountmin(e) and PreCountmax(e), respectively.
Then, in order to compute the distributions, we apply the method from Section 5.1 (followed by
grouping facts into units, if needed) to the sets F min

e and F max
e , respectively, instead of to the set

Fe.
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5.4 Data Selection

The method for creating pre-aggregated data may be complemented with data selection, analo-
gously to data selection from Section 4.4.

As in Section 5.1, suppose we are given a dimension value e. Let Fe = {f |f  
[pf

min,p
f
max]

e}

be the set of all facts characterized by the value e. So far, we assume that pf
max = pf

min = pf .
The data selection is done as follows. Given a degree of uncertainty, pd ∈ [0; 1], for the set Fe,

we filter out those facts that have a probability less than pd. More formally, we construct a new
set of facts, F ′

e = {f |f  pf
∧pf > pd}. Then, by replacing Fe with F ′

e in Definition 5.1, we
define filtered pre-aggregated count distribution, PreCountf (e). In order to compute the filtered
pre-aggregated count distribution, we apply the method from Section 5.1 to the set F ′

e, instead of
to the set Fe.

The method can be easily generalized for (1) a degree of uncertainty given as an interval and
(2) probabilities of facts given as intervals, i.e., when pf

max ≥ pf
min.

The method gives the user and/or the system a clear way of adjusting the degree of data un-
certainty. In addition, some data will be discarded, which improves performance. Since some data
may be discarded, the method is best suited for the situations where overcounting is not desirable.

6 Query Processing over Probability Distributions

In this section, we discuss how to process queries over probability distributions. Specifically, in
Section 6.1, we discuss preliminary query processing, i.e., computing required aggregate values.
Then, in Section 6.2, we present a new (at least, in the context of OLAP) type of queries, which we
call probability queries, while in Section 6.3, we consider “standard” OLAP aggregation queries
extended to handle probability distributions. Our techniques are general enough to process queries
over probabilistic warehouse data from different domain, but we exemplify the techniques with the
queries from the LBS domain.

6.1 Preliminary Query Processing

After the system has received an aggregation or a probability query (see Section 2.4) that refers
to a group of segments e, e.g., to the segments from “Poly 2” level, it performs preliminary query
processing, i.e., computes an aggregate value for each segment, e, from the group. This is done
by integrating the method for using and creating pre-aggregated probability distributions. Specifi-
cally, after the pre-aggregated count distributions have been created by the method from Section 5,
they can be used to perform aggregation by the method from Section 4. The reader should refer to
the mentioned sections for details, including examples.

Here we note one important point. The pre-aggregated distributions are dependent, while the
algorithm Count from Algorithm 4.1 assumes that its input is a set of independent distributions.
This means that the algorithm Count if applied to our pre-aggregate values created by the method
from Section 5 returns an approximate result. For instance, continuing Example 5.2, having pre-
aggregate values for e121, e122, and e123, i.e., the distributions P ′, Q′, and R′, respectively, we
compute the aggregate value for e12. If, for clarity, we do not perform full coalescion, but coalesce
equal intervals only, then the resulting distribution is

S′ = {([1; 1], 0.0504), ([2; 2], 0.2484), ([3; 3], 0.4024), ([4; 4], 0.2484), ([5; 5], 0.0504)}

The distribution S ′ is a useful approximation of the correct count, 3, because (1) the probability
mass is concentrated around the correct count and (2) the extremely incorrect values, e.g., 1 and 5,
have very low probabilities compared to other values. In essence, this is because in the process of
convolution, the convolution algorithm rarely encounters pairs of intervals whose sums are extreme
intervals.
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6.2 Probability Queries

As mentioned in Section 2, the probability queries are queries of the form “For each segment e
from a level, L, what is the probability, px, that the number of cars on the segment e exceeds x?”.
In this section, we show how to process this type of queries. Specifically, we consider a part of the
query, i.e., a query for one particular segment, e.g., “What is the probability, px, that the number
of cars on a segment e exceeds x?” More formally, let Xe be a random variable whose value is
a number of cars on the segment e. Given (1) an aggregate value for a dimension value e, i.e., a
distribution

Pe = {([ae
1; b

e
1], p

e
1), ([a

e
2; b

e
2], p

e
2), . . . ([a

e
n; be

n], pe
n)}

and (2) a natural number, x, we need to estimate the probability that Xe > x.
First of all, in the set Pe, we need to identify the intervals whose probabilities contribute to the

result. We will refer to such intervals as contributing intervals. Given the query condition Xe > x,
we denote a set of contributing intervals by P x

e . We propose two approaches to identifying the
contributing intervals. First, according to the conservative approach, the conservative contributing
intervals are those that fully lie to the right of x. More formally, the conservative contributing
intervals form the following subset of Pe: P x

e = {([a; b], p) : a > x}. Second, according to the
liberal approach, the liberal contributing intervals are those that are identified by the conservative
approach as well as those that partially lie to the right of x. More formally, the liberal contributing
intervals form the following subset of Pe: P x

e = {([a; b], p) : b > x}. In the following, we will
also use the non-conservative, liberal intervals, which form a subset of those liberal intervals that lie
partially to the right of x. More formally, the non-conservative, liberal intervals form the following
subset of Pe: P x

e = {([a; b], p) : a ≤ x ∧ b > x}.
After having identified the contributing intervals, we use the probabilities of the contributing

intervals to estimate the probability that Xe > x. In the following, we propose three approaches
to this. According to the first two approaches called pessimistic and optimistic, the estimate of the
probability is the full sum of the contributing intervals’ probabilities. More formally, if P x

e is a set
of contributing intervals from Pe, then the estimated probability is

px =
∑

(I,p)∈P x
e

p

The difference between the optimistic and the pessimistic approaches is that the former uses liberal
contributing intervals, while the latter uses conservative contributing intervals.

Finally, according to the third approach called weighted, the estimate of the probability is the
partial sum of the contributing interval’s probabilities. Specifically, we estimate the probability
as follows. First, for a conservative contributing interval, its probability fully contributes to the
result. Second, for a non-conservative, liberal interval, assuming that the interval’s probability
is uniformly distributed inside the interval, the portion of its probability that lie to the right of x
contributes to the result. The sum of all mentioned probabilities is the query result. More formally,
if P x,c

e and P x,nc
e is a set of conservative and non-conservative, liberal contributing intervals from

Pe, respectively, then the estimated probability is

px =
∑

(I,p)∈P
x,c
e

p +
∑

([a;b],p)∈P
x,nc
e

p · (b− x)

b− a + 1

The above approaches return estimates of the true probability that complement each other. The
probability returned by the pessimistic and optimistic approach is a lower and a upper bound of
the true probability, respectively. These bounds serve as error bounds and should be shown to the
user. In some cases, e.g., when the estimate provided by the error bounds is too uncertain, the user
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may also want to obtain a better feel of the query result by seeing an approximate value (within
the lower and upper bound) around which the true probability is. Such value is returned by the
weighed approach.
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Figure 7: The probability query processing according to (a) pessimistic and optimistic and (b)
weighted approach

Example 6.1. [Probability query processing] Figure 7 presents our method for probability query
processing graphically. In the figure, the intervals from the set Pe are represented by rectangles.
The numbers above the rectangles represent interval bounds. Next, the numbers on the side of
the rectangles represent interval probabilities. Furthermore, the dashed vertical line represents the
number x from the query “What is the probability, px, that the number of cars on a segment e
exceeds x?” Finally, the dashed horizontal arrows indicate the space where the query should search
for contributing intervals.

Figure 7(a) presents the pessimistic and optimistic approach. In the figure, the conservative
contributing intervals are black rectangles, i.e., according to the pessimistic approach

P x
e = {([42; 46], 0.20)}

and the lower bound on the query result is

px = 0.20
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Next, the liberal contributing intervals are black as well as gray rectangles, i.e., according to the
optimistic approach

P x
e = {([42; 46], 0.20), ([32; 45], 0.12), ([31; 55], 0.15), ([26; 47], 0.15)}

and the upper bound on the query result is

px = 0.20 + 0.12 + 0.15 + 0.15 = 0.62

Therefore, the first part of the response to the query, which the user receives, is:
“The probability that the number of cars on the segment e exceeds 41 lies in the interval [0.20; 0.62]”.

Next, Figure 7(b) presents the weighted approach. In the figure, as in Figure 7(a), the conser-
vative contributing intervals are black rectangles, i.e.

P x,c
e = {([42; 46], 0.20)}

Next, the non-conservative, liberal rectangles are those rectangles that are partially white and par-
tially gray, shaded, i.e.

P x,nc
e = {([32; 45], 0.12), ([31; 55], 0.15), ([26; 47], 0.15)}

In the gray portions of the rectangles, the probability that contributes to the result is concentrated.
Thus, according to the weighted approach

px = 0.20 + 0.12 ·
45− 41

45− 32 + 1
+ 0.15 ·

14

25
+ 0.15 ·

6

22
= 0.358

Therefore, the second part of the response to the query, which the user receives, is: “The probability
that the number of cars on the segment e exceeds 41 is approximately 0.358”.

The pseudocode for probability query processing according to pessimistic, optimistic, and
weighted approach can be seen in Algorithms 6.1, 6.2, and 6.3, respectively. Since the algo-
rithms are very similar, in the following, we discuss them all at once. Each algorithm takes a
query condition, x, and a count distribution, Pe, as input parameters and returns query result, i.e.,
the probability, px. The count distribution is sorted in such a way that contributing intervals, if
they are present, form a sequence that starts from the first interval. Specifically, for the pessimistic
approach, the intervals are sorted by their lower bounds, ai, in descending order, while for the
optimistic and weighted approach, the intervals are sorted by their upper bounds, bi, in descending
order. The general idea of the algorithms is as follows. We go through the sequence of contributing
intervals until we reach the end (see the loop in line 3), i.e., until the loop condition fails. For
each encountered interval, we add the part of its probability, with which the interval contributes to
the result, to the running total, px. In the case of the pessimistic and optimistic approaches, this
part is always a whole probability, pe

i (see line 4 in Algorithms 6.1 and 6.2), while in the case of
the weighted approach this part is either a whole probability (see line 5 in Algorithm 6.3) or is
calculated (see line 7 in Algorithm 6.3).

Queries of the form “For each segment e from a level, L, what is the probability that the number
of cars on the segment e does not exceed x?” and “For each segment e from a level, L, what is
the probability that the number of cars on a segment e is between x and y?” could be handled
analogously.
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Algorithm 6.1 Prob Query Pessimistic
Require: In: x, Pe = {([ae

1; b
e
1], p

e
1), ([a

e
2; b

e
2], p

e
2), . . . ([a

e
n; be

n], pe
n)}

Require: i < j ⇒ ai ≥ aj

Require: Out: px

1: px ← 0
2: i← 1
3: while (i ≤ n) ∧ (ai > x) do
4: px ← px + pe

i

5: i← i + 1
6: return px

Algorithm 6.2 Prob Query Optimistic
Require: In: x, Pe = {([ae

1; b
e
1], p

e
1), ([a

e
2; b

e
2], p

e
2), . . . ([a

e
n; be

n], pe
n)}

Require: i < j ⇒ bi ≥ bj

Require: Out: px

1: px ← 0
2: i← 1
3: while (i ≤ n) ∧ (bi > x) do
4: px ← px + pe

i

5: i← i + 1
6: return px

Algorithm 6.3 Prob Query Weighted
Require: In: x, Pe = {([ae

1; b
e
1], p

e
1), ([a

e
2; b

e
2], p

e
2), . . . ([a

e
n; be

n], pe
n)}

Require: i < j ⇒ bi ≥ bj

Require: Out: px

1: px ← 0
2: i← 1
3: while (i ≤ n) ∧ (bi > x) do
4: if ai > x then
5: px ← px + pe

i

6: else
7: px ← px +

pe
i ·(b

e
i−x)

be
i−ae

i +1

8: i← i + 1
9: return px
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Figure 8: Alternative query processing

Alternative Query Processing Now we discuss an idea of alternative query processing.
Note that the user may not be satisfied with the result of processing the original query, because
the estimate provided by the error bounds is not certain enough. In Example 6.1, the processing
of the original query, “What is the probability that the number of cars on a segment e exceeds
41?”, yields the upper and lower bound of 0.62 and 0.20, respectively. The user may conclude
that the difference between the bounds of 0.42 makes the query result too uncertain. In this case,
the system could propose an alternative query that could be processed with greater certainty (see
Figure 8). An example alternative query could be “What is the probability that the number of cars
on a segment e exceeds 47?”. The alternative query condition was chosen to lower the number
of intervals that partially lie to the right of the condition. With the original query condition we
had three such intervals, while with the alternative query condition we have only one such interval.
The response to this query is “The probability that the number of cars on the segment e exceeds
41 lies in the interval [0; 0.15]”. Now the difference between the error bounds is only 0.15, which
may make the result of the alternative query more attractive to the user. We leave the details of the
method of alternative queries for future work.

6.3 Aggregation Queries

As mentioned in Section 2, aggregation queries are the queries of the form “For each segment e
from a level, L, how many cars are on the segment e?”. In this section, we show how to process
aggregation queries. Specifically, we consider a part of the query, i.e., a query for one particular
segment, e.g., “How many cars are on a segment e?”. A query result is the probability distributions
of the count of facts attached to segment e. In general, we reduce an aggregation query, which
asks for a whole cumulative density function (CDF), to a series of probability queries, so that each
probability query “constructs” a piece of the whole function.

Approximation of the Cumulative Density Function As the response to an aggregate query,
“How many cars are on segment e?”, a user obtains an approximation of the CDF, a function
Fe : [0;∞)� [0; 1]. The approximation is constructed as follows. Given an aggregate value for a
dimension value e, i.e., a distribution

Pe = {([ae
1; b

e
1], p

e
1), ([a

e
2; b

e
2], p

e
2), . . . ([a

e
n; be

n], pe
n)}

we formulate a series of probability queries, Q = {Q1, Q2, . . . , Qn}. Each query, Qi ∈ Q, is
formulated as follows: “What is the probability, pi, that the number of cars on a segment e is lower
than xi?”. (A naive way to process this series of queries is to process each query Qi ∈ Q separately.
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Later in the section, we present an optimized approach that processes the queries in parallel, see
“Query Processing”.) Then, the following is a set of sampled points from the approximation Fe:

Fe = {(x1, p1), (x2, p2), . . . , (xm, pm)}

where m ≤ n. We explain how to select the values of xi shortly.
The set of probabilities, p1, p2, . . . pm, can be defined according to the pessimistic, optimistic,

or weighted approach (see Section 6.2), which produces three different sets of sampled points,
Fe, Fe, and F̃e. Out of Fe and Fe, we construct approximations of the true CDF, Fe and Fe,
that are lower and upper bound on the true CDF, respectively, while out of F̃e, we construct an
average approximation of the true CDF, F̃e, that lies between the lower bound and the upper bound.
Specifically, given the set Fe = {(x1, p1), (x2, p2), . . . , (xm, pm)}, we construct the following
approximations of the true CDF, Fe.

1. If p1, p2, . . . pm are defined according to pessimistic approach, we construct the lower bound,
Fe, as follows:

Fe(x) =





0 if x < x1

pi if xi ≤ x < xi+1, for i ∈ {1, 2, . . . ,m− 1}
1 if x ≥ xm

The idea behind the construction is as follows. First, since the points from Fe are sampled
points from some lower bound of the CDF, our lower bound includes these points. Second,
our CDF (as any CDF) is a non-decreasing function. Between the two points, xi and xi+1,
we do not know how the values of our CDF grow, but we know that the values cannot be
lower than pi. For this reason, we obtain our lower bound by setting all its values between
the points xi and xi+1 to pi. Third, the minimum value of our CDF (as of any CDF) is 0.
Since the values of our CDF before the point x1 are not known, our lower bound for these
values is set to this minimum, 0. Finally, the maximum value of our CDF (as of any CDF)
is 1. Since the values of our CDF after the point xm are known to be 1, our lower bound for
these values is set to 1.

2. If p1, p2, . . . pm are defined according to optimistic approach, we construct the upper bound,
Fe, as follows:

Fe(x) =





p1 if x < x1

pi+1 if xi ≤ x < xi+1, for i ∈ {1, 2, . . . ,m− 1}
1 if x ≥ xm

The idea behind the construction is as follows. First, since the points from Fe are sampled
points from some upper bound of the CDF, our upper bound includes these points. Second,
our CDF (as any CDF) is a non-decreasing function. Between the two points, xi and xi+1,
we do not know how the values of our CDF grow, but we know that the values cannot be
higher than pi+1. For this reason, we obtain our upper bound by setting all its values between
the points xi and xi+1 to pi+1. Third, since the exact values of our CDF before the point x1

are not known, but are known to be not higher than p1, our upper bound for these values is
set to p1. Finally, the maximum value of our CDF (as of any CDF) is 1. Since the values of
our CDF after the point xm are known to be 1, our upper bound for these values is set to 1.

3. If p1, p2, . . . pm are defined according to weighted approach, we construct the average ap-
proximation, F̃e, as follows:

F̃e(x) =





x·p1

x1
if x < x1

(x−xi)·(pi+1−pi)
xi+1−xi

+ pi if xi ≤ x < xi+1, for i ∈ {1, 2, . . . ,m− 1}

1 if x ≥ xm
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The idea behind the construction is as follows. First, since the points from Fe are sampled
points from some approximation of the CDF that lies between our upper and our lower
bound, our average approximation includes these points. Second, our CDF (as any CDF) is
a non-decreasing function. Between the two points, xi and xi+1, we do not know how the
values of our CDF grow, but we know that the values grow approximately between pi and
pi+1. For this reason, we obtain our average approximation by linear interpolation, i.e., by
“placing” all its values between the points xi and xi+1 on the line that crosses the points.
Third, since the exact values of our CDF between the points 0 and x1 are not known, we
again perform linear interpolation, i.e., assume that the values are on the line that crosses
these two points. Finally, the maximum value of our CDF (as of any CDF) is 1. Since the
values of our CDF after the point xm are known to be 1, our average approximation for these
values is set to 1. So constructed average approximation, F̃e, approximates each value of the
CDF at each point, x, by the value between our lower and upper bound, Fe(x) and Fe(x).

As for the values in the set of probability query conditions, X = {x1, x2, . . . , xn}, for each xi ∈ X ,
we set xi = bi + 1. The reason for this selection of the query conditions is as follows. For a query,
Qi ∈ Q, when its probability, pi, is defined by pessimistic approach, we would like to find at least
one contributing interval. This is why xi is greater than bi. Moreover, in an approximation of the
CDF, Fe, we would like to capture the “shape” of the CDF as given by the upper bounds of the
intervals from Pe. This is why xi is as close to bi as possible.
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Figure 9: An example count distribution, P ex
e , and the corresponding set of query conditions, X ex

Example 6.2. [Aggregation query] Figure 9 presents our method for processing aggregation
queries graphically. Suppose we have an example count distribution, P ex

e for a dimension value,
e. In the figure, the intervals from this distribution are represented by rectangles. The numbers
above the rectangles represent interval bounds. Next, the numbers on the side of the rectangles rep-
resent interval probabilities. Furthermore, the dashed vertical lines represent the query conditions
xi ∈ Xex for the example count distribution from the queries “What is the probability, pi, that the
number of cars on a segment e exceeds xi?”, respectively. If the queries are processed according
to the (1) pessimistic, (2) optimistic, and (3) weighted approach, we construct the following sets of
sampled points from approximations of the CDF for count for e, respectively:

1. F ex
e = {(41, 0.38), (46, 0.5), (47, 0.7), (48, 0.85), (56, 1)},

2. F ex
e = {(41, 0.8), (46, 1)}, and

3. F̃ ex
e = {(41, 0.62), (46, 0.9), (47, 0.94), (48, 0.96), (56, 1)}.
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(a)

(b)

(c)

Figure 10: An example (a) lower bound approximation, Fex
e , (b) upper bound approximation, Fex

e ,

(c) average approximation, F̃ex
e

Out of these sets of sampled points, we construct the following approximations of the CDF, respec-
tively: (1) the lower bound, Fex

e , (2) the upper bound, Fex
e , and (3) the average approximation,

F̃ex
e . The constructed approximations are presented graphically to the user. Figures 10(a), 10(b),

and 10(c) present the approximations of the CDF, Fex
e , Fex

e , and F̃ex
e , respectively, as a user would

see them. The figures depict the fragments of the approximations where the sampled points are
concentrated.
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Algorithm 6.4 Aggregation Query Pessimistic
Require: In: Pe = {([ae

1; b
e
1], p

e
1), ([a

e
2; b

e
2], p

e
2), . . . ([a

e
n; be

n], pe
n)},

where i < j ⇒ bi ≤ bj

Require: Out: Fe = {(x1, p1), (x2, p2), . . . , (xm, pm)}
1: Fe ← ∅
2: X ← {be

1 + 1, be
2 + 1, . . . , be

n + 1}
3: px ← 0
4: i← 1
5: for all x ∈ X do
6: while (i ≤ n) ∧ (bi < x) do
7: px ← px + pe

i

8: i← i + 1
9: Fe ← (x, px)

10: if px = 1 then return Fe

Algorithm 6.5 Aggregation Query Optimistic
Require: In: Pe = {([ae

1; b
e
1], p

e
1), ([a

e
2; b

e
2], p

e
2), . . . ([a

e
n; be

n], pe
n)},

where i < j ⇒ ai ≤ aj

Require: Out: Fe = {(x1, p1), (x2, p2), . . . , (xm, pm)}
1: Fe ← ∅
2: X ← SortAscending({be

1 + 1, be
2 + 1, . . . , be

n + 1})
3: px ← 0
4: i← 1
5: for all x ∈ X do
6: while (i ≤ n) ∧ (ai < x) do
7: px ← px + pe

i

8: i← i + 1
9: Fe ← (x, px)

10: if px = 1 then return Fe

Algorithm 6.6 Aggregation Query Weighted
Require: In: Pe = {([ae

1; b
e
1], p

e
1), ([a

e
2; b

e
2], p

e
2), . . . ([a

e
n; be

n], pe
n)},

where i < j ⇒ ai ≤ aj

Require: Out: Fe = {(x1, p1), (x2, p2), . . . , (xm, pm)}
1: Fe ← ∅
2: X ← SortAscending({be

1 + 1, be
2 + 1, . . . , be

n + 1})
3: pc ← 0
4: R← Pe

5: for all x ∈ X do
6: px ← pc

7: for all i such that ([ae
i ; b

e
i ], p

e
i ) ∈ R ∧ ai ≤ x do

8: if bi ≤ x then
9: px ← px + pe

i

10: R← R \ ([ae
i ; b

e
i ], p

e
i )

11: pc ← pc + pe
i

12: else
13: px ← px +

pe
i ·(b

e
i−x)

be
i−ae

i +1

14: Fe ← (x, px)
15: if px = 1 then return Fe
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Query Processing Conceptually, each probability query, Qi, from a series Q (see “Approxima-
tion of the Cumulative Density Function”) could be processed in isolation. However, it is possible
to optimize the processing for a series of queries. In general, the optimization is achieved by using
the result of the previous query, Qi, as a partial result of the next query, Qi+1. The pseudocode
for the optimized processing is presented in Algorithms 6.4, 6.5, and 6.6 that process the queries
according to the pessimistic, optimistic, and weighted approach, respectively. The following dis-
cussion considers all the three algorithms at once. Each algorithm takes a count distribution, Pe,
as an input and returns a set of sampled points from an approximation of the CDF, Fe. The count
distribution is sorted in such a way that contributing intervals, if they are present, for each query
condition, x ∈ X , form a sequence that starts from the first interval of the count distribution.
Specifically, for the pessimistic approach, the intervals are sorted by their upper bounds, bi, in
ascending order, while for the optimistic and weighted approach, the intervals are sorted by their
lower bounds, ai, in ascending order. In each algorithm, in line 2, the set of query conditions is
formed. For the optimized processing, the query conditions should be sorted in ascending order.
For this reason, in Algorithms 6.5 and 6.6, we apply the procedure SortAscending for sorting.

After line 2, Algorithms 6.5 and 6.4 differ significantly from Algorithms 6.6. For this reason,
in the following, we discuss the two first algorithms and the third algorithm separately. First,
we consider Algorithm 6.4 and Algorithm 6.5 The general idea of the algorithms is as follows.
For each query condition, xi ∈ X , if an interval, I , is a contributing interval for xi, then I is
also a contributing interval for the next query condition, xi+1. Moreover, according to both the
pessimistic and optimistic approach, if an interval, I , is a contributing interval for two or more
query conditions, then I contributes equally, i.e., with the probability of I , to the result of each
probability query given by those query conditions. This means that we need to consider each
interval from Pe only once. For this reason, in the algorithm, we maintain a single probability
running total , px (see line 3), and a single interval counter, i (see line 4). For each query condition,
x ∈ X , there is one iteration of the loop in line 5. When (k − 1) iterations have finished, we
may have considered some contributing intervals of the kth query condition and px is the sum of
probabilities of these intervals. Suppose i′ is the value of the counter i, when (k − 1) iterations
have finished. During the kth iteration, we go through the remaining sequence of the contributing
intervals of the kth query condition (see the loop in line 6), which starts at the interval indicated by
i′, until we reach the end of the sequence, i.e., until the loop condition fails. For each encountered
interval, we add the probability of the interval to the running total, px (see line 7). When we reach
the end of the sequence, we insert the pair of a query condition and its probability, (x, px), into the
set of sampled points of the approximation of the CDF, Fe (see line 9). The algorithm terminates
when the running probability total, px, reaches 1 (see line 10), which happens when all the query
conditions have been considered or when all the intervals from Pe are contributing intervals for the
remaining, unconsidered query conditions.

In the following, we consider Algorithm 6.6. The general idea of the algorithm is as follows.
As with Algorithms 6.4 and 6.5, for each query condition, xi ∈ X , if an interval, I , is a contributing
interval for xi, then I is also a contributing interval for the next query condition, xi+1. Moreover,
according to the weighted approach, if an interval, I , is a conservative contributing interval for
two or more query conditions, then I contributes equally, i.e., with the probability of I , to the
result of each probability query given by those query conditions. However, also according to the
weighted approach, if an interval, I , is a non-conservative contributing interval for two or more
query conditions, then I may contribute differently, i.e., with different probabilities, to the result
of each probability query given by those query conditions. For these reasons, we need to consider
each conservative contributing interval in Pe only once, and in the algorithm, we maintain a single
probability running total for conservative contributing intervals, pc (see line 3). However, we need
to consider other intervals once per query condition. For this reason, in the algorithm, we have two
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loops, one that iterates through query conditions (see line 5) and another one that iterates through
intervals (see line 7). These intervals are contained in the count distribution R, which at the very
beginning is a copy of Pe (see line 4). For each query condition, x ∈ X , there is one iteration
of the loop in line 5. When (k − 1) iterations have finished, we may have considered some of
the conservative contributing intervals of the kth query condition, pc is the sum of probabilities of
these intervals, and R contains the remaining sequence of the contributing intervals of the k th query
condition. During the kth iteration, we first set the running total for the kth query condition, px, to
pc (see line 6) and then we go through the remaining sequence of its contributing intervals (see the
loop in line 7) until we reach the end of the sequence, i.e., until the loop condition fails. For each
encountered interval, we add the probability, with which the interval contributes to the result, to the
running total for the current query condition, px (see lines 9 and 13). In addition, if the encountered
interval is a conservative contributing interval (see line 8), we remove the interval from R (line 10)
and add its probability to the running total for conservative intervals, pc (see line 11) When we
reach the end of the sequence, we insert the pair of a query condition and its probability, (x, px),
into the set of sampled points of the approximation of the CDF, Fe (see line 14). The algorithm
terminates when the running probability total, px, reaches 1 (see line 15), which happens when
all the query conditions have been considered or when all the intervals from Pe are contributing
intervals for the remaining, unconsidered query conditions.

7 Experiments

The methods for using and creating pre-aggregated data described in Sections 4 and 5 are imple-
mented by a prototype system. The implementation is based on the Java implementation of An
Incomplete Data Cube [1, 7]. In this section, we report on the results of initial experiments per-
formed with the prototype. The experiments were performed on a desktop machine with the 1.80
GHz Intel Pentium 4 CPU and 1 GB RAM, running Windows 2000 OS. The code was compiled
and run on Sun Java 2 Platform, Standard Edition 1.4.2. The database management system used
was Sleepycat Berkeley DB 4.2.52.

All

Hour

Minute

Second

All

User

(I) (II)

All

Poly_1

Poly_2

Poly_3

(III)

Figure 11: Simplified dimension types Tu (I), Tt (II), and Tr (III) used for experiments
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7.1 Data

In our experiments, we use a three-dimensional multidimensional object. It consists of the USER,
TIME, and LOCATION dimensions. The schema of this multidimensional object is a simplified
version of the schema of the object from Section 3. The types of the dimensions can be seen in
Figure 11. The types Tu, Tt, and Tr describe the USER, TIME, and LOCATION dimensions,
respectively. In the USER dimension, a dimension value from the category User is a user ID. The
TIME dimension is a standard one. The LOCATION dimension is a hierarchical representation of
the city of Oldenburg, Germany: a dimension value from the Poly 1 category is an edge from the
graph representation of the city (see [12]), a dimension value from the Poly 2 category is a line
from the 2D representation of the city (see [12]), and the Poly 3 category is obtained from the 2D
representation by dividing its lines into smaller segments. The Poly 1, Poly 2, and Poly 3 category
contains approximately 4,000, 7,000, and 68,000 dimension values, respectively.

The fact data for experiments is created as follows. First, by using a modified version of
Brinkhoff’s generator [3], we simulate and record GPS readings of positions of 150,000 vehicles
moving in the city of Oldenburg, Germany for 5 hours. Then, we select one current time point. For
this current time point, t, we select several future time points. Then, given the information about
vehicle positions at t, we predict one set of positions of the vehicles with their probabilities at each
selected future time point. We use a simple prediction algorithm that, given the current position
of a vehicle, finds all the segments (from the 2D representation of Oldenburg, i.e., from the Poly 2
category) that the vehicle can reach under the assumption that its future speed does not exceed its
maximum speed and speed limits on the segments. All the reachable segments receive the same
probability to be reached. Thus, a predicted vehicle position is a segment.

Each set of predicted future time positions is used to create a fact data set. For this, a predicted
vehicle position is transformed into a probabilistic relationship between a fact and the LOCATION
dimension and relationships between that fact and the two other, USER and TIME, dimensions.
For all data sets, all facts are related to the User category in the USER dimension and to the Second
category in the TIME dimension. In a fact data set, all facts are related to the same category
from the LOCATION dimension, which is either the Poly 2 or Poly 3 category. Specifically, each
vehicle position is transformed as followed. Suppose we predict that a vehicle, f , will be on a
segment e with the probability p. Then, if we create a fact data set, where facts are related to
Poly 2 category, we create a fact-dimension relationship, (f, e, p). However, if we create a fact
data set, where facts are related to Poly 3 category, we create a set of fact-dimension relationships,
{f, ei,

p
N

, i = 1, . . . , N}, where N is the number of children of e. In total, we create 7 fact data
sets for the Poly 3 category and 8 fact data sets for the Poly 2 category. We term the former series
of fact data sets as the Poly 3 series and the latter series of fact data sets as the Poly 2 series. In
addition to these fact data sets, we create 5 fact data sets for different current time points and future
time points. The facts in these fact data sets are related to the Poly 3 category according to the
procedure as for the Poly 3 series. We term this series of fact data sets as the very complex series.
The meaning of the name of this series is explained shortly. Thus, in total we create 7+8+5 = 20
fact data sets. We denote the fact data sets from the Poly 3 series by X1, X2, . . ., X7, from the
Poly 2 series by Y1, Y2, . . ., Y8, and from the very complex series by Z1, Z2, . . ., Z5.

We define complexity of a fact data set as the number of dimension values such that the number
of facts attached to these values is greater than a given threshold. It is natural to choose a threshold
that is greater than the average number of facts per one dimension value. In fact, this is equivalent to
counting number of distributions in the result of the pre-aggregation procedure without coalescion
such that the size of the distributions is greater than a given threshold. If a fact data set is not
complex, we call it simple. For example, if we set the threshold to 200, then the complexity of our
fact data sets are as follows. For the Poly 2 and Poly 3 series, the number of the dimension values
to which more than 200 facts are related, per fact data set, is between 0 and 403 (out of 7,000) and
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Figure 12: Average time complexity of computing probability distributions, for the (a) Poly 3, (b)
Poly 2, and (c) very complex series

between 0 and 1661 (out of 68,000), respectively. The very complex series is much more complex.
For this series, the number of the dimension values to which more than 200 facts are related, per
fact data set, is between 4217 and 4688 (out of 68,000). The numbers of relationships between facts
and the LOCATION dimension per fact data set are (1) from 150,000 to 1,040,000, for the Poly 2
series, (2) from 1,453,000 to 3,135,000, for the Poly 3 series, and (3) from 3,478,000 to 4,190,000,
for the very complex series. Note that the maximum size of a fact data set from the Poly 3 series
is not much different from the sizes of fact data sets from the very complex series. However, the
complexity of the two series is very different. Given a data set, the average probability of the
relationships between facts and dimension values from the LOCATION dimension in that data set
is between 0.036 and 0.998.
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7.2 Computing Pre-Aggregated Probability Distributions

By the basic method from Section 5.1, each fact data set is transformed into a set of pre-aggregated
count distributions for the categories All in the USER and TIME dimension and the category from
the LOCATION dimension to which the facts are attached. Each fact data set is transformed once
for a combination of values of the following parameters: (1) δ = 10, 20, 50 (for the definition,
see Section 4.2), (2) mδ = 0.25 · δ, 0.5 · δ, 0.75 · δ (for the definition, see Section 4.3), and (3)
ρ = 0, 1, 2 (for the definition, see Section 4.3). In addition, each fact data set is transformed once
without coalescion. Thus, we create a collection of 3 · 3 · 3 + 1 = 28 sets of pre-aggregated count
distributions per fact data set. Thus, in total, we create 20 · 28 = 560 sets of pre-aggregated count
distributions.

Figures 12(a), 12(b), and 12(c) show the average time taken by the pre-aggregation procedure
for each fact data set from the Poly 3, Poly 2, and very complex series, respectively. Specifically, the
figures compare the time complexity of the pre-aggregation procedure without and with coalescion
(using different values of δ). In the figures, the horizontal axis is labeled with fact data set identifiers
(e.g., X1). Our experiments show that the time complexity of our pre-aggregation procedure, which
is based on the convolution, depends a lot on the complexity of fact data sets. For this reason, the
pair of numbers next to an identifier describes the complexity of the corresponding fact data set.
Specifically, the first and second number from the pair is the number of the dimension values to
which more than 200 and 500 facts are related, respectively. On the horizontal axis, the fact data
sets are sorted by the first number of the pair in ascending order. For the Poly 3 and Poly 2 series,
this sorting corresponds to the sorting by the time complexity. This is not true for the very complex
series, because in that series time complexity is highly influenced by the second number from the
pair, i.e., by the number of the dimension values to which more than 500 facts are related. For
example, that is why the pre-aggregation procedure is more time-consuming for the fact data set
Z1 than for the fact data set Z5. In addition, we observe that generally the time complexity of the
pre-aggregation procedure is somewhat higher for the Poly 3 series than for the Poly 2 series. This
is because the fact data sets in the former series are much larger than in the latter series and because
the number of dimension values in the Poly 3 category is much greater than in the Poly 2 category
(see Section 7.1). At the same time, we emphasize that despite the great difference in sizes of fact
data sets, the time complexity of the pre-aggregation procedure for the Poly 2 and Poly 3 series are
comparable. However, the time complexity of the pre-aggregation procedure for the very complex
series is much higher than the time complexity of the pre-aggregation procedure for the Poly 3
series, although the sizes of fact data sets for the two series are comparable. Thus, we conclude
that the time complexity of the pre-aggregation procedure depends more on complexity of fact data
sets than on their sizes.

In general, we conclude that complementing the pre-aggregation procedure with coalescion
significantly reduces the time complexity for almost any fact data set. The four exceptions are the
fact data sets X1 and X2 (see Figure 12(a)) and Y1 and Y2 (see Figure 12(b)). We believe that for
these fact data sets coalescion is not effective, because the sets are simple. Specifically, there are no
dimension values with more than 200 and 500 facts from these sets. This means that even without
coalescion, only a small number of long distributions, i.e., the distributions that contain more than
50 intervals, are produced and most of the produced distributions are short, i.e., contain less than
50 intervals. For example, for the fact data set X1 only 356 out of 68042 produced distributions
are long, compared to 12108 long distributions for the fact data set X4. For this reason, coalescion
with the considered values of δ, i.e., 50 and less, does not significantly reduce the time complexity
of the pre-aggregation procedure for the fact data sets X1, X2, Y1, and Y2. Moreover, for these fact
data sets, with δ = 50, the convolution with coalescion is more expensive than without coalescion.
However, smaller values of δ can be used to make coalescion more effective.

Furthermore, the effectiveness of coalescion grows as the complexity of the fact data sets in-
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creases, for all the three series. Let us first consider the Poly 3 series. In Figure 12(a), for the
fact data set X3, the convolution with coalescion with the values of δ of 10, 20, and 50 takes,
respectively, 50%, 65%, and 89% of the time needed for the convolution without coalescion. For
comparison, for a more complex fact data set X4, the convolution with coalescion with the values
of δ of 10, 20, and 50 takes, respectively, 42%, 56%, and 82% of the time needed for the convo-
lution without coalescion. Moreover, for the most complex fact data set X7, the convolution with
coalescion with the values of δ of 10, 20, and 50 takes, respectively, 28%, 38%, and 62% of the time
needed for the convolution without coalescion. Similar trend of the growing coalescion effective-
ness can be noticed for the Poly 2 series, in Figure 12(b). For the very complex series of fact data
sets (see Figure 12(c)), the pre-aggregation procedure without coalescion is extremely time con-
suming, compared to the other two series. This is because the very complex series is much more
complex than the other two series. For this series, the effectiveness of coalescion is even more sig-
nificant. For example, for the fact data set Z3, the convolution with coalescion with the values of δ
of 10, 20, and 50 takes, respectively, 3%, 6%, and 10% of the time needed for the convolution with-
out coalescion. Thus, the experiments confirm our hypothesis that the pre-aggregation procedure
based on the Count algorithm from Algorithm 4.1, is hardly scalable (in terms of the complexity
of fact data sets) without coalescion, but becomes much more scalable when complemented with
coalescion.

As for the usability of our pre-aggregation procedure in terms of the time complexity, it may be
argued that the current prototype implementation may be not fast enough for even simple, but large
data sets. For example, a simple fact data set X2 contains 1,542,000 fact-dimension relationships.
However, the pre-aggregation procedure with δ = 10 for this fact data set takes 102 seconds. This is
arguably too slow for the real-world location-based services that answer queries for hyper-dynamic
data, e.g., moving cars. Query results may become outdated before computations are complete.
A way to improve time complexity is to decrease the value of δ. However, one can argue that
the lower the value of δ, the worse the precision (see “Precision” in Section 7.3). Anyway, we
emphasize that this is a prototype implementation, but acknowledge that further optimizations to
our pre-aggregation procedure are needed if it is going to be used in the real-world location-bases
services. At the same time, our pre-aggregation procedure can be applied to the probabilistic data
of any degree of dynamism and the current implementation may be fast enough for queries for
slowly changing data, e.g., historical data.

7.3 Using Pre-aggregated Probability Distributions for Aggregation

In Section 7.2, we produce sets of pre-aggregated count distributions. In this section, these sets
are used for computing sets of aggregate values (i.e., sets of count distributions) by the method
from Section 4. We aggregate to the Poly 1 category. A set of pre-aggregated count distributions
is aggregated once with the parameter (δ, mδ , and ρ) values inherited from the pre-aggregation
procedure that created that set (see Section 7.2). We report on the experiment results for every
set of pre-aggregated count distributions except those mentioned in the following. When used
without coalescion, our prototype system runs out of memory for the sets of pre-aggregated count
distributions produced from the fact data sets from the very complex series. The reason for that is
not yet determined. Consequently, we do not report on the time complexity for those sets, when
used without coalescion.

Time Complexity In the following, we measure time complexity of the aggregation procedure.
We refer to a collection of sets of pre-aggregated count distributions by the identifier of the fact
data set from which the collection is produced. For example, a collection of sets of pre-aggregated
count distributions X1 is produced from the fact data set X1. In addition, we refer to a series of
collections of sets of pre-aggregated count distributions by the name of the corresponding series
of fact data sets. For example, the Poly 2 series of collections of sets of pre-aggregated count
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Figure 13: Average time complexity of using pre-aggregated count distributions for aggregations,
for the (a) Poly 3, (b) Poly 2, and very complex series

distributions is produced from the Poly 2 series of fact data sets. The definition of complexity
of sets of pre-aggregated count distributions is analogous to the definition of complexity of fact
data sets. We define complexity of a set of pre-aggregated count distributions as the number of
the distributions in the result of the aggregation procedure without coalescion such that the size of
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the distributions is greater than a given threshold. If a set is not complex, we call it simple. For
example, if we set the value of threshold to 200, the complexity of our sets of pre-aggregated count
distributions is as follows. For the Poly 3 and Poly 2 series, the number of the distributions longer
than 200 is between 2322 and 3234 and between 28 and 1881, respectively. The complexity of the
very complex series is not yet determined.

Figures 13(a), 13(b), and 13(c) show the average time taken by the aggregation procedure for
each set of pre-aggregated count distributions from the Poly 3, Poly 2, and very complex series,
respectively. Specifically, the figures compare the time complexity of the aggregation procedure
without and with coalescion (using different values of δ). In the figures, the horizontal axes are
labeled with identifiers of the collections of the sets of pre-aggregated count distributions used for
aggregation. Analogously to the case of the pre-aggregation procedure, our experiments show that
the time complexity of our aggregation procedure, which is based on the convolution, depends on a
lot on the complexity of sets of pre-aggregated count distributions. For this reason, in Figures 13(a)
and 13(b), the pair of numbers next to an identifier describes the complexity of the corresponding
set of pre-aggregated count distributions. Specifically, the first and second number from the pair is
the number of distributions (in the result of the aggregation procedure without coalescion) longer
than 200 and 500, respectively. On the horizontal axis, the collections of sets of pre-aggregated
count distributions are sorted by the first number of the pair in ascending order. For the Poly 3
and Poly 2 series, this sorting corresponds to the sorting by the time complexity. In Figures 13(a)
and 13(b), the bars for run times of the aggregation procedure without coalescion are cut, because
they are two long to be shown. Instead, a number over a bar indicates the value that corresponds
to this bar. As in the case of the pre-aggregation procedure (see Section 7.2), we observe that
generally the time complexity of the aggregation procedure is higher for the Poly 3 series than for
the Poly 2 series. The time complexity is even higher for the very complex series. We believe
that this is primarily due to the difference in complexity of the series. (We expect that the sets of
pre-aggregated count distributions in the very complex series would be much more complex than
the sets from the other two series). However, we believe that the difference in sizes of the sets of
pre-aggregated count distributions also contributes to the difference in time complexity.

We conclude that complementing the aggregation procedure with coalescion significantly re-
duces the time complexity for any set of pre-aggregated count distributions. Unlike with the pre-
aggregation procedure, there are no exceptions, because the count distributions produced by the
aggregation procedure are long enough for coalescion with the considered values of δ to be ef-
fective. Most notably, as mentioned in Section 7.2, the sets of pre-aggregated count distributions
produced without coalescion from the collections X1, X2, Y1, and Y2 contain a small number of
long distributions (i.e., those distributions that contain more than 50 intervals). However, when
used for aggregation, these sets produce many long count distributions. For example, for the set
from the collection X1 as many as 3657 out of 3775 produced count distributions are long.

As in the case of pre-aggregation (see Section 7.2), the effectiveness of coalescion grows as
the complexity of the sets of pre-aggregated count distributions increases, for both the Poly 3 and
Poly 2 series. Let us first consider the Poly 3 series. In Figure 13(a), for example, for the set X1,
the convolution with coalescion with the values of δ of 10, 20, and 50 takes, respectively, 0.6%,
1.5%, and 5.0% of the time needed for the convolution without coalescion. One can see from the
figure that as the complexity of the sets grows, the time complexity of the convolution without
coalescion grows significantly, while the time complexity of the convolution with coalescion grows
very little (e.g., it is almost constant for the values of δ of 10 and 20). For comparison with the set
X1, for the most complex fact data set X7, the convolution with coalescion with the values of δ of
10, 20, and 50 takes, respectively, 0.2%, 0.6%, and 2.2% of the time needed for the convolution
without coalescion. Similar trend of the growing coalescion effectiveness can be noticed for the
Poly 2 series, in Figure 13(b). Thus, as in Section 7.2, the experiments confirm our hypothesis that
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the aggregation procedure based on the Count algorithm from Algorithm 4.1, is hardly scalable
without coalescion (in terms of complexity of pre-aggregated count distributions), but becomes
much more scalable when complemented with coalescion.

As for the usability of our aggregation procedure in terms of the time complexity, it may be
argued that the current prototype implementation may be not fast enough for complex sets of the
pre-aggregated count distributions. For example, while the aggregation procedure with coalescion
is fast enough for the Poly 2 series, i.e., it takes less than 5 seconds with δ = 10 for every set of
pre-aggregated count distribution, the procedure is much slower for the Poly 3 series, i.e., it takes
around 35 seconds with δ = 10 for every set of pre-aggregated count distributions. As mentioned
before, this may be too slow for the real-world location-based services that answer queries for
hyper-dynamic data, e.g., moving cars. Query results may become outdated before computations
are complete. A way to improve time complexity is to decrease the value of δ. However, one
can argue that the lower the value of δ, the worse the precision (see “Precision” in Section 7.3).
Anyway, we again emphasize that this is a prototype implementation, but acknowledge that further
optimizations to our pre-aggregation procedure are needed if it is going to be used in the real-
world location-bases services. At the same time, our aggregation procedure can be applied to the
probabilistic data of any degree of dynamism and the current implementation may be fast enough
for queries for slowly changing data, e.g., historical data.

Precision In the following, we measure the quality of count distributions produced with co-
alescion in terms of their difference from aggregate values produced without coalescion. The
measure of the quality is the distance between an interval from a non-coalesced count distribution
and a corresponding coalesced count distribution. This is formalized in Definition 7.1.

Definition 7.1. [Distance between an interval and a count distribution] Given an interval, I ,
we denote its length by |I|. Given two intervals, I and J , we denote their intersection by |I ∩ J |.
Given a number, r, we denote its absolute value by |r|. Then, given a dimension value e ∈ Cto, an
interval, (I, p), and a count distribution for e,

Count(e) = {(J1, q1), (J2, q2), . . . , (Jm, qm)},

the distance between I and Count(e), dist(I,Count(e)), is defined as follows:

dist(I,Count (e)) = |p−
m∑

i=1

qi × |I ∩ Ji|

|Ji|
|

In addition, distN (I,Count(e)) = dist(I,Count(e))
p

is called normalized distance between I and
Count(e).

In the following, we explain the semantics of the distance. If pre-aggregated count distributions
are computed without coalescion, then count distributions computed from this pre-aggregated data
also without coalescion will contain non-overlapping intervals only. Suppose (I, p) is an interval
from a non-coalesced count distribution that contains only non-overlapping intervals, Count 1(e),
and Count 2(e) is a coalesced version of Count 1(e). Next, given I = [a; b], suppose Q is the
following probability query (see Section 6.2): “What is the probability that the count for e is be-
tween a and b, both numbers included?”. If we pose the query Q to Count 1(e) and Count 2(e)
and process the query according to the weighted approach, the responses to the query are the
numbers p and

∑m
i=1

qi×|I∩Ji|
|Ji|

, respectively. Thus, dist(I,Count 2(e)) is the absolute difference
in responses to the query Q obtained by using the precise distribution, Count 1(e), or the approxi-
mated distribution, Count 2(e), according to the weighted approach. In addition, the corresponding
normalized distance, distN (I,Count 2(e)), shows the relative difference, i.e., how large the differ-
ence is, compared to the probability of the interval, p. Specifically, if distN (I,Count 2(e)) < 1,
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(a)

(b)

(c)
Figure 14: Average normalized distance, for highly certain (a), moderately uncertain(b), and highly
uncertain(c) fact data sets

then the difference is less than p and can be considered small. Otherwise, the difference can be
considered large. Thus, the most natural way to measure precision is to perform experiments with
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the query processing techniques (see Sections 6.2 and 6.3). However, because the techniques are
not implemented yet, we use the distance notion instead.

We denote by AFP average probabilities of the relationships between facts and dimension
values from the LOCATION dimension. Figures 14(a), 14(b), and 14(c) present average normal-
ized distance for three collections of fact data sets, i.e., for highly certain (AFP ∈ [0.914, 0.998]),
moderately uncertain (AFP ∈ [0.24, 0.44]), and highly uncertain (AFP ∈ [0.048, 0.19]) fact data
sets, respectively. The highly certain and moderately uncertain fact data sets constitute a part of
the Poly 2 series and the highly uncertain fact data sets cover completely the Poly 3 and include
a part of the Poly 2 series. (The very complex series is not used, because we could not produce
non-coalesced count distributions from these series and, consequently, could not compute the dis-
tance.) The distance is presented for each combination of the coalescion parameters. Thus, in the
horizontal axis, 10 3 2 means δ = 10, mδ = 3, and ρ = 2. The combinations of the coalescion
parameters are sorted so that given two combinations, it is expected that the combination that lies
closer to the right edge of the horizontal axis will yield better precision, i.e., smaller ratio between
the distance values and interval probabilities. Specifically, the combinations that contain the low
value of δ, i.e., δ = 10, are placed at the left edge of the horizontal axis. These combinations are
followed by those that contain the average value of δ, i.e., δ = 20, and, in turn, by those that contain
the high value of δ, i.e., δ = 50. This means that there are three large groups of the combinations,
one per value of δ. Inside each large group, the combinations are further grouped into small groups
according to the value of mδ , and the small groups for mδ = 0.75 · δ are followed by those for
mδ = 0.50 · δ, which are, in turn, followed by those for mδ = 0.75 · δ. Inside each small group,
the combination for ρ = 2 is followed by the one for ρ = 1, which is, in turn, followed by the one
for ρ = 0.

In general, Figures 14(a), 14(b), and 14(c) show that the coalesced count distributions are
highly precise for highly certain and moderately uncertain data sets (the average normalized dis-
tance is always less than 1 for every value of δ). For highly uncertain data sets, the coalesced
count distributions are quite precise for a high value of δ, i.e., 50 (the average normalized distance
is always less than 1), but becomes imprecise for lower values of δ, i.e., 10 and 20 (the average
normalized distance is in many cases greater that 1). However, the coalescion parameters help
significantly improve the precision for every data set in almost any case. The level of precision
is generally determined by δ, so we recommend increasing the value of δ as the first measure to
increase the precision. For the same values of δ, setting higher values of mδ help increase the
precision even further. For the same values of δ and mδ, setting higher values of ρ is effective (if
mδ is high enough). The reasons for these effects of the parameters are discussed in Section 7.4.

7.4 Examples of Count Distributions

In addition to discussing the quality of sets of coalesced count distributions as a whole, in Ex-
amples 7.2 and 7.3, we present several concrete count probability distributions that are produced
during the experiments, exactly as they appear in our logs.

Example 7.2. [Non-coalesced count distribution] In this example, we present a precise, non-
coalesced count distribution, which can be seen below. Note that the distribution contains many
intervals with extremely low probabilities (e.g., 58 out of 86 intervals have a probability of less than
0.001). Suppose processing a user query without coalescion involves producing this distribution.
If the system predicts that it would take too much time and/or space to produce the distribution,
then given such a high precision, before processing the query the system may ask a user whether
the user agrees to trade some precision for time and space complexity by turning on coalescion.
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([0; 0], 3.179347095886113E − 10)([1; 1], 8.234264083616268E − 9)([2; 2], 1.0498858168375834E − 7)

([3; 3], 8.78506401986354E − 7)([4; 4], 5.426257120777551E − 6)([5; 5], 2.6384542001703962E − 5)

([6; 6], 1.0517962988638688E − 4)([7; 7], 3.5349987840882724E − 4)([8; 8], 0.0010223115485663)

([9; 9], 0.002583787033489785)([10; 10], 0.005777047010525943)([11; 11], 0.011539696985985056)

([12; 12], 0.0207597701956348)([13; 13], 0.03386181896648201)([14; 14], 0.0503646470574778)

([15; 15], 0.06864017702127574)([16; 16], 0.08607706473551144)([17; 17], 0.09968607508404385)

([18; 18], 0.10695557212303336)([19; 19], 0.10661341369707565)([20; 20], 0.09897742683265986

([21; 21], 0.08576921877004552)([22; 22], 0.06951009268028394)([23; 23], 0.05277690199853426)

([24; 24], 0.03760082907587592)([25; 25], 0.025171837758547134)([26; 26], 0.015854011618459413)

([27; 27], 0.009404933663079816)([28; 28], 0.005260154580178331)([29; 29], 0.002776223271920063)

([30; 30], 0.0013837808902744221)([31; 31], 6.518411008318314E − 4)([32; 32], 2.90365809700994E − 4)

([33; 33], 1.2238053880813055E − 4)([34; 34], 4.8825237762428826E − 5)([35; 35], 1.844647942918667E − 5)

([36; 36], 6.601815021705062E − 6)([37; 37], 2.238775445949463E − 6)([38; 38], 7.195247639545527E − 7)

([39; 39], 2.1919707066571283E − 7)([40; 40], 6.330224700185138E − 8)([41; 41], 1.7330732073742502E − 8)

([42; 42], 4.498036718575981E − 9)([43; 43], 1.1066479420594533E − 9)([44; 44], 2.580630352503483E − 10)

([45; 45], 5.70293957954205E − 11)([46; 46], 1.1940773547110665E − 11)([47; 47], 2.3681431710976016E − 12)

([48; 48], 4.447161841570579E − 13)([49; 49], 7.904804666438235E − 14)([50; 50], 1.329357116514118E − 14)

([51; 51], 2.1140635789370482E − 15)([52; 52], 3.177438870555375E − 16)([53; 53], 4.510743778815912E − 17)

([54; 54], 6.044083961935451E − 18)([55; 55], 7.638226745794614E − 19)([56; 56], 9.096395978631058E − 20)

([57; 57], 1.019906047527562E − 20)([58; 58], 1.075537548396446E − 21)([59; 59], 1.065575438477942E − 22)

([60; 60], 9.906237941596954E − 24)([61; 61], 8.630211973197655E − 25)([62; 62], 7.035397789366963E − 26)

([63; 63], 5.358144218264031E − 27)([64; 64], 3.805685405541336E − 28)([65; 65], 2.5159348833680943E − 29)

([66; 66], 1.5448253980439302E − 30)([67; 67], 8.7889167243569E − 32)([68; 68], 4.620729562892407E − 33)

([69; 69], 2.2382535409044147E − 34)([70; 70], 9.955704032510477E − 36)([71; 71], 4.050829500271661E − 37)

([72; 72], 1.5011891837966789E − 38)([73; 73], 5.0416121191856066E − 40)([74; 74], 1.5255033504289756E − 41)

([75; 75], 4.130333555513952E − 43)([76; 76], 9.924912573672056E − 45)([77; 77], 2.0956528059645797E − 46)

([78; 78], 3.84074329465698E − 48)([79; 79], 6.014832389558719E − 50)([80; 80], 7.885677133389753E − 52)

([81; 81], 8.415471470037632E − 54)([82; 82], 7.01885073811092E − 56)([83; 83], 4.2897060360151254E − 58)

([84; 84], 1.7079176873149942E − 60)([85; 85], 3.322797088737615E − 63)

Example 7.3. [Coalesced count distributions] In this example, we present a scenario that a sys-
tem could follow to first obtain a compact approximation of the count distribution from Exam-
ple 7.2 and then to refine the approximation at the user’s request. Specifically, we present a se-
quence of coalesced versions of the count distribution from Example 7.2. The coalesced count
distributions are enumerated below, together with the values of the coalescion parameters used.
The comments to the distributions can be used as guidelines for selecting values of the coalescion
parameters.

1. δ = 10, mδ = 3, ρ = 1:
([0; 70], 0.14396207208736794)([4; 59], 0.11010743052854795)([5; 60], 0.036702476842849316)([5; 65], 0.12198835895742445)

([6; 66], 0.04066278631914148)([6; 70], 0.13289740466965425)([7; 71], 0.044299134889884746)([8; 75], 0.16353757013061587)

([10; 84], 0.1897758117076795)([12; 85], 0.016066953866834446)

The above distribution is obtained when a system sets a relatively low value of δ, 10. The
distribution is much more compact than the one from Example 7.2. However, the distribu-
tion does not contain any short “good” intervals, which may cause low precision of query
answers. A possible reason for this is that with a lower value of δ larger groups of intervals
are coalesced, so there are less short intervals. As stated in Section “Precision”, the system
should increase the value of δ, which will produce smaller groups (and will also allow higher
values of mδ), to obtain a significant increase in precision.

42



2. δ = 20, mδ = 5, ρ = 1:
([0; 51], 0.07092523494851453)([1; 54], 0.06777861075672777)([2; 55], 0.06801741961456939)([3; 60], 0.08261516105955388)

([4; 64], 0.08211651387591874)([15; 15], 0.014464304439321583)([16; 16], 0.0321551470097693)([16; 58], 0.01585807129617124)

([17; 17], 0.04299201627141359)([17; 63], 0.04302602989217311)([18; 18], 0.0408886590518133)([18; 68], 0.07142046175223914)

([19; 19], 0.01917054019977402)([19; 71], 0.09598321207423986)([20; 76], 0.10313978041114732)([21; 81], 0.08513261204785198)

([22; 85], 0.06431622529880124)

After the system increased the value of δ from 10 to 20 (and the value of mδ increased
proportionally from 3 to 5), the above distribution is obtained. Compared to the previous
distribution, this distribution is more precise, e.g., it contains 5 short “good” intervals, the
sum of their probabilities is high enough (0.15), and the rest of the intervals are significantly
shorter. This exemplifies the transfer to a different level of precision when increasing the
value of δ, which is seen in Figure 14(b) and noted in Section “Precision”. As also stated in
Section “Precision”, the system could gain even more precision by increasing the value of
mδ .

3. δ = 20, mδ = 15, ρ = 1:
([0; 82], 0.11897551078750496)([11; 11], 0.0050097110453993)([12; 12], 0.014848002237739388)([13; 13], 0.028369767499965812)

([14; 14], 0.04523795660429487)([14; 83], 0.009359527744887767)([15; 15], 0.06400274385506959)([16; 16], 0.08196238732016445)

([17; 17], 0.0959204252406539)([17; 84], 0.005453297465745496)([18; 18], 0.10314499676472423)([19; 19], 0.10222618755689492)

([19; 85], 4.357914120983518E − 4)([20; 20], 0.09348505135493608)([21; 21], 0.07876158425783535)([22; 22], 0.060744059195773)

([23; 23], 0.042314888692954654)([24; 24], 0.025788462868168216)([24; 38], 0.012468771961465078)([25; 25], 0.011490876133724)

After the system increased the value of mδ from 5 to 15, the above distribution is obtained.
Compared to the previous distribution, this distribution is even more precise, e.g., it contains
15 short “good” intervals instead of 5 and the sum of their probabilities is 0.85 instead of
0.15. Compared to the previous distribution, the rest of the intervals are longer, but the sum
of their probabilities is much lower. This exemplifies the extreme importance of being able
to increase the value of mδ , which again exemplifies the transfer to a different level of preci-
sion when increasing the value of δ. As discussed in Section “Precision”, the system could
gain even more precision by decreasing the value of ρ.

4. δ = 20, mδ = 15, ρ = 0:
([0; 82], 0.03063417635861396)([11; 11], 0.006001870967576094)([12; 12], 0.017275615631781215)([13; 13], 0.0318897122101724)

([14; 14], 0.049292155375020484)([15; 15], 0.06809617767823117)([16; 16], 0.08582115045832502)([16; 83], 0.00366132338593119)

([17; 17], 0.09957444672129781)([18; 18], 0.10691004454512312)([18; 84], 0.016788719751145043)([19; 19], 0.10659353567953948)

([20; 20], 0.09895702894223198)([20; 85], 0.015334943431372141)([21; 21], 0.08569709124073766)([22; 22], 0.06921191456863439)

([23; 23], 0.05167444148670454)([23; 48], 0.00619460237174596)([24; 24], 0.03420388706095644)([25; 25], 0.016187162134860014)

After the system decreased the value of ρ from 1 to 0, the above distribution is obtained.
Compared to the previous distribution, this distribution is more precise, e.g., it contains the
same 15 short “good” intervals, but the sum of their probabilities is higher than in the previ-
ous case (0.93 instead of 0.85). This happens because the lower is the value of ρ, the greater
number of “good” intervals are identified and left uncoalesced.

8 Conclusions and Future Work

Motivated by the increasing need to analyze complex uncertain multidimensional data (e.g., data
from location-based services), in this paper, we introduced the means for managing this data by
extending current OLAP/DW technology with probabilistic data management.
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Specifically, the contributions of this paper were as follows. First, we generalized the notion
of measures in OLAP data cubes by using probability distributions as aggregate values instead of
deterministic aggregate values. A probability distribution could capture much more information
than a deterministic aggregate value. Specifically, a probability distribution could capture a whole
range of possibilities of an aggregate value together with their probabilities, while a deterministic
aggregate value could only capture either a summary of the whole range (e.g., an expected value)
or one characteristic value from the range (e.g., the maximum value). We represented an aggre-
gate value by a set of integer-bounded intervals with each interval assigned its probability. This
approach allowed coalescion of intervals inside aggregate values in order to gain space efficiency
and time efficiency in computations over aggregate values.

Second, we proposed a method for using pre-aggregated aggregate values in order to compute
higher-level aggregate values. The method was based on convolution, or “summation”, of the pre-
aggregated probability distributions. In order to make the computations time and space efficient,
the method provided mechanisms for approximate computation of the probability distributions.
Specifically, if several distributions had to be convolved, we “added” the distributions one by one
and coalesced intervals in each intermediate result. The precision of the result was controlled by
the maximum number of intervals in the intermediate results and by the coalescion policies that
chose which intervals must remain uncoalesced.

Third, we proposed a method for creating probability distributions from fact data. The method
enabled pre-aggregation of our generalized measures. This method was an adaptation of the
method for using pre-aggregated aggregate values. Specifically, each fact-dimension relation was
transformed into a probability distribution and the obtained distributions were convolved.

Finally, we introduced two novel types of probabilistic OLAP queries that operated on the ag-
gregate values represented by the probability distributions and proposed techniques for processing
these queries. Specifically, probability queries asked for summaries about the distributions (e.g.,
“For each street in Pullman, WA, what is the probability that the number of cars in the street ex-
ceeds 50?”). Then, aggregation queries asked for whole probability distributions (e.g., “For each
street in Pullman, WA, how many cars are in the street?”). Since the queries were processed on co-
alesced, approximate aggregate values, for both types of queries, we provided lower bound, upper
bound, and average approximations of the precise query result.

The concepts presented in the paper were illustrated using a real-world case study from the
LBS domain. The work was based on an on-going collaboration with a leading Danish LBS vendor,
Euman A/S [8].

Our methods for computing probability distributions and for using the pre-aggregated distribu-
tions for further aggregation provided the means for adjusting time efficiency of the computations
and precision of the computed distributions. Initial experiments with the methods proved that the
means were effective. Specifically, by setting the maximum number of intervals in the resulting
count distributions, the system could significantly reduce the time complexity. Moreover, if this
lead to unwanted decrease in precision, the precision could be improved by increasing the maxi-
mum number of intervals and by other means. Thus, our techniques can be used to strike a good
balance between time complexity and precision.

Future work includes generalizing our methods to handle not only probability distributions that
capture COUNT aggregate values, but also to handle other aggregate values such as SUM and
MIN/MAX. Next, new coalescion policies can be developed to give the system more control over
coalescion, which may further increase precision of the computed distributions. Further experi-
ments can be performed. This includes building fact data from real data on moving objects, using
probabilistic dimensions (see Section 4.5), using our data selection techniques (see Sections 4.4
and 5.4), and the method extension for LBS (see Section 5.2). Then, it is very important to imple-
ment and experiment with our query processing techniques. Finally, it is the most interesting to
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integrate all the techniques proposed in this paper into existing OLAP systems. This will include
incorporating the means for adjusting time efficiency of the computations and precision of the com-
puted distributions into an automated adjustment technique. In addition, the techniques from this
paper will be extended to better support hyper-dynamic content and future-time queries (e.g., we
will develop a method for predicting future changes of pre-aggregated count distributions based on
predicted future changes of fact data).
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[12] C. S. Jensen, J. Kolář, T. B. Pedersen, and I. Timko. Nearest Neighbor Queries in Road
Networks. In Proceedings of the 11th International Symposium on Advances in Geographic
Information Systems (ACM GIS), pp.1–8, 2003.

[13] R. B. Kearfott. Interval Computations: Introduction, Uses, and Resources. Euromath Bulletin
2(1):95-112, 1996.

[14] R. Kimball, L. Reeves, M. Ross, and W. Thornthwaite. The Data Warehouse Lifecycle
Toolkit. Wiley, 800 pp., 1998.

[15] B. R. Moole. A Probabilistic Multidimensional Data Model and Algebra for OLAP in Deci-
sion Support Systems. In Proceedings of IEEE SoutheastCon, pp. 18–30, 2003.

45



[16] Oracle Corporation. Oracle 10g Business Intelligence.
In otn.oracle.com/products/bi/content.html. Current as of August 30, 2005.

[17] T. B. Pedersen, C. S. Jensen, and C. E. Dyreson. Supporting Imprecision in Multidimensional
Databases Using Granularities. In Proceedings of 11th International Conference on Scientific
and Statistical Database Management (SSDBM), pp. 90–101, 1999.

[18] T. B. Pedersen, C. S. Jensen, and C. E. Dyreson. A Foundation for Capturing and Querying
Complex Multidimensional Data. Information Systems 26(5):383–423, 2001.

[19] T. B. Pedersen and N. Tryfona. Pre-aggregation in Spatial Data Warehouses. In Proceedings
of the 7th International Symposium on Spatial and Temporal Databases (SSTD), pp. 460–478,
2001.

[20] V. Poosala and V. Ganti. Fast Approximate Answers to Aggregate Queries on a Data Cube. In
Proceedings of 11th International Conference on Scientific and Statistical Database Manage-
ment (SSDBM), pp. 24–33, 1999.

[21] V. Poosala, V. Ganti, and Y. E. Ioannidis. Approximate Query Answering using Histograms.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering 22(4):5–14.

[22] M. S. Puckette. Shannon Entropy and the Central Limit Theorem. Ph.D. Thesis. Department
of Mathematics, Harvard University, 1986.

[23] H. M. Regan, S. Ferson, and D. Berleant. Equivalence of Methods for Uncertainty Prop-
agation of Real-Valued Random Variables. International Journal of Approximate Reasoning
36:1–30, 2004.
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