
A Unit-Test Framework for Database
Applications

Claus A. Christensen, Steen Gundersborg, Kristian de Linde, and Kristian Torp

May 8, 2006

TR-15

A DB Technical Report

Title A Unit-Test Framework for Database Applications

Copyright c© 2006 Claus A. Christensen, Steen Gundersborg, Kristian de
Linde, and Kristian Torp. All rights reserved.

Author(s) Claus A. Christensen, Steen Gundersborg, Kristian de Linde, and Kristian
Torp

Publication History May 2006. A DB Technical Report

For additional information, see the DB TECH REPORTShomepage:〈www.cs.aau.dk/DBTR〉.

Any software made available viaDB TECH REPORTS is provided “as is” and without any express or
implied warranties, including, without limitation, the implied warranty of merchantability and fitness for a
particular purpose.

The DB TECH REPORTS icon is made from two letters in an early version of the Rune alphabet, which
was used by the Vikings, among others. Runes have angular shapes and lack horizontal lines because the
primary storage medium was wood, although they may also be found on jewelry, tools, and weapons. Runes
were perceived as having magic, hidden powers. The first letter in the logo is “Dagaz,” the rune for day
or daylight and the phonetic equivalent of “d.” Its meaningsinclude happiness, activity, and satisfaction.
The second letter is “Berkano,” which is associated with thebirch tree. Its divinatory meanings include
health, new beginnings, growth, plenty, and clearance. It is associated with Idun, goddess of Spring, and
with fertility. It is the phonetic equivalent of “b.”

Abstract

The outcome of a test of an application that stores data in a database naturally depends on the state
of the database. It is therefore important that test developers are able to set up and tear down database
states in a simple and efficient manner. In existing unit-test frameworks, setting up and tearing down
suchtest fixturesis labor intensive and often requires copy-and-paste of code. This paper presents an
extension to existing unit-test frameworks that allows unit tests to reuse data inserted by other unit tests
in a very structured fashion. With this approach, the test fixture for each unit test can be minimized. In
addition, the reuse between unit tests can speed up the execution of test suites. A performance test on a
medium-size project shows a 40% speed up and an estimated 25%reduction in the number of lines of
test code.

1 Introduction

Unit-test frameworks are widely used by software developers to assist them in testing the correctness of
software. This wide spread use of unit tests is best illustrated by the eXtreme Programming methodology [2]
where a coding rule says "Code the unit test first". In the development of software, databases are very often
used for storing data persistently. The code that query and update the database must naturally also be unit
tested.

There exist a large number of unit-test frameworks [10, 16].In these unit-test frameworks, eachtest
suite consists of a number oftest casesthat again consists of a number oftest methods. In an object-
oriented programming language, a test case is implemented as a class, a test method is implemented as a
method, and a test suite as a collection of classes.

The existing unit-test frameworks make the central assumption, that all test methods must be indepen-
dent [10]. As an example, consider testing a university registrar application where data is stored in an
underlying relational database. Here, there is a test method that checks that a student can enroll in a course.
The test developer must ensure that this test method can be executed independently. In contrast, the table
that the enrollment is inserted into can have multiple foreign keys to other tables. We assume that the en-
rollment table has two foreign keys to tables that stores information on the courses and the students. Unless
these two tables contain reasonable values, the enrollmenttest method will fail due to integrity constraint vi-
olations. To insert reasonable values the test developer has to build atest fixturethat in the registrar example
inserts rows into the course and student tables that the enrollment test method use.

Unit-test frameworks use asetUp method for building the test fixture and atearDown method for
removing it again. Because test methods are independent thetest developer cannot reuse or inherit code
from other test cases when building the test fixture. This typically leads to copy-and-paste of code, which
makes test fixtures labor intensive to build and maintain. Inaddition, if another test method in our registrar
example queries the number of students enrolled in a course,and both the insert and the query test methods
are executed as a part of testing the entire application, both test methods need to set up and tear down the
test fixture. This is unnecessary since the query test methodcan reuse the test fixture provided by the insert
test method. It is time saving to reuse test fixtures for applications that store data in a database because it
is very time consuming to build test fixtures that inserts rows into a database and to remove the test fixtures
again by deleting the same rows from the database.

In this paper, we argue that when testing software that stores data in a database it is an advantage to
allow both test cases and test methods to be dependent in a very structured fashion. This breaks with a
central assumption in existing unit-test frameworks that test methods must be independent. However, it can
solve the two problems described above: 1) Make it less laborintensive to build and maintain test fixtures
and 2) make it faster to execute test cases and test suites.

The paper is organized as follows. In Section 2, related workis discussed. Section 3 introduces a small
test database and an application that are used as running examples. Section 4 describes the framework

1

constructs in details. How to reuse test fixtures is discussed in Section 5. A prototype implementation is
described in Section 6. Finally, Section 7 concludes the paper and points to directions of future research.

2 Related Work

The JUnit testing framework [10] is the de-facto standard for implementing Java unit tests. The work
presented in this paper extends the existing frameworks by allowing reuse (dependencies) between test
methods and test cases. This makes test fixtures simpler to build and test suites faster to execute. Similarly,
the utPLSQL framework [16] is a unit-test framework for Oracle’s PL/SQL programming language. The
framework is modeled after the JUnit framework, taking intoconsideration the characteristics of PL/SQL.

The DbUnit testing framework [1] is a JUnit extension that isaimed specifically at database-driven
applications. Before a test method is executed, the framework puts the database in a known state, which per
default is the empty state. This is done by truncating all tables. As most, if not all, frameworks build on top
of the JUnit framework, DbUnit makes the assumption that test methods are independent. The framework
presented in this paper allows test data and production datato coexist. In addition, we do not rely on
truncating tables. An application may not have sufficient privileges in the database to do this.

Mock objects [7] are often used as stubs when unit-testing objects that participate in complex relation-
ships. When testing database applications it is simply not possible to use mock objects because this would
lead to integrity constraint violations. A stub cannot be used, real data has to be present in the database.

How to test the SQL statements executed by an application viafor example JDBC is discussed in [8, 12].
Here, the actual code in the test methods is discussed. This work is orthogonal to the work presented in this
paper. We look at how test methods and test cases can interact.

In [4], Chays et al. present a design of a framework for testing database applications. They discuss the
role of the database state, which makes testing database applications different from testing applications that
do not store data persistently. Their contribution is at a more conceptual level compared to this paper.

Testing complex database transactions is the topic in [6]. Here, a tool for checking the consistency of
transactions executed in isolation is presented. In this paper, transactions are not considered and the work
presented in [6] can be combined with the work presented here.

General books on software testing [2, 9, 11, 14] have no specific discussion of the testing of database
applications. In [11], Lewis considers how to test if integrity constraints in a database are fulfilled something
most DBMSs do automatically.

In [5], Daou et al categorize the problems that SQL inflicts onregression testing. This paper differs
from [5] in that it considers unit testing, whereas Daou et alonly consider regression testing and Daou et al
do not discuss how to handle the test fixture for a single test method.

3 The University Example

This section introduces a database schema and a simple application that query and update the tables in the
database. The database and the application are used as running examples in the paper.

3.1 The Database Schema

The UML class diagram in Figure 1 represents a university. Each class corresponds to a table. Columns are
represented as attributes where primary keys are marked by (pk). Foreign keys are shown as associations
between classes.

2

student

+sid (pk)

+name

+ssn

+semid enrollment

+sid (pk)

+cid (pk)

course

+cid (pk)

+name

+tid

+semid

0..n

semester

+semid (pk)

+name

0..n

office

+building (pk)

+room (pk)

+size

0..n

teacher

+tid (pk)

+name

+bossid

+building

+room

1..1

0..n

1..1

0..n

1..1 1..1

1..1

1..1

1..1 1..1

0..n

Figure 1: The University Schema

The university has a number of students. Information about these is stored in thestudenttable. This
table has four columns:sid the student id and the primary key,name the student’s name,ssn the social
security number, andsemid the semester id. Thecoursetable stores information on courses. This table
has four columns:cid the course id and the primary key,name the course name,tid the teacher id and
foreign key to tableteacher, andsemid the semester id. Theenrollmenttable is a relationship between
the studentand thecoursetables. It has two columns:sid the student id andcid the course id. Both
columns are part of the primary key and are foreign keys to thestudentand thecoursetables, respectively.
Thesemestertable has two columns:semid the semester id, and primary key, andname the name of the
semester. Theofficetable has three columns:building the name of the building,room the room number,
andsize the size of the room. The primary key is the columnsbuilding androom. Theteachertable
has five columns:tid the teacher id and primary key,name the teacher’s name,bossid the id of the
teacher’s boss and a foreign key to theteachertable itself,building the building, androom the room.
The last two columns are a foreign key to theofficetable.

3.2 The Application

The example application is a table wrapper API that creates aclass for each table in the underlying database
and provides three methods. Theins method that inserts a row into the table. One argument for each
column in the table is provided. Thedel method that deletes a single row from the underlying table. The
primary key is given as argument. Finally, theexist method that checks if a row is stored in the table.
The primary key of the row is given as argument and the method returns true or false. The method names
are chosen such that they do not collide with SQL reserved words. The table wrapper API for theofficeand
teachertables is shown in the UML class diagram in Figure 2.

TeacherAPI

+ins(tid,name,bossid,building,room)

+del(tid)

+exist(tid): boolean

OfficeAPI

+ins(building,room,size)

+del(building,room)

+exist(building,room): boolean

Figure 2: The Office and Teacher Table Wrapper APIs

It is important to emphasize that the unit-test framework presented in this paper is not limited to test
such simple table wrapper APIs. It can be used to test all types of applications but is targeted towards
applications that store data in a relational database.

3

4 The Framework Constructs

The framework can be divided into four main constructions that are shown in Figure 3. The first is the class
TestCase, the second is the subclasses ofTestCase, the third is the classUnitTest, and the final is
the classInvocationStack. These constructs are described in details in the following.

TestTeacherAPI

+TID_PETER: int = 999

+TID_JANE: int = 100

+getDependencies(): TestCase[]

+testInsPeter()

+testInsJane()

+testExist()

+testDelJane()

+testDelPeter()

TestCase

+setUp()

+tearDown()

+getDependencies(): TestCase[]

TestOfficeAPI

+BUILDING_ONE: String = B1

+ROOM_ONE: String = 111

+BUILDING_TWO: String = B2

+ROOM_TWO: String = 222

+testInsOne()

+testInsTwo()

+testExistOne()

+testExistTwo()

+testDelTwo()

+testDelOne()

UnitTest

-stack: InvocationStack

+run(testCase)

-setUp(testCase)

-tearDown(testCase)

-use(testCase)

-disUse(testCase)

-runTestMethod(testMethod,testCase)

InvocationStack

+push(testCase)

+exist(testCase): boolean

+top(): TestCase

+pop(): TestCase

1..n

1..1

1..1

1..1

Figure 3: Test Framework Constructs

4.1 The TestCase Class

The classTestCase is supplied by the framework and is the superclass of the testcases build by the test
developers, i.e., it serves the same purpose as the classTestCase in JUnit [10]. The class has three the
public methodssetUp, tearDown, andgetDependencies. The first two methods are concrete with
empty bodies. The last method returns an empty array by default.

The methodssetUp andtearDown have the same purpose as in JUnit. They set up or tear down the
test fixture before or after each test method is executed, respectively. The methodgetDependencies
returns the test cases that a test case depends on. As an example, the table wrapper API for theteachertable
depends on the table wrapper API for theoffice table because there is a foreign key from tableteacherto
tableoffice.

All the methods on theTestCase class are called by the classUnitTest that is described next.

4.2 The UnitTest Class

The classUnitTest is used to execute the test methods on a single test case and a set of test cases. The
methods and attributes defined on theUnitTest class are explained in this section.

4.2.1 The stack Variable

The private variablestack of typeInvocationStack is used to control the test cases that are in use.
The purpose of the variable is illustrated in Section 4.4. Inthe methods introduced in the following sections,
thestack variable is simply used as a LIFO queue.

4.2.2 The run Method

The purpose of the publicrun method is to execute all the test methods for a single test case. Note that
compared to JUnit therun method has been moved from theTestCase class to theUnitTest class.

4

The pseudo code for therunmethod is shown in Listing 1 using a Python-like [15] syntax where comments
are marked by #.

1 def run (t e s t C a s e) :
2 # s e t up t h e d e p e n d e nc ie s
3 setUp (t e s t C a s e)
4 # e x e c u t e a l l t h e t e s t methods
5 f o r t es tMe thod in t e s t C a s e :
6 runTestMethod (tes tMethod , t e s t C a s e)
7 # t e a r down t h e d e p e n d e n c i es
8 tearDown (t e s t C a s e)

Listing 1: Therun Method

Therun method is called with aTestCase object, e.g., an instance of theTestOfficeAPI class.
The method then calls the private methodsetUp on the classUnitTest in line 3. This call builds the test
fixture for the entire test case. In lines 5–6, the method loops over all the test methods in the test case and
calls these methods. Finally, in line 8 the private methodtearDown on classUnitTest is called to tear
down the test fixture.

Note that in the implementation, discussed in Section 6, lines 5–6 of therun method are implemented
using the reflection capabilities of the implementation language. In general, reflection is used extensively
in the implementation of the unit-test framework presentedhere, as it is the case in for example JUnit [3].
However, it is much simpler to explain the unit-test framework methods without considering reflection.

4.2.3 The setUp Method

The purpose of the private methodsetUp is to ensure that the test fixture for an entire test case is setup.
This can be complicated. As an example, for the table wrapperAPI this is complicated due to the foreign
key constraints. In more details, before we can execute the test methods for theenrollmenttable API it is
necessary to have data in thecourseandstudenttables. Before we can insert data in thestudenttable there
must be data in thesemestertable. Before we can insert data in thecoursetable there needs to be data in
first theofficetable, second theteachertable, and finally thesemestertable, see also Figure 1.

The set up of the test fixture is achieved by having thesetUp method call theuse method on all test
cases that the current test case depends on. These dependencies are specified by the test developer and
can be retrieved using thegetDependencies method on theTestCase class. ThesetUp method is
specified in Listing 2.

1 def setUp (t e s t C a s e) :
2 # i f a l r e a d y s e t up then s k i p
3 i f s t a c k . e x i s t (t e s t C a s e) :
4 re turn
5 # use t e s t c a s e s t h i s t e s t case depends on
6 f o r dependen t in t e s t C a s e . ge tDependenc ies () :
7 use (dependen t)
8 # t e l l t e s t case i s i n use
9 s t a c k . push (t e s t C a s e)

Listing 2: ThesetUp Method

ThesetUp method is called with aTestCase object as argument. In line 3, it is checked that the
test case is not already in use. This is done by calling the method exist on the variablestack (of
typeInvocationStack). If the test case is already on the stack thesetUp method returns in line 4.
Otherwise, theuse method is called in lines 6–7 for all the test cases that the current test case depends
on. To get these dependent test cases the instance methodgetDependencies on the classTestCase

5

is called. When all the dependent test cases have been set up (via theuse method) the test case is pushed
on the stack in line 9 to show that the test case is now in use.

4.2.4 The use Method

The purpose of the private methoduse is to make the data used by a test case available to other test cases.
Theuse method is shown in Listing 3.

1 def use (t e s t C a s e) :
2 # s e t up myse l f
3 setUp (t e s t C a s e)
4 # r e u s e i n s e r t t e s t methods
5 f o r i n s e r t T e s t M e t h o d in t e s t C a s e :
6 runTestMethod (i n s e r t T e s t M e t h o d , t e s t C a s e)

Listing 3: Theuse Method

Theuse method is called with aTestCase object as argument. In line 3, thesetUp method on the
UnitTest class is called. This is to ensure that the test case is set up.In lines 5–6, all theinsert test
methods(the test methods with the prefixtestIns) on the test case are called. These methods insert data into
the underlying table, e.g., the insert test methods for the test caseTestOfficeAPI inserts data into the
officetable. Insert test methods are explained in details in Section 4.3.

4.2.5 The runTestMethodMethod

The purpose of the private methodrunTestMethod is to execute a single test method. TherunTestMethod
method is specified in Listing 4.

1 def runTestMethod (tes tMethod , t e s t C a s e) :
2 # c a l l s e t up method
3 t e s t C a s e . setUp ()
4 # e x e c u t e t h e a c t u a l t e s t method
5 t e s t C a s e . tes tMe thod ()
6 # c a l l t h e teardown method
7 t e s t C a s e . tearDown ()

Listing 4: TherunTestMethodMethod

TherunTestMethod is called with a test method and a test case as arguments. First, thesetUp
method is called in line 3. Then, the actual test method is executed in line 5. Finally, thetearDownmethod
is called in line 7. Note that these three method calls are on theTestCase object given as argument to the
runTestMethodmethod.

ThesetUp, use, andrunTestMethodmethods on classUnitTest are now defined and it can be
shown how the test fixture for the table wrapper API is set up and how test methods are executed. Looking
at Figure 1, the dependencies between test cases are found bylooking at the associations between classes.
These dependencies are listed in Table 1.

6

Test Case Dependencies
TestCourseAPI TestSemesterAPI, TestTeacherAPI
TestEnrollmentAPI TestCourseAPI, TestStudentAPI
TestOfficeAPI
TestSemesterAPI
TestStudentAPI TestSemesterAPI
TestTeacherAPI TestOfficeAPI

Table 1: Dependencies Between Test Cases

As examples, the table shows that theTestCourseAPI test case depends on theTestSemester-
API and theTestTeacherAPI test cases. TheTestOfficeAPI test case has no dependencies. As
shown in Table 1 each test case only specifies the test cases that it depends on directly.

:UnitTest :TestOfficeAPI

getDependencies()

setUp()

testInsOne()

testDelOne()

tearDown()

setUp()

tearDown()

...

Figure 4: Set Up of Office Test Fixture

The sequence diagram in Figure 4 shows the process of settingup the test fixture for testing the table
wrapper API for theofficetable. TheUnitTest first calls the methodgetDependencieson theTest-
OfficeAPI test case. It returns an empty array as it has no dependencies, see also Table 1. The next step
is then a sequence ofsetUp, test method, andtearDown method calls. Except from the first call of the
getDependenciesmethod this corresponds to the JUnit framework.

TheTestOfficeAPI test case has no dependencies and therefore no other test cases are involved in
testing this test case. The next step is therefore to look at atest case that has dependencies. The set up of
the test fixture for testing theTestTeacherAPI test case is shown in Figure 5. TheTestTeacherAPI
test case depends onTestOfficeAPI test case and the latter test case is therefore used in setting up the
test fixture for theTestTeacherAPI test case.

As can be seen from Table 1, there needs to be data in theofficetable to test theteachertable. Looking at
the sequence diagram in Figure 5, the methodgetDependencies is first called on theTestTeacher-
API. This call returns that theTestTeacherAPI test case depends on theTestOfficeAPI test case.
The next step is then to call the methodgetDependencieson theTestOfficeAPI test case. This test
case has no dependencies, so the insert test methods on theTestOfficeAPI test case are called. These
calls are all wrapped in calls to thesetUp andtearDown methods. The calls of the insert test methods
ensures that there is test data in theofficetable. If the test methods in theTestTeacherAPI test case use
this data there will be no integrity constraint violations.This will be explained in details in Section 4.3.3.
The next step is then to execute the test methods on theTestTeacherAPI test case.

It has now been shown how to set up a test fixture. The next step is to show how to tear down a test
fixture. The methodstearDown anddisUse methods are used for this and are introduced next.

7

:UnitTest :TestTeacherAPI

testInsOne()

getDependencies()

setUp()

setUp()

testInsPeter()

tearDown()

:TestOfficeAPI

getDependencies()

tearDown()

setUp()

testInsTwo()

tearDown()

...

Figure 5: Set Up of Teacher Test Fixture

4.2.6 The tearDown Method

The purpose of the private methodtearDown is to remove exactly the data inserted by thesetUpmethod.
The method is shown in Listing 5.

1 def tearDown (t e s t C a s e) :
2 # i f no t top o f s t a c k s k i p t e a r down f o r now
3 i f s t a c k . top () != t e s t C a s e :
4 re turn
5 # t e l l t h a t t e s t case i s no l o n g e r i n use
6 s t a c k . pop ()
7 # t e a r down what t e s t case depends on
8 f o r dependen t in r e v e r s e
9 (t e s t C a s e . ge tDependenc ies ()) :

10 d isUse (dependen t)

Listing 5: ThetearDownMethod

ThetearDown method is called with aTestCase object as argument. In line 3, it is first checked
that the test case is the top of the stack. This is explained indetails in Section 4.4. In line 6, the test case
is popped of the stack to indicate that the data for this test case in no longer available. In lines 8–10, the
disUse method of dependent test cases are called in the reverse order of which theuse method on these
test cases was called in thesetUp method. ThedisUse method is explained next.

8

4.2.7 The disUse Method

The purpose of the private methoddisUse is to make a test case unavailable for other test cases. The
method is shown in Listing 6.

1 def d isUse (t e s t C a s e) :
2 # r e u s e a l l d e l e t e t e s t methods
3 f o r de lTestMethod in t e s t C a s e :
4 runTestMethod (de lTestMethod , t e s t C a s e)
5 # t e a r down myse l f
6 tearDown (t e s t C a s e)

Listing 6: ThedisUse Method

The disUse method is called with aTestCase object as argument. In lines 2–3, all delete test
methods are called, i.e., test methods with the prefixtestDel. This is explained in Section 4.3. Finally, the
tearDownmethod from Listing 5 is called in line 6, this is to recursively tear down the test fixture.

Before it can be completely explained how the tear down of a test fixture works, the subclasses of the
TestCase class need to be introduced. ThetearDown method is then reintroduced in more details in
Section 4.4.

4.3 The TestCase Subclasses

This section describes the subclasses of theTestCase class that the test developer builds. In addition,
conventions that the test developer must follow are discussed. A test case consists of the following three
parts.

• A list of dependent test cases

• An ordered list of test methods

• A set of public constants

4.3.1 Dependencies

The test developer must specify the test cases that a test case depends on. For the university schema
in Figure 1, the dependencies are shown in Table 1. The dependencies can be queried via theget-
Dependencies method that the test developer overrides. This is shown in Figure 3 where the class
TestTeacherAPI overrides thegetDependencies method. TheTestOfficeAPI does not over-
ride this method because it has no dependencies.

The test developer only needs to specify the test cases that atest case depends on directly. As an ex-
ample, theTestEnrollmentAPI test case only lists the two test casesTestStudentAPI andTest-
CourseAPI as dependencies even though theTestEnrollmentAPI test case also indirectly depends
on the three test casesTestOfficeAPI TestSemesterAPI, andTestTeacherAPI. These indi-
rect dependencies are found by recursively calling thegetDependenciesmethod. This is illustrated in
Section 4.4.

There cannot be cycles in the dependencies between test cases. In addition, duplicates are not allowed
in the set of dependent test cases. The unit-test framework automatically checks for both.

4.3.2 Test Methods

The test methods are the actual tests of the application, as in JUnit. However, in contrast to JUnit, the test
methods are split into three distinct sets.

9

• Plain test methods

• Insert test methods

• Delete test methods

The plain test methods are similar to test methods in JUnit. The insert and delete test methods are used
for inserting and deleting data from the underlying table, respectively. The insert test methods are the test
methods that have names with the prefixtestIns. The delete test methods are the test methods that names
with the prefixtestDel. All three sets of test methods are used as test methods. In addition, the insert and
delete test methods are reused to set up and tear down the testfixture. This occurs when a test case depends
on another test case. As an example, the insert test methods on theTestOfficeAPI test case are used to
set up the test fixture for theTestTeacherAPI test case. In general, the insert test methods are called by
theuse method and the delete test methods are called by thedisUse method.

As can be seen from Figure 3, the insert test methods are listed first, then plain test methods next, and
finally the delete test methods. This is because the order in which the test methods are listed is also the
order in which they are executed. The advantage of this is that it is simpler to build the test fixture for a test
method. As an example, when executing the test methodtestExistOne on theTestOfficeAPI this
test case can assume that data already exists in the underlying table. ThesetUp method on theTest-
OfficeAPI test case does not need to do this. The set up has been done by a previous test method, in this
case the test methodtestInsOne.

That test methods depends on the execution of other test methods can lead to a ripple effect offalse
negatives, e.g., all the plain test methods fail because all the inserttest methods failed, even though the error
is in the insert test methods, and not in the plain test methods. This issue is discussed in Section 6.

The test developer must guarantee that all data inserted into the underlying database by the insert test
cases are deleted from the database again by the delete test methods, i.e., when executing only the insert test
methods followed by the delete test methods the database state should not be changed. Note that the test
developer can test that the database state is unchanged by executing the insert test methods followed by the
delete test methods twice. If the second execution leads to integrity constraint violations the database state
is effected.

4.3.3 Public Constants

The test developer must make public the content of columns that other test cases can refer to. As an
example, in Figure 3 the classTestOfficeAPIhas four public constantsBUILDING_ONE,ROOM_ONE,
BUILDING_TWO, andROOM_TWO. The values of these public constants are inserted into the primary key
columns of two rows in theoffice table by the insert test methodstestInsOne andtestInsTwo. By
making the content of the primary key public other test casescan use this data to insert foreign key to rows
in theofficetable. As an example, the four public variables on theTestOfficeAPI test case are reused
by the insert test cases on theTestTeacherAPI test case.

The public constants are also used to identify the row to delete from the database in the delete test
method. This means that the test developer is not allowed to update the value of primary keys in the plain
test methods.

The test developer must guarantee that the public constantsrefer to rows in the database after the insert
test methods have been executed. Symmetrically, the test developer must guarantee that the public constants
do not refer to rows in the database after the delete test methods have been executed.

10

4.4 The InvocationStack Class

The fourth and final construct in the unit-test framework, presented in this paper, is theInvocation-
Stack class. The main purpose of the invocation stack is to keep track of which test cases have been set
up and when a test case can be torn down. This is explained by the following example.

A directed graph representation of the dependencies between test cases for the university example is
shown in Figure 6. The test cases are vertexes and the dependencies between them are edges. For now,
please ignore the counts associated with each node. These are explained in Section 5.

:TestStudentAPI

:TestEnrollmentAPI

:TestCourseAPI

:TestSemesterAPI :TestOfficeAPI

:TestTeacherAPI

count = 3

count = 1 count = 1

count = 0

count = 2

count = 3

Figure 6: Graph Representing Dependencies between Test Cases

If the TestOfficeAPI andTestTeacherAPI test cases are ignored then Figure 6 shows that the
TestEnrollmentAPI test case depends on the two test casesTestStudentAPI andTestCourse-
API. These two test cases depend on the same test caseTestSemesterAPI. If a straight-forward ap-
proach is used for setting up test fixtures when running theTestEnrollmentAPI test case then the
TestStudentAPI test case will set up theTestSemesterAPI and then it will set up it self. Next, the
TestCourseAPI test case will set up theTestSemesterAPI test case again followed by setting up it
self. The problem is that theTestSemesterAPI test case is set up twice. This will in the table wrapper
API case lead to duplicate key insertion exceptions being thrown from the underlying database. The purpose
of the invocation stack is to avoid this.

As shown in Figure 3, theInvocationStack class has the public methodspush, pop, top, and
exist. The first three methods are standard methods on a stack. The last method is used to check if an
element, i.e., aTestCase, is already on the stack.

TheInvocationStack is also used to ensure the robustness of the entire unit-testframework. If
a failure occurs due to a system breakdown, all test cases that need to be torn down can be found on the
invocation stack. The initial state of the underlying relational database can then be restored by calling the
disUse method on theUnitTest class with each the test cases on the stack as argument one at atime.
Note that theInvocationStack class is implemented as a persistent stack.

All the constructs in the unit-test framework are now introduced and Figure 7 shows how the stack is
used when the test fixture forTestEnrollmentAPI test case is set up to be able to execute all the test
methods on this test case.

The UnitTest class first calls thegetDependencies method on theTestEnrollmentAPI
test case. This returns the two dependent test casesTestStudentAPI andTestCourseAPI. Then
the getDependencies method on theTestStudentAPI is called. It returns a single dependent
test caseTestSemesterAPI on which thegetDependencies method is called again. The test
caseTestSemesterAPI has no dependencies and the insert test methods are executed. This is in-
dicated by the generic sequence of callssetUp(); insertTestMethod(); tearDown(). The
TestSemesterAPI is then pushed on theInvocationStack indicating that this test case is in use.
With the TestSemesterAPI test case in use all dependencies for theTestStudentAPI test case
are fulfilled and the insert test methods are called. TheTestStudentAPI test case is then pushed

11

:UnitTest :TestEnrollmentAPI

setUp(); insertTestMethod(); tearDown()

getDependencies()

getDependencies()

setUp(); insertTestMethod(); tearDown()

setUp(); insertTestMethod(); tearDown()

ssetUp(); insertTestMethod(); tearDown()

setUp()

testMethodFirst()

:TestStudentAPI

getDependencies()

getDependencies()

getDependencies()

getDependencies()

setUp(); insertTestMethod(); tearDown()

:TestSemesterAPI :TestCourseAPI :TestTeacherAPI :TestOfficeAPI

...

TestSemesterAPI

TestStudentAPI

TestOfficeAPI

TestCourseAPI

TestTeacherAPI

Invocation Stack

TestEnrollmentAPI

Figure 7: Set Up of Enrollment Test Fixture

on theInvocationStack. The TestCourseAPI test case still needs to be set up and theget-
Dependencies on this test case is called. It returns theTestSemesterAPI andTestTeacherAPI
test cases. Because theTestSemesterAPI is already on the stack it does not need to be set up again.
Then thegetDependenciesmethod on theTestTeacherAPI test case is called it returns theTest-
OfficeAPI test case. ThegetDependenciesmethod is called on this test case. It has no dependencies
and the insert test methods are called and theTestOfficeAPI test case is pushed on the stack. Next,
all the dependencies for theTestCourseAPI are now in use and the insert test methods on theTest-
CourseAPI test case are called. TheTestCourseAPI is then pushed on theInvocationStack.
Now all the direct and indirect dependencies for theTestEnrollmentAPI test case have been set up.
Then this test case is pushed on the stack and all the test methods for this single test case (insert, plain, and
delete test methods) can be executed.

The tear down is the reverse of the process described above and left out for brevity.

5 Reusing Test Fixtures

This section describes how the performance of testing largetest suites can be improved. The idea is to
minimize the number of set up and tear down of test fixtures. Asan example, consider a test developer
wanting to execute theTestStudentAPI and theTestCourseAPI test cases. Following the approach
described in Section 4, the database is restored to its initial state after completion of the last test method
for each test case. This means that the test fixture for theTestSemesterAPI test case is set up and torn
down twice; once for testing theTestStudentAPI test case and once for testing theTestCourse-
API test case. However, it is more efficient if theTestStudentAPI test case sets up the test fixture for
TestSemesterAPI and theTestCourseAPI tears down the test fixture forTestSemesterAPI.

To be able to do such optimization, i.e., reusing test fixtures between test cases, it is necessary to find
an ordering of the test cases. In addition, small changes to some of the methods described in Section 4
are needed. The intuition behind the changes is that a test case needs to know how many (but not which)
other test cases depends on it and postpone the tear down of itself until the last dependent test case has been
tested. This is explained in details in the following.

5.1 Ordering Test Cases

To find an order in which the test cases can be executed, a directed graph representing the test cases and their
dependencies are build. Figure 6 shows this graph for the university example. It is checked by the unit-test

12

framework that the graph is acyclic. If this is the case, the test cases can be ordered and test fixtures can be
reused.

The graph in Figure 6 is acyclic. Note that the circular association fromTestTeacherAPI toTest-
TeacherAPI is not included in the graph because a test case does not depend on itself. Hereafter, a
topological sort is performed on the graph. The topologicalsort defines an order in which the tests cases
can be executed. The task of ordering the test cases is handled by the unit-test framework and is transparent
to the test developer.

5.2 The Number of Dependencies

The number of dependent test cases is found by building a graph of all the test cases and then count the total
number of dependent test cases. Thecount on Figure 6 does this for the university schema example. As an
example, the count for theTestOfficeAPI is three because theTestTeacherAPI, TestCourse-
API, andTestEnrollmentAPI test cases depend on it.

The unit-test framework builds the graph of test cases before the first test case is executed. It then counts
the number of dependent test cases for each node (test case) and stores this in an auxiliary data structure.
The next step is to make the necessary changes to the methods on theUnitTest class to use these counts.

5.2.1 The tearDown Method

ThetearDown method presented in Section 4.2.6 needs to be changed. The altered method is shown in
Listing 7.

1 def tearDown (t e s t C a s e) :
2 # L ines 2−9 from p r e v i o u s tearDown method
3 # c l e a n up
4 s t a c k . c leanUpLef tOver ()

Listing 7: The ChangedtearDownMethod

The comment in line 2 indicates that the code from Listing 5 isreused. The only change to the
tearDown method is in line 4 where the methodcleanUpLeftOver on theInvocationStack
is called. This method removes test cases on theInvocationStack that have a count of zero. The
cleanUpLeftOvermethod is discussed in details in Section 5.2.3.

5.2.2 The disUse Method

ThedisUse method presented in Section 4.2.7 also needs to be changed. The altered method is shown in
Listing 8.

1 def d isUse (t e s t C a s e) :
2 i f seen [t e s t C a s e] :# look i f i n seen d i c t i o n a r y
3 re turn
4 seen [t e s t C a s e] = True# pu t i n t o d i c t i o n a r y
5 # reduce coun t
6 t e s t C a s e . coun t−= 1
7 i f t e s t C a s e . coun t > 0 :
8 re turn
9 # Check no l e f t o v e r s

10 s t a c k . c leanUpLef tOver ()
11 # L ines 2−6 from p r e v i o u s d isUse method

Listing 8: The AltereddisUse Method

13

In line 2, it is first checked if the test case has previously been seen by thedisUse method, all seen
methods are stored in a dictionary calledseen. If this is the case, the method is exited in line 3. Otherwise,
the test case is marked as seen in line 4. In line 6, the count onthe test case is then reduced. Line 7 checks
that the count is larger than zero. If this is the case, the tear down is postponed by exiting thedisUse
method in line 8. Otherwise, the stack is cleaned in line 10. Then the method body from Section 4.2.7 is
executed. This is indicated by the comment in line 11. Note the dictionaryseen is reset each time therun
method onUnitTest class is executed.

5.2.3 The cleanUpLeftOverMethod

An additional method is needed on theInvocationStackclass to tear down test cases that are no longer
in use. The method is calledcleanUpLeftOver and is shown in Listing 9.

1 def c leanUpLef tOver () :
2 f o r t e s t C a s e on s t a c k :
3 i f t e s t C a s e . coun t <= 0 :
4 U n i t T e s t . d isUse (t e s t C a s e)

Listing 9: ThecleanUpLeftOverMethod

The method loops over each of the test case entries in the stack. If the count on the test case is smaller
than or equal to zero thedisUse method is called with this test case as argument. Note that this requires
that thedisUse method on theUnitTest class is made public. In Figure 3, thedisUse method is
private.

5.3 Performance Analysis

This section computes how many set up and tear down of test fixtures can be avoided by reusing test fixtures
between test cases.

noSetup =

#nodes∑

i=1

testCasei.count (1)

For the approach listed in Section 4.1 the number of set up (and tear down) of test fixtures is computed
by Equation 1. This number is the sum of all the children for each test case. The variablecount shows the
number of children so the number of set ups is the sum of all thecount variables.

When using the approach in Section 5 all test cases are only set up (and torn down) once when executing
a set of test cases. The number of reused set ups is directly related to the number of dependencies between
the test cases. The more dependencies the more set ups can be reused. As an example, for the graph shown
in Figure 6 5 out of 10 set up and teardown of test fixtures can bereused.

6 Implementation

The unit-test framework is fully implemented using the PL/SQL programming language. TheUnitTest
class contains tworun methods. One that does reuse test fixtures between test casesand one that does
not. The size of the unit-test framework is approximately 4,000 lines of code (including comments). The
framework has been tested using the Oracle DBMS.

14

6.1 Experiences

The unit-test framework has been tested on a medium-size project consisting of approximately 38,000 lines
of code and 18,000 lines of test case code. The project contains 83 test cases. None of the test cases
overrides thesetUp or tearDown methods from theTestCase class. The test cases have between 0
and 8 direct dependencies with an average of 2.3. The number of children varied between 0 and 73 with
an average of 7.3 (608 children in total). Based on the numberof children and the average number of lines
of code in an insert test method we estimate that we save at least 6,000 lines of test case code compared to
existing unit-test frameworks where test fixtures have to bebuild in each test case. This corresponds to a
25% reduction in the size of the test case code.

We found that it is very easy to understand and use the new unit-test framework because it builds on
top of existing frameworks such as JUnit and utPLSQL. Getting the first test case up and running requires
a larger effort than when using the existing unit-test frameworks because of the dependencies between test
cases. However, it becomes easier and easier to add test cases because they can gradually start reusing more
and more of the existing test cases.

The benefit of the public variables in the test cases is that there are nomagic values[13] in the body of
the test methods. This makes the test cases more readable andit is easier to change both the value and type
of the public variables.

Ripple effects of false negatives cannot be completely avoided. However, it is not a major problem if
the test cases are kept synchronized with the code, i.e., following the extreme programming paradigm very
closely.

6.2 Performance

All tests are executed on a dedicated server with one Intel Pentium 4, 2.66 GHz CPU and 512 MB of RAM.
Each test is executed five times. The smallest and largest numbers are discarded. The average of the last
three numbers is reported here.

The test of the six test cases in the university example from Figure 1 takes 1.76 seconds for without
reuse of test fixtures between test cases and 1.61 seconds with reuse. The speed up for reusing test fixtures
is approximately 8.5%. This means that the reuse of test fixtures is efficient even when there are only 6 test
cases in a test suite.

For the medium-size application the test cases take 365.4 seconds to complete without reuse and 222.2
seconds with reuse. This is a 39.2% speed up. A closer inspection reveals that the speed up is partly due
to that the test fixtures of a few test cases are quite time consuming and that these test cases are listed as
dependencies in several test cases.

7 Conclusion

This paper presents a unit-test framework targeted towardstesting database applications. The main idea
in the new framework is to allow both test methods and test cases to be dependent. This is in contrast to
existing frameworks where each test method must be independent. The benefit of the dependencies is that
test fixtures can be reused, which makes it is faster to build and maintain complex test fixtures compared to
the existing unit-test framework. In addition, the dependencies between test cases allows for reuse of test
fixture between test cases, which is shown to speed up the execution of test suites.

The unit-test framework has been implemented and tested on amedium-size project. A performance
study shows that the dependencies between test cases can speed up the execution of large test suites by
40%. In addition, it is estimated that 25% less test code needs to be written because of reuse of test fixtures
between test cases.

15

An interesting direction of future work is to allow multipleusers to use the same test cases concurrently.
This is not possible in the current design and implementation.

Acknowledgments

We thank Logimatic Software A/S for allowing us to use experiences gained from working for this company
in this paper. We thank Brian of CISS, Aalborg University forproviding references.

References

[1] Dbunit. dbunit.sf.net. As of 2005.09.08.

[2] K. Beck and C. Andres. Extreme Programming Explained, 2nd Ed.. Addison-Wesley, ISBN
0321278658, 2004.

[3] K. Beck and E. Gamma. JUnit Cookbook.junit.sf.net. As of 2005.09.08.

[4] D. Chays, S. Dan, P. G. Frankl, F. I. Vokolos, and E. J. Weber. A Framework for Testing Database
Applications. InProceedings of the Int. Symposium on Software Testing and Analysis, pp. 147–157,
2000.

[5] B. Daou, R. A. Haraty, and N. Mansour. Regression Testingof Database Applications. InProceedings
of SAC, pp. 285–289, 2001.

[6] Y. Deng and D. Chays. Testing Database Transactions withAGENDA In Proceedings of ICSE, pp.
78–87, 2005.

[7] S. Freeman, T. Mackinnon, and J. Walnes. Mock Roles, Not Objects. InProceedings of OOPSLA, pp.
236–246, 2004.

[8] C. Gould, Z. Su, and P. Devanbu. Static Checking of Dynamically Generated Queries in Database
Applications. InProceedings of ICSE, pp. 645–654, 2004.

[9] P. C. Jorgensen. Software Testing - A Craftsman’s Approach, 2nd Ed.. CRC Press LLC, ISBN
0849308097, 2002.

[10] JUnit. www.junit.org. As of 2005.09.08.

[11] W. E. Lewis and G. Veerapillai.Software Testing and Continuous Quality Improvement, 2nd Ed..
Auerbach, ISBN 0849325242, 2004.

[12] R. A. McClure and I. H. Krüger. SQL DOM: Compile Time Checking of Dynamic SQL Statements
In Proceedings of ICSE, pp. 88–96, 2005.

[13] S. McConnell.Code Complete, 2nd Ed.. Microsoft Press, ISBN 0735619670, 2004

[14] W. Perry.Effective Methods for Software Testing, 2nd Edition. Wiley, ISBN 047135418X, 2000.

[15] Python.www.python.org. As of 2005.09.08.

[16] utPLSQL.utplsql.sf.net. As of 2005.09.08.

16

