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Abstract

An infrastructure is emerging that supports the delivery of on-line, location-enabled services to mobile users.
Such services involve novel database queries, and the database research community is quite active in proposing
techniques for the efficient processing of such queries. In parallel to this, the management of data streams has
become an active area of research.

While most research in mobile services concerns performance issues, this paper aims to establish a formal
framework for defining the semantics of queries encountered in mobile services, most notably the so-called con-
tinuous queries that are particularly relevant in this context. Rather than inventing an entirely new framework, the
paper proposes a framework that builds on concepts from data streams and temporal databases. Definitions of ex-
ample queries demonstrates how the framework enables clear formulation of query semantics and the comparison
of queries. The paper also proposes a categorization of location-based queries.

Keywords: Location-based service, data stream, continuous query, skyline query, range query, nearest-
neighbor query.

1 Introduction

The emergence of mobile services, including mobile commerce, is characterized by convergence among new
technologies, applications, and services. Notably, the ability to identify the exact geographical location of a
mobile user at any time opens to range of new, innovative services, which are commonly referred to as location-
based services (LBSs) or location-enabled services.

In an LBS scenario, the service users are capable of continuous movement, and changing user locations are
sampled and streamed to a processing unit, e.g., a central server. The notion of a data stream thus occurs naturally.
Service requests result in queries being issued against the data streams and other, typically relational, data.

Conventional queries are one-time queries, i.e., queries that are simply issued against the state of the database
as of the time of issue, upon which they, at a single point in time, return a result. In our scenario, so-called
continuous queries are also natural. Such queries are “active” (i.e., being re-evaluated) for a duration of time, and
their results are kept up-to-date as the database changes during this time. As an example, an in-vehicle service
may display the three nearest, reasonably priced hotels with rooms available along the route towards the vehicle’s
destination. The vehicle’s location (a data stream) together with data about hotels (relational data) are continuously
queried to provide the result (a data stream).

Significant results on the processing of location-based queries (LBQs) has already been reported. As LBQs
are defined in different settings, no direct means are available for classifying and comparing these queries. As
more and more work, considering more and more different kinds of queries, is reported, the need for comparison
increases.

This paper, as an extended version of [24], presents a general framework within which the semantics of LBQs
can be specified. This enables the definition of LBQs in a single framework, which in turn enables the comparison
of queries. The framework is well defined—it is based on precise definitions of data structures and operations on
these. The framework has the following characteristics.

e Streams as well as relations are accommodated.

e Because queries often involve ranked results, relations are defined to include order.

e Relational algebraic operators are extended to also apply to streams, by using mappings of streams to rela-
tions, and, optionally, mappings of relations to streams.

The result is an expressive yet semantically simple framework that may be extended with additional operators and
mappings. To illustrate the extensibility, a new operator, the skyline operator, is introduced.

Rather than listing and defining all possible location-based queries, this paper represents several prominent
location-based queries that have been under active discussions in the research community and then considers
categorizations of LBQs.

The research area of stream data is quite active and has produced a number of interesting concepts in relation
to the semantics of continuous queries. Specifically, significant research results have been reported on query
processing for data streams (e.g., [5, 10, 42, 55]). Some works consider queries over data streams together with
relations (e.g., [2, 35]), but only few works consider the formalization of queries over streams and relations.

Similarly, location-based query processing is an active area of research, and many interesting results have
appeared. Much attention has been given to the indexing and query processing for moving objects. Numerous



index structures and algorithms have been proposed for a variety of location-based queries (e.g., [6, 17, 36, 40, 43,
45, 47, 48, 53]), such as nearest neighbor queries, reverse neighbor queries, spatial range queries, distance joins,
and closest-pair queries. A new type of query, the skyline query, has recently received attention [7, 15, 31, 41].
However, only little attention has been paid to discuss formal frameworks for defining of location-based queries
against relations and data streams.

Recently, Arasu et al. [2, 4] have offered an interpretation of continuous queries over streams, by formalizing
streams, relations, and mapping operators among them. We build on their general approach. To accommodate
ordering as well as duplicates, we use list-based relations and a variant of the list-based relational algebra proposed
by Slivinskas et al. [46]. To be able to express query semantics precisely, our approach also accommodates the
notions of activation and deactivation times and reevaluation granularity.

The paper is outlined as follows. Section 2 introduces related works. Section 3 defines the data structures
underlying the framework and presents the application scenario. The next section completes the framework, by
defining the operators that map between the different operators in the framework. Section 5 uses the framework
to define different location-based queries and also discusses the categorization of location-based queries. The last
section summarizes and offers directions for future research.

2 Related Work

Numerous works have been conducted on topics in the data stream management. In the Tapestry project [51],
data streams are modelled as append-only databases and support continuous queries. Due to the fact that an ef-
fective data stream management system requires extensive modifications to traditional database systems. Many
academic projects have been generated, e.g., the Aurora [10] system for workflow-processing, the COUGAR [9]
system for sensor databases, the Gigascope [16] system that provides a distributed network monitoring architec-
ture, the NiagaraCQ [12] and OpenCQ [33] systems that are designed for monitoring dynamic Web content, the
StarStream [58] system that computes on-line statistics across many streams, the STREAM [2, 5] system which
is a general-purpose stream processing system, and the TelegraphCQ [11] system that focuses on adaptive query
processing. Also, the Tribecca [44] system is an early on-line Internet traffic monitoring tool.

Three types of paradigms have been proposed for querying data streams [21], i.e., relation-based system,
object-based system, and procedural system. Among all the systems and languages, we are particular interested
in the semantics used by the continuous query language (CQL) in the STREAM system. It includes definitions of
streams, relations and mapping operators among them [2]. With the abstract semantics, any continuous query can
be constructed from three building blocks, i.e., any relational query languages, a window specification language,
and three relation-to-stream operators. Having the three building blocks, a continuous query can simply be assem-
bled in a type-consistent way from streams, relations, and the mapping operators. Since the building blocks are
open to new elements, extensibility is allowed in the semantics. The simple way of expressing continuous queries
makes the CQL language easily applicable to any specific scenario. Thus, in this paper, we choose to extend the
abstract semantics defined in CQL to the location-based query processing scenario. To follow the denotational
semantics proposed [4], we use the list-based relations and a variant of the list-based relational algebra proposed
by Slivinskas et al. [46]

Location-based queries can be seen as spatial and spatio-temporal queries in the context of location-based
service. One of the most popular queries, iskhaearest neighbok{(N) searching [47], which retrieves the
nearest neighbors to a given source point in certain spatial scenario. Quite a few extensions have been made to
the kNN problem, e.g., reverdenearest neighbor [6], continuoksearest neighbor [53, 29], constrained nearest
neighbor [19], group nearest neighbor [40], all nearest neighbor [56]. Since R-tree [22] and R*-tree [8] have
already been accepted as general ways for spatial data storage and access, the so-called window query and range
query, have been frequently discussed and analyzed in the research literature [8] since the structures of R-tree and
its variants are naturally designed for such range search. Spatial join [27, 30, 38] is a type of query that involves
join operation on multi-sets of tuples. Discussions have been made on several extensions of spatial joins, such as
distance join [27] operators where the join output is ordered by the distance between the spatial attributes of the
joined tuples and the spatial closest pair query [17] that has been proposed for finding/dkest pairs between
two spatial data sets. In addition, spatio-temporal aggregation [57, 59] is another topic that has been discussed in
the literature.

With the popularity of stream processing, research works in the spatio-temporal area begin to consider the data



management and query processing in presence of data streams [23, 37, 39]. However, no formalized framework
has been proposed to express location-based queries with respect to stream data. In this paper, we will present a
streams-based framework and present definitions of several prominent location-based queries based on the pro-
posed semantics. To show the extensibility of our framework, we present the definition of the skyline operator [7]
within the framework and utilize the operator for defining a location-based skyline query. Another motivation

is that the skyline operation has been frequently-discussed [15, 31, 41, 50] and is shown to be useful in LBS
scenario [25].

3 Data Structures and Application Scenario

3.1 Data Model Definition
Building on the relation concept defined by Slivinskas et al. [46], we define relations as lists to capture duplicates
and ordering. We define schemas, tuples, and relation instances, then define the same concepts for streams.

Definition 3.1. A relation schemd(2, A, dom) is a three-tuple wherf is a finite set of attributeg) is a finite
set of domains, andom : Q@ — A is a function that associates a domain with each attribute.

wsrad T usr mame Relationr, s, in Figure 1 has schen{®&, A, dom), whereQ) = {usr_id, usr_name},

1001 Adam A = {numberstring}, anddom = {(usr_id, number), (usr_name, string)}.
1002 Brain L . .
1003 Clark Definition 3.2. A tupleoverschemaS = (2, A, dom) is a functiont : Q@ — (Jsca 0,

such that for every attributd of €2, ¢(4) € dom(A). A relation overS is a finite
sequence of tuples ovér.

1004 Debby

Figure 1: Relation
g ur The definition of a relation corresponds to the definition of a list or a sequence. A

relation can thus contain duplicate tuples, and the ordering of tuples is significant. Relatidrom Figure 1 is
the list (¢, t2, t3,t4), Where, e.9.t; = {(usr-id, 1001), (usr_name, A)}.

Definition 3.3. A stream schem& a relation schem&?, A, dom), where) includes a special attributg, A
includes the time domaifi, anddom(T) = T.

We assume that domdihis totally ordered. While, for simplicity, we use the non-negative numbers as the time
domain in the sequel, other domains may be used. For example, the real or natural numbers, the TIMESTAMP
domain of the SQL standard, or one of the domains proposed by the temporal database community may be used.

Streams,,,. in Figure 2(b) has schem®&, A, dom), whereQ) = {usr_id, usr_v, usr_loc, T}, A = {number
velocity, location T}, anddom = { (usr_id, number), (usr_v, velocity), (usr_loc, location), (T, T)}.

Definition 3.4. A streamis a possibly infinite multiset of tuples ovetream schema@..

For a stream tuplé;, the timer; = ¢;(T) indicates when the tuple became available in the stream. While a
relation is ordered, we have chosen to not introduce an inherent order on streams. Streams come with the natural
(partial) order implied by their time attribute.

Streams,,,. in Figure 2(b) is the possibly infinite multisef.,. = {. .., (1004, (—1.5, —3), (21.5, 14.5), 8),

..., (1004, (=5, -8), (5,6.5),15),... }.

While a query is issued against an entire relation state, intuitively, a query issued at somguithenly see
either what has appeared in the stream so far, i.e., all tuples with timestamp less than or eguad wchat has
appeared in the stream between some past timerandlhe latter may be assumed if what has appeared in the
stream so far does not fit in the available memory.

3.2 Discussion

As we pointed out earlier, we use streams for modeling the locations of moving objects such as pedestrians, cars,
and buses. We use relations for modeling aspects of an application domain that change discretely.

As we aim for a generic framework, we make no assumptions about the representations of the geographical
locations and extents of objects that limit the applicability of the framework. However, to be specific, we assume
that positions are simply points;, y) in the two-dimensional map in Figure 2(a); in accord with this, a velocity
vector is given by(v,,v,). We note that in some application scenarios, positions of objects are given in terms



'%g %;ﬁ% usr,zd usr,v usr,l oc T

gy 1002 | (1,-2) | (10.5,18) | 8

1001 (1,2) (2,12) 8

1003 (2,1) (17.5,14.5) | 8

{ | 1004 | (=2,-1) | (21.5,142) | 8
o 1002 (3,8) (12,15) 9
_ | 1001 (0.5,2) (3,135) | 9

1003 | (2.5,1.5) (21,16) | 10
1004 | (=3,—1.5) | (17.5,12.2) | 10

1002 (1,2.5) (14,12) | 10

| 1001 (0,1) (3,15) 10

Ada 1004 | (=6,-3) | (14.5,10.7) | 11

| 1003 (—3,5) (21,17) | 11

1001 (1,0.5) (3,16.5) | 11

o1 1002 (-2,1) (13,11) | 12

1003 | (—3,5.5) (19,21) | 12

l 1004 | (=1,-0.5) | (9.5,8.2) | 12

1001 (0,0) (3.5,16.5) | 12

1002 (—4,5) (10,9.5) | 13

1004 | (=2,-1) | (8.5,7.7) | 14

ile User 1002 (—8,8) (7,8) 14

keaneof Buliding 1003 | (=3,-5) | (15,23) | 15

ATM Mathine 1004 (0,0) (5.5,6.2) | 15

&I Public Toilet 1001 (0,0) (35,16.5) | 15

(0,0) ‘ | (20,0)
(a) Example Map (b) Streamsysr

Figure 2: Example Scenario

of road networks, using linear referencing [26]. The framework is also applicable in the context of this kind of
positioning.
In the example map (Figure 2(a)) we use throughout this paper, strgarm Figure 2(b) captures positions
and velocities of moving users listed in Figure 1. Attribute_id records the ID of a user, andr_v andusr_loc
record the velocity and location of the user at the time instant recorded in attiibute
In a real-world application, multiple streams may well be present.

objid | objloc obj type For example, users moving by bicycle and by car may be captured by
301 (4,17) | medical center] Separate streams. For simplicity, we only use one stream. The rela-
302 (7,6) supermarket tion . In Figure 1 captures discretely changing properties of the ser-
303 (14,2.5) police station vice users. The attributesr_id records the ID of a user; and attribute
304 | (18.5,10) library usr_name capture the first name of a user. In real-world applications,
305 | (24,13) hotel additional attributes and relations may of course be used, beyond the

306 | (7,3.5) | ATM maCE!”e ones introduced above.
28; (514’2%)9%) gm m:gh:ﬂi Finally, relationr,,; in Figure 3 records the points of interest that
T service users may query. Attribubéj _id captures the ID of a point of

309 14,10 ATM machine . . : . . .
310 (él 11 ;) ATM machine interest,obj _loc records its location, aneébj _type records its type. For

311 (7,15) public toilet the points of interest such as medical center, super market, police station,
312 (11,22) public toilet library and hotel, we simply use the coordinates of the gates to these
313 (22,17) public toilet buildings as their location. In real world applications, the minimum

314 (24,8) public toilet bounding rectangles (MBRs) of the builds’ actual geographical shapes

can be used instead.

In our scenario, the users of the services that issue the queries are
moving, and the points of interests being queried are static. However, in other equally valid scenarios, a static
user can query moving objects, e.g., a supermarket wants to know all the potential customers who are near the
supermarket between 8:00 a.m. and 5:00 p.m. Also, a moving user may query other moving users—this may be
typical of location-based games.

Figure 3: Relationr;;



4 Mapping Operators

Queries are either one-time or continuous, they apply to relations and streams, and their results are either relations
or streams.

Relations are well known, and the semantics of queries against relations are generally agreed upon. In contrast,
what the appropriate semantics of queries against streams should be and how these should be defined are less
obvious. Following Arasu et al. [2], we aim to maximally reuse the relational setting in defining the semantics of

Relation—-to—Relation Relation—to—Stream Operators

Operators Relations Streams

Stream-to—Relation Operators

Figure 4: Mapping Operators

queries against streams. We do this by introducing mapping operations between streams and relations, so that a
guery against a stream can be defined by mapping the stream to a relation, then applying a relational query, and
then, optionally, mapping the result to a stream. This results in the framework of representations and operators
outlined in Figure 4. Note that direstream-to-streamoperators are absent.

4.1 Relation-to-Relation Operators
4.1.1 Basic Algebra Operators

A relation-to-relation operator takes one or more relatiens- - ,r, as arguments and produces a relation

as a result. As our relations are ordered, we use operators introduced by Slivinskas [46] as our relation-to-
relation operators (listed in Figure 5) which are defined witbalculus to contend with the order. There are

also relation-to-relation operators given in the CQL language [3], i.e.,

Opera.t or Denotation binary-join, mjoin, intersect, antisemijoin. Since these operators are also
Sel_e ct|_on g expressed with\-calculus elsewhere [4], they can also be included in
Pro_Jectlon T the framework.
Un!on-all 4 These carry their standard meanings when applied to relations with-
Cartg3|an Product x out order. As an example of how the operators are defined, consider
'D|fferepc.e . \ selectiory. Based on the definitions in Section 3, we @& be the set
Duplicate Elimination|  rdup of all relations and let = (ty, 5, ...,t,) € R. We letp € P, where
Aggregatlon § (following standard practice is the set of all selection predicates (also
Sorting sort termed propositional formulas, see, e.g., [1, pp. 13—-14]) that take a tuple
Top top as argument and return True or False.

Figure 5: Basic Algebra Operators The selection operator: [R x P — R] is defined using\-calculus
rather than tuple relational calculus, to contend with the order. Being a parameter, argumeRrpressed as a
subscript, i.e.g, (7).

cE X p(r=1)—r,
(tail(r) = L) — (p(head(r)) — head(r), L),
(p(head(r)) — head(r), L) @ o, (tail(r))

The arguments are given before the dot, and the definition is given after the dot. Thiseihpty (denoted as

1), the operation returns it. Otherwiseyitontains only one tuple (the remaining part of the relatiai,(r), is

empty), we apply predicateto the (first) tuple(head(r)). If the predicate holds, the operation returns the tuple;
otherwise, it returns an empty relation. If these conditions do not hold, the operation returns the first tuple or an
empty relation (depending on the predicate), with the result of the operation applied to the remainingr-part of
appended@). The common auxiliary functionkead, tail, and@ are defined elsewhere (e.g., [46]). Since the
objective is to obtain an expressive framework, the framework is kept open to the introduction of such auxiliary
functions, although they may increase the conceptual complexity.



4.1.2 Skyline Operator

We proceed to demonstrate how/aline operator, which is of particular interest in location-based services, can
be expressed in the framework.

To understand the operator, consider a set of poinisdimensional space. One point dominates another
point p, if p; is at least as good as in all dimensions and is better than in at least one dimension [7]. It
is assumed that a total order exists on each dimension, and “better” in a dimension is defined as smaller than
(alternatively, larger than) with respect to the dimension’s total order. Next, we assume a relaitiomttributes
{a1,...,a;,b1,...,by} sothat the sub-tuples corresponding to attribditas. . . , a; } make up thé-dimensional
points. The skyline operator then returns all tuples that are not dominated by any other tuple-in

To be precise, we first define two auxiliary functions. Zetlenote the set of all tuples of any schema. The
first function isDmnt: [T x R x Q'] — {True Falsg, which returns True if there exists a tuple in the (second)
relation argument that dominates the first argument tuple with respect to the argument attributes.

Dmnt = M, r,aq,...,a.(r = L) — False,
Eql(t, head(r), a1, .. .,a;) — Dmnt(t,tail(r), aq,...,a),
Comp(t, head(r),as,...,a;) — True,
Dmnt(t,tail(r),a1,...,a;)

FunctionFEql returns True if the two argument tuples are identical on all argument attributes , a;. Function
Comp returns True if the second argument tuple is no worse than the first argument tuple on any of the argument
attributes.
In the first line, ifr is empty, the operation returns False. Otherwise, if the first argumentitigiflee same as
the head of argument relatieton the argument attributes, the operation continues to consider the redflsg,
the third line checks ifiead(r) is no worse thar. If so, ¢ is dominated byiead(r), and the operation returns
True. Otherwise, the operation proceeds with the rest of
Next, we define auxiliary functio&ltr: [R x R x Q!] — R. For two relations-; andr, having the same

attributesay, ao, . . ., a;, Fltr collects all the tuples in; that are not dominated by any tupleriniwith respect to
attributesaq, as, . . ., a;.
Fltr £ A'f’l, T, A1y ..., (ll.(T'l = J_) — 71,

Dmnt(head(r1),re,a1,...,a;) — Flir(tail(r1),re,a1,...,a;),
head(r1) @ Fltr(tail(ri),r2,a1,. .., a;)

Here, ifr; is empty, the operation returns it. Otherwise, if the heach a6 dominated by any tuples iy on the
argument attributes, the operation continues with the rest.dglse, it returns thécad(r;) with the result of the
operation applied toail(r, ) appended.

The skyline operatoskyline : [R x Q'] — R is defined next. Argument’’ are parameters and are expressed

,,,,,

skyline = \r,ay, ... a;.(r = 1) —r,
Fltr(r,r,a1,...,q;)

4.2 Stream-to-Relation Operators

A stream-to-relatioroperator takes a stream as input and produces a relation. As relations are finite while streams
can be infinite, windowing is commonly used to extract a relation from a stream [5]. We describe three types of
sliding windows [2]: time-based, tuple-based, and partitioned. Other types of windows can be easily incorporated
into the framework, as this does not affect other parts of the framework. The stream-to-relation operators map
multisets into lists. We assume that each operator described next orders its result according to the timelattribute
(tuples with the same time value may be in any order).

4.2.1 Time-Based Windows

A time-based sliding window operatdy®, with absolute or now-relative time parametgyon a stream returns
all tuplest € s for which 7y < t(T) < 7., wherer, is the current time. We present its formal definition in the
following.



W (S)={t|te SAnT, <HT) <7}

usr_id USr_v usr_loc T
1002 (3,8) (12,15) 9
1001 (0.5,2) (3,13.5) 9
1003 (2.5,1.5) (21,16) 10
1004 | (—=3,—1.5) | (17.5,12.2) | 10
1002 (1,2.5) (14,12) 10
1001 (0,1) (3,15) 10

Figure 6: Result oV (s,.,) at Time 10 . ors !
partitioned windows, we choose to only informally describe them as the formal definitions can be found in the

CQL language.

4.2.2 Tuple-Based Windows

usr_id uSr_v usr_loc T
1001 (0,1) (3,15) 10
1004 | (—6,-3) | (14.5,10.7) | 11
1003 (—3,5) (21,17) 11
1001 (1,0.5) (3,16.5) 11

Figure 7: Result ofV}(s,,,) at Time 11
WS (s) = Wg(s). As an example, to find most recent (current time i) tuples in the stream,, in Fig-
ure 2(b), we set, = 12. ThenW?(s.s,) is given in Figure 7.

4.2.3 Partitioned Windows

Note that? (s) consists of tuples that made their appearance
in s at timer., while Wg(s) consists of all tuples that appeared in
the stream so far.

To give an example for this operator, suppose we are at how
at time10 and want to find all the data in the stream since time
Then for the stream, ;- in Figure 2(b), we set, = 10 andr, = 9.

The result oMV§ (s,sr) €an be seen in Figure 6. This operator is the
same as thRange(T) operator defined in the semantics of the CQL
language [4]. For the following two operators, i.e., tuple-based and

A tuple-based sliding window operatly®, with positive integer pa-
rameterN, on a streans returns theV most recent tuples ig, i.e.,

the tuplest € s for which ¢(T) < 7. and such that no other tuples
exist in S that have larger time values (that do not excegd If

ties exist, tuples are chosen at random among the ties. Note also that
fewer thanV qualifying tuples may exist.

A tuple-based window is specified a8/} (s). Note that

A partitioned sliding window over streamtakes a positive integé¥ and a subset of's attributes{ 4, . . .,

A, }, as parameters.

usr_id UST_v usr_loc T
1002 (1,2.5) (14,12) 10
1004 | (—6,-3) | (14.5,10.7) | 11
1003 (—3,5) (21,17) 11
1001 | (1,05) | (3,16.5) |11

Figure 8: Result oWV s (Susr)

This operation first partitiofisinto substreams based on the argument attributes,

then computes a tuple-based sliding window of $izexdependently

on each substream, and then returns the union of these windows.
Using W as the operator name, the partitioned window can be

expressed a¥Vy 4,....4,,(s). To exemplify, we consider to find

most recent tuples of each user until the current time= 11 in

streams,,,,- in Figure 2(b). Thus)N = 1 and the set of attributes is

{usr_id}. Then the result oW, ,sr_ia(susr) IS given in Figure 8.

4.3 Relation-to-Stream Operators

A relationr may be subject to updates, so that its state varies across time. We use the m¢tattomefer to the

state ofr at timer. With this definition, we can specify the three relation-to-stream opertiveam, Dstream,

andRstream (adapted from [2, 3, 4]). The operatarsx, and\ are the algebra operators defined in Section 4.1.1.
Istream (“Insert” stream) maps relatioR into a streamS so that a tuple € r(7)\r(7 — 1) is mapped to

(t,7) € s. AnalogouslyDstream (“Delete” stream) forms a stream based on when tuples were deleted from the

argument relation. NexRstream maps relation into streams by tagging each tuple in with each time that it

is present in-. Assuming thab is the earliest time instant, the operators are defined as follows.

(T\r(7 = 1)) x {r}) U (r(0) x {0})
(T = D\r(7)) x {7})

Istream(r) = Urso((r
Dstream(r) = L, <o((
Rstream(r) = L, >o(r(7) x {7})

Assume that a moving tourist wants to continuously know the nearest hospitals. The result, which is subject
to change as the tourist moves, may be returned as a stream produced using one of the windowing operators and a
relation-to-stream operator. We discuss nearest-neighbor queries in the next section.



We have so far defined relational operators and mapping operators between streams and relations. As location-
based queries involve operations on spatial data, spatial operators are intrinsic to such queries. We treat spatial
operators as black boxes and simply assume a set of such operators. Specifically, we will use spatial operators
proposed by the OpenGIS Consortium [13] (see Appendix 6).

4.4 One-Time and Continuous Queries

The recent discussions over location-based queries in the database research community have a particular interest
over the so-called continuous queries [28, 34, 36, 37, 53]. In our framework, a one-time query is a combination

of stream-to-relation and relation-to-relation operators, while a continuous query is a possibly infinite numbers of
one-time queries that are run repeatedly within a specified time interval according to a specified time granularity.
The result of a continuous query can either be relations or streams. To generate a stream result, relation-to-stream
operators are naturally employed by the continuous query; see Figure 9.

Input Data Stream ] )
Relation—to—Relation

Relation—to—Stream
Operators

Current Time Operators
e ] Output
Ly Relation from " Relation
' Stream—-to—Relation; Stream !
! | Operators !
Relations =

PastData
Output Data Strean

Figure 9: The Working of a Location-Based Query

Let a one-time query be expressedd(),,(S, R), whereS andR are argument sets of streams and relations

andp is the parameters of the query. Then a continuous query can be expregse8@s(S, R)

[Ts, T., G, whereT; and T, are the start and end time of the continuous query@tsithe time granularity of

the query. The result of a continuous query can be either a relation (e.g., a relation containing aggregate results)
or a stream. If the result is a stream, relation-to-stream operators should also be included in the expressions of
continuous queries to map the results into stream.

We choose to usk-calculus in the definitions of relations and the associated algebraic operators for the purpose
of accommodating duplicates and order. An additional outcome of this choice is that we are able to represent any
gueries that can be expressed using traditional relational algebra in the framework. Thus, the framework is open
to new kinds of queries, as new algebraic and mapping operators can be added.

Another interesting question comes from the dissemination of results from continuous location-based queries.
A general way is to provide the time-parameterized [52] or “distance-parameterized” [53] query results and employ
a “trigger” mechanism either in the server or mobile clients to automatically generate outputs by looking up the
time-parameterized query results based on the current location of mobile clients. As we will demonstrate in the
following section, such ways of dissemination can also be captured in our framework.

5 Location-Based Queries

The literature covers the processing of a good amount of spatial and spatio-temporal queries which serve as basis
and proto-types for LBQs, including range, nearest-neighbor, and reverse nearest-neighbor queries, as well as
spatial join queries. Queries can concern past states of reality, or present and (anticipated) future states. Our focus
will be on queries that concern the current state.



We proceed to demonstrate how the semantics of several frequently-discussed queries can be specified: spatial
range search, nearest neighbor query, spatial join and a new, so-called location-based skyline query. We end by
discussing the categorization of location-based queries.

5.1 Spatial Range Query

Various kinds of spatial range queries are used commonly. A range query may be used for finding all moving
objects within a circular or rectangular region around a point of interest; and a continuous range query may be
used for the monitoring of a region.

We assume a spatial rangeis given and define a range query (RQ) and continuous range query (CRQ) using
a combination of stream-to-relation, relation-to-relation, and relation-to-stream operators.

To define the range query, we first obtain the most recent positions of all users. This is done by applying a
partition windowW; s, 4 (susr) tO Streams,,,, and by applying a function CurLoc, using an extended projection.
The function takes as argument a tuple s, that records the movement of an object, and it returns the location
at timer, of the object.

T's = Tysr_id,usr-v,CurLoc(t) AS |OC(Wl,usr,id(5usv‘))
CurLoc(t) = t(usr_loc) + t(usr_v) - (1. — t(T))

Then a selection retrieves all users that are inside the spatial region. Operatofswijthie) returns true ifloc is
within spatial ranger. The one-time range query is then given as follows.

RQST({Susr}v (Z)) = Owithin(sr,loc) (7'3)

Next, assume that the start and end times of the continuous range quéryesardT ., and that the time granularity
is G. By applying theRstream operator, the definition of the continuous range query is given next.

CRer({Susr}v (Z))[Tsa Te» g} = RStream(Uwithin(sr,loc) (Ts)) [Tsa T67 g]

To exemplify, let spatial ranger be a circle with radius

u‘?ffld U'S.va IOC T 6 and center(18.5,10) (i.e., the gate of the library), and let
1003 (2,1) (17.5,14.5) | 8 T, =0,T, = 20, anqlg = 1. Suppose the cu'rrent timelQ,

1004 (—2,-1) | (21.5,14.2) | 8 the re_sult_of the continuous range query against streamis

1003 (2,1) (19.5,15.5) | 9 givenin Flgure 10. Note that thg _rt_esult is a stream. _

1004 (—2,-1) | (19.5,13.2) | 9 According to the aboye dgflnltlon, all the usgrs' locations
1004 | (=3,—1.5) | (17.5,12.2) | 10 are calculated at each time instant. However, it may be that
1002 (1,2.5) (14,12) 10 some users have not reported location data for several hours,

o T o rendering their location data useless. This suggests an alterna-

tive definition where only location data that has arrived within
Figure 10: Result of CRQ({s.s, }, 0)[0,20,1] SOme Fime durgtion frqm the current time is used. To give the

definition, we first obtain the stream of the users’ most recent
location data in strearfi,,,, by combining a time-based window operaidi? (S.,s-) and aRstream operator.
Then apply the spatial operator “Within” to retrieve users that are inside the spatial region. Using the,sdime
andg as above and assuming that we are only interested in location data that arrived since éimalternative
definition follows.

CRQST,TS ({Suv}a (b) [TS7 Tea g] = RStream(UWithin(sr,loc) (T;)) [T-97 Tea g]
In this definition,r’, is 7, wheres,, is replaced byRstream(W¢ (sysr)), i.€.,

rfq = ﬂ—usr,id,usr,v,CurLoc(t) AS IO(:O/Vl,us’r:id(RStrea-rn(yV-,q5 (Susr)))) .

Intuitively, this query may miss some users who are actually inside the spatial range, but have not reported their
location for some time.

Another observation from the result in Figure 10 is the redundant data. For instance, the tuples related to users
with usr_id as1003, 1004 frequently appear in the output stream. If we only want to continuously know all the
moving users that appeared inside the spatial range, we can obtain the one-time result, as shown in the following.



rdup(ﬂusr,id(W?CfTs (Susr)))
And then map the result into stream with tls&ream operator.

CRQ ({susr}, 0)[Ts, Te, G] = Istream(rdup(Tusria (Wi _1_(Susr))))[Ts: Te, G]

ST, Ts

There are a variety of choices for representing one type of location-based query. For these range queries and
subsequent location-based queries in our discussion, we choose, from several alternative representations, the one
that we felt most expressive and understandable.

5.2 Nearest Neighbor Query

Thek nearest neighbor query (KNNQ) is another basic type of location-based query. Example uses include locating
the nearest hospitals or emergency vehicles. To formulate the query that firkdsehgest neighbors of a moving
user withusr_id asm_id, we first define several auxiliary functions.

A partitioning window queryVy ., 4 (susr) first retrieves the most recent position data for each object from
the stream. Then a selection with predicate_id = m_id is applied to retrieve the position data for our object.
Letr; denote the relation resulting from this selection, i.e.,

Tl = Ousr_id=m_id (Wl,usr,id(susr))

To compute thé objects nearest tm_id, we calculate, using a spatial operator “dist,” the distance betweélis

current location and the locations of all other objects, which are stored in atttibilec of r.,;. As the next

step in computing the query, we apply a generalized projection to associate the distance to the user object with
each other object:

s = 7"-obj,id,obj,loc,obj,type,dis(robj X Tl)

Here, “dis” denoteslist(0bj _loc, CurLoc(t)), functionCurLoc(t) was defined earlier, anddenotes a tuple from
the argument relation.
Then we apply theort andtop operators to-; to express the query.

kNNQm,id,k({Susr}a {Tobj}) = topg(sortqis(rs))

Letr, = 0obj_type=ATM machine'(Tob; ) CONtain all AMT machines and consider the qQUENNQ, g, ;
({susr},{rp}) issued attime, = 9. The query finds the ATM machine nearest to usE¥. Using the definition,
a window operator extracts all the most recent tuples for each user from strgarhen the tuple withusr_id =
1004, usr_v = (—1.5,—3), usrloc = (21.5,14.2), andr = 8 is selected. The current location is approximated
as(21.5,14.2) + (—2,—1) - (9 — 8) = (19.5,13.2). (We choose to use Manhattan distance throughout this paper.
It calculates the distance between poifts, y1) and (z2,y2) as|ze — 1| + |y2 — 31])- Among all objects in
relationr,, the object withobj _id = 310 is selected.

If the user is interested in keeping knowing the nearest ATM machine while moving, we need to add relation-
to-stream operators and represent the query as a continuous nearest neighbor query. The expression is as follows:

CkNNQm,id,k({susr}7 {Tobj})[Tw Te,d] = RStream(kNNQm,id}k({susr}v {Tobj}))[Ta T, 4]

The result of CKNNQqy4 1 ({Susr > {75 })[0, 20, 1] is shown in Figure 11.
The continuous query keep running the one time near-

obj_id | obj-loc objtype dis | 7 est neighbor query with the current location of the mov-
e e o SR ing user at each time instance.
310 | (21,11.5) | ATM machine| 3.2 | 8 A popular strategy for processing such continuous

310 | (21,11.5) | ATM machine| 3.2 | 9 queries is, by assuming that a trajectory or route of the
310 | (21,11.5) | ATM machine| 4.2 | 10 | moving user is known, to pre-compute the nearest neigh-
309 (14,10) | ATMmachine| 1 | 11 | pors to each location of the route so that the whole tra-
309 (14,10) | ATM machine| 3.5 | 12 | jectory is cut into segments with each segment corre-
sponding to one nearest neighbor. Then the continu-
ous query just need to look through the pre-computed
relations for real-time results. For instance, take the

Figure 11: CKNNQ over Relation,
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moving user withusr_id = 1004 as an example, suppose we are at tignand the user’s future trajec-

tory (also shown in Figure 2(a)) is a line segment containing the following sequence of two-dimensional
locations, ((21.5,14.2), (17.5,12.2), (14.5,10.7), (9.5, 8.2), (8.5, 7.7), (5.5,6.2)). We pre-compute the near-

est ATM machine to any locations on this trajectory and save the distance-parameterized result into relation
raram- AS shown in Figure 12, following each nearest neighbor, the whole trajectory is partitioned into sev-
eral segments, with each segment corresponds taltfterange column in ther,7,, relation. The value

of the dist_range column is computed as the distance (note that this distance is the 1-dimensional Man-
hattan distance on the linear trajectory) from a location on the trajectory to the start lo¢2tién14.2).

The efficiency of processing a continuous query will be improved with this pre-computed result. Using the same
71, dist andCurLoc(t) described above, the continuous query can be expressed as in the following.

CkNNQ(21.5,14.2),1({Susr}a {rarm})[Ts, Te, G] =
RStream(Udist((21.5,14.2),CurLoc(t))Edist:range (TATM X ’I“[)) [Tsa Te, g]

Another interesting variant of the nearest neighbor query is the so-called

NN_obj-id | dist_range reverse nearest neighbosearch. Given a set of objects and one of them as
310 (0,5.31) a query object, the (monochromatic) reverse nearest neighbor query finds all
309 (5.31,13.752) the objects that have the query object as their closest object. Another inter-
306 (13.752,17.89) esting extension is the bichromatic reverse nearest neighbor search. Given

two categories of objects, the bichromatic reverse nearest neighbor query re-
turns the objects that belong to the opposite category than the query object
and have this query object as the closest from all the objects in the same category as the query object. We consider
the representation of the bi-chromatic reverse nearest neighbor query. For instance, for the point of interest with
obj_id = 304 (the library in Figure 2(a)), we want to search its reverse nearest neighbor users listed in relation
rusr (ShOwn in Figure 1) with locations in streas),,. We can use the KNNQ query to find nearest neighbor

point of interest to all the moving users. Then the RKNNQ query is just to find those moving users having nearest
neighbor point of interest agj_id = 304.

Figure 12: Relatiom o1y,

RkNNQ304,1 ({susr}a {Tobj, Tusr}) = (UkNNQuSMd’l({susr},{rn;,j}).obj,id:304(rusr)>

It is also possible to re-use the distance join (denotdd-dsin) and distance semi-join (denoted@S-Join)
operators described in [27] for representing nearest neighbor and reverse nearest neighbor queries. We omit these
redundant representations and proceed to discuss these two spatial join queries in the following.

5.3 Spatial Join Query

Although a variety of spatial join queries exist [38], we focus on the distance join query and its variants [17, 27]
as it is of more interest to location based services. We omit the formal definition of spatial distance join and
semi-join as they have been represented with a SQL-like language elsewhere [27] and include them directly into
the framework.

Given two sets of objects with spatial locations, the distance join operation computes a subset of the Cartesian
products of the two sets and, based on the distance, specifies an order on the result. The distance is computed
in terms of location attributes of objects in two sets. We can also apply a predicate to limit the resulting data to
a range. The distance semi-join is a special case of the distance join. It finds, for each object in the first set, its
nearest object in the second set.

To give an example for the distance join (denoteddadoin) operation, let us consider to find all pairs of
moving users in stream,;, and toilets in relatiom,;; whose distance is less than a given valyg,. The query
can be expressed as in the following.

D'JOindisgdmt (ﬂ-usr,id,obj,id,dis(wl,usr,id(Susr X 7'robj,id,obj,loc(O-obj,type:’pUbliC toilet’ (robj))))

Suppose current time g2, then the locations of the four moving users can be calculated from the window op-
eration overs,,,.. If we setd,,; = 6, the result of the query, based on the expression above, can be found in
Figure 13.
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wsr_id | obj_id | dis The distance semi-join operator can be used for representing re-
1001 311 5 verse nearest neighbor query. Here we consider to use this operator
1002 312 3 to express the so-called “closest pair” query [17]. Given two sets
1004 312 | 5.3 of objects with their spatial locations, this query retrievteslosest

pairs. Following the above example, if we want to findlosest pair
Figure 13: Result of Distance Join  of moving users and toilets, the expression of the query, denoted as
kCPair, is in the following.

kCPai%({Susr}7 {TOZ.U-}) =
tOpk(SO’I"tdis(DS-JOI”(ﬂ-usr,idwbj,id,dis(Wl,usr,id(susr X 7"'ob]li(LOb.JJOC(O-Obj*trype:’pub"cw"m’(’r()bj)))))))

Due to the natural similarity and inheritance from spatial and spatio-temporal queries, a lot of other location-
based queries can be found by further exploring on the research literature over the spatial database area. We
choose to turn our focus of discussion on accommodating the multiple preferences considered by the location-
based queries. Such queries require definition of novel relation-to-relation operators based on the basic operators
and combination of the new operators with other mapping operators. In the following, as an example, we discuss
a location-based skyline query.

5.4 Location-Based Skyline Query

The query assumes the following scenario. A user drives along a pre-defined route towards a destination. The user
wants to visit one or several points of interest enroute. The most attractive of the qualifying points of interest are
those that are nearest to the user’s current location and that result in the smallest detour. The detour is the extra
distance traveled if the user visits the point of interest and then travels to the destination.

Letr;, CurLoc andt be as defined earlier. We assume that spatial operator “dist” takes into account the user’s
route, and we denote the user’s destinationlbyt. Then the detoufe can be expressed as follows.

fe(objloc,t,dest) = dist(obj_loc, CurLoc(t))+ dist(obj_loc, dest) — dist(CurLoc(t), dest)

Next, a (generalized) projection is applied to the Cartesian produc pandr; to get all the objects’ distances
and detours to the user:

Ts = 7Tobj,id,obj,type,dis,det(robj X Tl)

Here, “dis” denoteslist (obj _loc, CurLoc(t)) and “det” denotege(obj_loc, t, dest).
Finally, the skyline operation generates the result.

SQm,id7dest(3usrv Tobj) = skylinedis de(Ts)

objid obj type dis T det Following the scenario desgribed above, let the current time
306 | ATM machine | 192 | 6.4 7. = 10 and assume a user withsr_id = 1004 wants to go to
307 | ATM machine | 203 | 16.6 an ATM machin_e en_rc_)ute to the de_stina';ion, the location of which is
308 | ATM machine| 21.9 | 20.8 (5.5,6.2). For_ simplicity, we use dlrgct line segments as routes be-
309 | ATM machine| 5.7 0 tween two points. The current location of the use(rlfS?, 2.2). For
310 | ATM machine| 4.2 8 all static objects withusr_type “ ATM machine,” the distance and

detour are listed in Figure 14. The skyline operator returns the last
Figure 14: Intermediate Result two tuples.

5.5 Towards a Categorization of Location-Based Queries

A complete list of all LBQs may be impossible as novel queries may appear due to the discover of new location-
based services. We proceed to explore the space of existing LBQs by presenting several orthogonal categorizations
of such queries. Our discussion also considers a recent paper [20] addressing the issue related to the taxonomy of
location-based services.

First, as most location-based queries are issued from query objects over data objects, we can categorize these
gueries based on whether the query and data objects are moving or stationary. A stationary query object, e.g., a
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supermarket, may ask for moving mobile users passing by in a recent hour. A moving mobile user, as a moving
guery object, may ask for nearest gas stations.

Second, queries can be categorized according to whether they are one-time or continuous queries. Continuous
gueries may be classified further, based on whether they are constant or time-parameterized. The latter occurs
when a query refers to the (variable) current time. An example is a continuous query that retrieves all objects
currently within a spatial range. A corresponding constant query might retrieve all objects that are (currently
believed to be) within a spatial range at some fixed near future time. Constant continuous queries have been
termed “persistent” in the literature.

Third, one can also classify the queries based on the spatial scenario where the query is concerned with, i.e., the
non-constrained Euclidean space (e.g., movement of aircraft), the transportation networks, and the infrastructure-
constrained space. As an example for the last scenario, let us consid&ladein Figure 2(a), this user's
movement is partially-constrained by the lake.

Fourth, queries can be categorized based on whether they refer to data concerning the past, present, or future
states of reality. For instance, a mobile user driving on a route may be interested in finding restaurants open in the
next 2 hours.

Fifth, based on the cardinality of query objects and data objects, queries may be classified as being either “one-
to-many” or “many-to-many.” The former queries apply one predicate to many objects, returning one set, multiset,
or list of objects. The latter conceptually repeatedly applies many different predicates to many objects, potentially
retrieving many objects for each predicate. A simple selection is thus an example of the formér.ndaest
neighbor query in Section 5.2 retrieves (up Aabjects that are the nearest to some (i.e., “one”) specified object;
it is thus also a “one-to-many” query. In contrast, joins are “many-to-many” queries: The predicate involving one
(left hand side) object is applied to many (right hand side) objects, and this repeated many times. The so-called
“closest pair” query, which finds pairs of objects from two different groups that are closest, is also a “many-to-
many.”

Sixth, based on the time at which a query is registered to the system, it can be “pre-defined,” meaning that it
is present before the streams it uses start, or it can be “ad hoc,” meaning that it is registered after at least one of its
streams has started.

6 Summary and Future Work

Substantial research has been reported on query processing in relation to mobile services, in particular location-
enabled mobile services. Different techniques are applicable to different kinds of queries. Based on results from
stream and temporal databases, this paper proposes a framework for capturing the semantics of the diverse kinds
of queries that are relevant in this context. By enabling the definition of queries in a single framework, the paper’s
proposal enables the comparison of queries.

The framework consists of data types, relations and streams, as well as algebraic operations on relations and
operations that map between streams and relations. The specific representations of spatial data and the associated
operations on these are treated as black boxes, in order to enable applicability across different such representations
and operations. The extensibility of the framework was exemplified by adding a skyline operator.

The use of the framework was illustrated by the definition of several location-based queries and corresponding
variants, spatial range query, nearest-neighbor query, spatial join query, and location-based skyline query. Toy
examples were given for illustrating these queries. Focus has been on the capture of the semantics of LBQs, and
how to use one-time or continuous queries in actual location-based services is beyond the scope of the paper.

This paper represents initial work, and future work may be pursued in several directions. First, the framework
may be enriched in various ways. One is to introduce explicit representations of the space within which the spatial
objects are located and move, e.g., road networks. Second, while this paper has given one definition of several
location-based queries, it would be worthwhile to explore the different possible semantics that may be given to
gueries within the framework. Such a study may reveal whether or not desirable semantics can be specified in
all cases. Third, although interesting initial steps have been taken in this direction (e.g., [20, 43]), more work on
taxonomies for location-based queries is desirable.
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Appendix

Table 1: Operators defined on the class Geometry by OpenGIS [13]

Basic Spatial Reference Returns the Reference systems of the geometry

operators | Envelope The minimum bounding rectangle of the geometry
Export Convert the geometry into a different representation
ISEmpty Tests if the geometry is the empty set or not
IsSimple Returns True if the geometry is simple
Boundary Returns the boundary of the geometry

Topological | Equal Tests if the geometries are spatially equal

operators | Disjoint Tests if the geometries are disjoint
Intersect Tests if the geometries intersect
Touch Tests if the geometries touch each other
Cross Tests if the geometries cross each other
Within Tests if the given geometry is within another given geometry
Contains Tests if the given geometry contains another given geometry
Overlap Tests if the given geometry overlaps another given geometry
Relate Returns true is the spatial relationship specified by the 9-Intersection

matrix holds
Spatial Distance Returns the shortest distance between any two points of two given
analysis geometries
operators | Buffer Returns a geometry that represents all points whose distance from
the given geometry is less than or equal to the specified distance

ConvexHull Returns the convex hull of the given geometry
Intersection Returns the intersection of two given geometries
Union Returns the union of two given geometries
Difference Returns the difference of two given geometries
SymbDifference | Returns the symmetric difference of two given geometries
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