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Abstract

Density queries are of practical importance in many mobility related applications including traffic monitoring.
Previous work has so far assumed a client/server architecture to solve such queries. Whereas in this paper,
carefully constructed sensor networks, which consist of both lightweight location sensors and more powerful
processing nodes, are proposed to answer density queries. We assume the location sensors are sensors that
are placed in a geographical area and can only detect the amount of objects moving in vicinity. This paper is
focused on estimating the dense regions of objects. Our approach partitions the region of interest into subregions,
and deploys in each subregion both sensor nodes detecting moving objects and a processing node issuing and
answering density queries. Three algorithms,CF, VCF and GF, are proposed to efficiently process density
queries on those processing nodes. Indications of extensive empirical evaluation are threefold. First, our solution
is effective as accuracy gained is acceptably high. Second, our solution is efficient as it incurs short CPU time.
Third, different query processing algorithms are fit for different scenarios with specific environment settings.

1 Introduction

Recent development in wireless communication and hardware miniaturization technologies has made wireless sen-
sor networks possible. Sensor networks consist of low power, autonomous sensor nodes with limited computation
and communication capabilities. These cheap, tiny sensor nodes are often widely distributed to collect information
in each vicinity and transmit the collected data to the query source through a wireless ad-hoc peer-to-peer network.
Data communication in sensor networks often follows an ad hoc way which simplifies the network information
but also brings difficulties to the management and configuration of the networks. Also, the resource-constraints on
sensor nodes, such as limited power consumption, low communication bandwidth, and very small storage space
and energy, gives more challenges to sensor network applications.

From the database point of view, the data being processed, transmitted and stored in sensor networks form
a database, namely sensor network database. Many types of queries and query processing techniques have been
discussed in this context. For instance, aggregate query processing in sensor networks has received broad interest
in the literature [2, 5, 12, 13].

In this paper, we assume an application scenario where sensor networks are used to detect moving objects’
activities. Focus of our discussion is the monitoring and processing of so-called density queries which find areas
where objects tend to be very close to each other. Examples of such queries in the real world are “finding the road
intersections or streets that have more than 200 cars stayed or passed in the last 10 minutes” or “finding regions that
are smaller than 10m2 in area size but contain more than 100 objects.” Density query is an essential functionality
in systems that monitor moving objects data. Such systems often have an assumption that a smart client with a
positioning device (e.g., GPS) collects and sends location data of moving objects to a central server. However, the
widespread of positioning device has not yet come to be true and the assumed architecture has to be modified to
comply with issues such as violation of privacy. The emergence of sensor networks brings an alternative for the
current architecture. We list three motivating examples for our discussion.

First, finding roads or junctions that are “busy” at the moment is an essential task of traffic-monitoring systems.
Sensor networks can be deployed to detect the quantity of moving vehicles at certain areas and such data can be
collected and transmitted to the traffic monitoring center so that those roads or junctions with high volume of
detected vehicles are the areas of traffic jam or congestion. This solution has no cost on the vehicles side and,
compared to the GPS-based the solutions, does not expose the drivers’ location privacy (i.e., the privacy of being
at anywhere at any time) as no identity information is involved in the sensor network. Second, in the study of
animal ecology, it is very useful to observe the activities and behavior of a population of particular species. Sensor
networks is the most convenient solution for such observations. Since the activities that involve a large population
of a species are usually of interest to scientists, monitoring areas with large amount of observed objects is an
essential tasks of these scientific observation systems. Another example is from the battle field. Considering that
a lot of “motion detection” sensors are deployed at a battle field to detect activities of enemy targets, small areas
with a great amount of enemy targets will be cost-effective candidates for missile attacks.

Motivation of this paper also comes from the spatiotemporal database literature. The discussion on dense area
discovery [7] and density queries [8] addresses a novel spatiotemporal query, namely the density-based query,
which finds regions with vast amount of spatiotemporal objects against the relatively small size of region.

With all the motivation, this paper proposes a sensor-network-based framework for moving object detection.
Based on a top-level framework, the paper proposes three approaches for discovering density areas and studies the
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accuracy and efficiency of these approaches. The paper also reports an empirical study that thoroughly evaluates
the proposed approaches.

Contributions of this paper are in two aspects. First, this paper is the first to consider density query processing
in the sensor network architecture. The major distinction between density query and aggregate query is that the
latter only counts the result without considering the spatial area. With the aforementioned examples, discovering
dense areas with sensor networks has many useful applications which can not be solved with aggregate queries.
Second, this paper proposes three query algorithms for density query in sensor networks. Instead of designing a
new sensor network architecture, this paper reuses an existing architecture of sensor network so that the proposed
algorithms is easily extensible.

The rest of this paper is organized as follows. Section 2 introduces related work. Section 3 presents back-
ground. Section 4 addresses a generic framework for monitoring dense regions in sensor networks and introduces
three query algorithms. Section 5 discusses the implementation detail and computational complexity of the algo-
rithms. Section 6 empirically compares the accuracy and efficiency of the proposed algorithms. Finally, Section 7
concludes.

2 Related Work

Aggregate query processing in sensor networks is an orthogonal topic to our discussion. Quite a few papers from
the database community have been addressing techniques and solutions for this topic [2, 3, 5, 11, 12, 13, 14]. In
our paper, we choose to form our discussion based on the sensor network architecture described in [12]. This
architecture assumes the existence of both light-weight sensor nodes which only collect and transmit the raw data,
and powered sensor proxies that further process and route the answers to the query processor. Different from [12]
which addresses the low-level infrastructure issues and considers how to maintain high query throughput with
limited sensor resource demands, our paper considers density queries on moving objects in a sensor network and
we are focused on getting more precise result of dense areas. The discussion of our paper can be seen as one
concrete application based on the architecture of [12]. Our discussion in this paper, snapshot density queries
on location sensors, is different from snapshot queries discussed in [10], which is focused on energy efficient
collection of quick but approximate answers from part of all sensors.

Our work is similar to papers that work on tracking and managing mobile targets in sensor networks [6, 15].
Unlike these papers that focus on the low level details of location tracking and object clustering, our paper assumes
that a location sensor can only count the amount of objects in a small range and we are focused on finding effective
and efficient algorithms to estimate the dense regions of objects. Such sensors can either be anonymous RFID
readers or optical motion detectors.

The topic of density query has been brought forward by two recent papers from the database community
that study the querying of spatiotemporal regions with a high concentration of moving objects [7, 8]. The first
paper [7] proposes to divide the data space into a uniform grid so that the density query is simplified as reporting
cells that satisfy the density conditions. This solution provides fast answers but can lead toanswer loss(as termed
in the second paper [8]), such as regions that cover boundaries of several cells with a high density of objects
(but each individual cell does not contain enough number of objects to be dense). The second paper [8] provides
a new definition of density query that eliminates answer loss and proposes a filter-and-refinement algorithm for
computing the queries. We formulate the definition of density query based on these two papers. The difference
between our paper and these two is that we consider density query processing in a different architectural setting,
where each moving object’ positions can not be reported from itself but are detected by the sensor network. Since
paper [8] provides the most accurate density query result, in our empirical study, we choose to compare the density
computation result with [8] to evaluate on the estimation accuracy of the proposed algorithms.

The discussion of this paper is also relevant to the topic of density clustering [4] and clustering of spatiotem-
poral objects [9]. In [4], the DBSCAN algorithm is proposed to find dense clusters of objects. Paper [9] is focused
on the discovery of moving clusters in a database of moving object trajectories. The techniques in these papers
can not be directly applied to our scenario since the physical limitation of location sensors makes it impossible
to get the exact location of objects. However, our assumption on the limitation of location sensors is very simple
which, on the other hand, makes our discussion more extensible in real world applications.
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3 Background

This paper assumes that a population of target objects move within a 2D area where a sensor network is deployed.
These sensors can detect objects in vicinity. Specifically, we do not assume the sensors can tell the exact locations
of each detected object. Instead, a sensor can only count the amount of objects in its vicinity. We are interested
in getting those areas where objects are very close to each other, by processing and analyzing the collected sensor
data. We proceed to describe the settings of the sensor network and the definitions of density queries.

3.1 Sensor Network Architecture

In our setting, sensor nodes have limited power as well as computation and storage capabilities. They possess equal
role in the network functionality. Each node is connected to other nodes in vicinity through a wireless network,
which form its neighborhood. A node can either send a message to one of its neighbors or simultaneously broadcast
the message to all or most neighbors. Thus, a sensor node communicates with other nodes that are spatially distant
through a multi-hop routing protocol. Two types of messages are transmitted among the sensor nodes for query
processing:query messagesthat transport the query information andanswer messagesthat transport the query
result.

In addition to sensor nodes, we distinguish a special type of node calledprocessing node. Sensor nodes collect
data, send and route data to processing nodes. Processing nodes can issue and process queries. Processing nodes
have abundant resource and stable, long-range connections (such as cable and satellite connections) to each other.
Each processing node is able to talk with sensor nodes through wireless protocols. When a processing node sends
out a density query, the query is disseminated to sensor nodes in the vicinity of the processing node and also sent to
other processing node through the stable connection. After the query is distributed by all the processing nodes, the
results from sensor nodes are sent back to these processing nodes which are then returned to the one that originates
the query. Figure 1 illustrates the architecture described above.

Processing nodes

Sensor nodes

Figure 1: System Architecture

Next, we assume that each sensor node knows its location as well as the location of its neighbors. Each sensor
node also knows its closest processing node (e.g., it can be detected by an activation operation of the processing
node). A “motion-detection” sensor is installed at each sensor node which is able to detect the amount of objects
within a finite range. All sensors are timely synchronized to a global clock and sample their readings periodically.
The size of moving objects can be ignored compared to the distance among sensor nodes. The positions of
processing nodes can be decided, based on the distribution of sensor nodes, during the system installation.

3.2 Density Query

Each object is represented as tuples. . . , (xi, yi, ti), . . . where(xi, yi) is the location of this object at time instance
ti. Since the objective is to find spatial areas where, with high probability, objects are very close to each other,
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we adapt similar definitions in related work [7, 8] and formalize the definitions of snapshot density and snapshot
density query in the following.

Definition 3.1. (Snapshot Density)The snapshot density of a regionA is defined asDensityt(A) = MOt

AREA(A) ,
whereMO t is the amount of moving objects inside the area at time pointδt andAREA(A) is the total area ofA.

Hence, we say that a region isdenseat timet if its density is over a density thresholdθ. To skip the cases
when the regions become too small which leads to high density values, we assume that the total area of any region
should be within an area range[α1, α2]. The timet is a single time point. Since the sensor nodes have limited
storage capabilities and the sensor readings are collected like data streams, only the most recent data can be shortly
cached at each node before sending to processing nodes. In the discussion of our paper, we are focused on queries
that find dense regions at individual time points.

Definition 3.2. (Snapshot Density Query)Given a set of moving objects, the thresholdsθ, α1, α2, and a time
point t, a density query finds non-overlapping regionsA1,A2, . . . such thatα1 ≤ AREA(Ai) ≤ α2 and
Densityt(Ai) ≥ θ (i = 1, 2, . . .).

A snapshot density query is issued from a processing node, when it is interested in the current distribution of
dense regions. We call these density queriesonline density queries.

Since the sensors cannot get the precise locations of moving objects, we will only focus on algorithms that
give estimated result of the density query. We consider the accuracy of such algorithms in terms offalse positives
and false negatives. False negative is the error of not finding a dense pattern that does exist in the data. False
positive, is the error of finding a “dense pattern” that does not exist in the data. Thus, density query algorithms are
supposed to reduce both of them. We proceed to describe the detail of our solutions.

4 Online Density Computation

With our sensor network, the density queries are periodically initiated from a processing node. Processing one
snapshot of the density query involves two parts, i.e., communication among processing nodes and query process-
ing at each processing node. Steps involved in the first part is straightforward: The current processing node sends
out the query to other processing nodes, receives their results, and combines all the results as the query answer. We
assume that query processing at each processing node does not involve any communication with other processing
nodes. Our discussion is focused on techniques for query processing at each processing node. This involves a
processing node and the sensor nodes that are in vicinity of this node.

We assume that all sensor nodes can only process one type of query, denoted asAMOUNT(r). This query asks
for the amount of moving objects detected by a sensor within a specified distance ranger at the current time. The
value of parameterr should be within a technical bound of the sensor. Suppose the query is issued at processing
nodep and the sensor nodes in the vicinity ofp aren1, n2, . . . , nm, to process the density query, the nodep first
broadcasts the queryAMOUNT(r) to n1, n2, . . . , nm. We model the result of queryAMOUNT(r) on sensor node
ni asci = (shp, amnt) (i = 1, 2, . . . , m) whereshp is the geometrical description of the region detected by the
sensor at nodeni (intuitively, it is a circular shape with radiusr), amnt is the amount of moving objects detected
by the sensor. After receiving answersC = {c1, c2, . . . , cm} from the sensor nodes, a filtering algorithm is used
to analyze these answers and return the dense regions. We proceed to introduce three filtering algorithms.

4.1 Fixed Circular Filtering Approach

The straightforward way of finding dense regions is to scan the received resultsC = {c1, c2, . . . , cm}. Recall that
we have threshold valuesα1, α2, θ for determining dense regions. For a regionci, if α1 ≤ AREA(ci.shp) ≤ α2

and ci.amnt
AREA(ci.shp) ≥ θ, then ci is a dense region. We denote this straightforward approach asCF (Circular

Filtering).
The parameterr in the queryAMOUNT(r) broadcasted to sensor nodes actually decides the accuracy of the

filtering algorithm. Whenr is too small, there will be false negatives since there can be objects not reported from
any sensor nodes. As illustrated in Figure 2(a), the circular area around sensor noden2 is easily found to be
dense as there are 5 objects (black dots) inside the area. But there is also a dense area of 5 objects not reported
by any sensor nodes. When the valuer is increased, the region that each sensor node should report overlaps with
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regions of other adjacent sensor nodes which can bring false positives. For instance, in Figure 2(b), if the circular
areas ofn1, n2, n3 are found to be dense, the objects inside both the region ofn3 andn1 are actually reported
twice. To improve the accuracy in the filtering algorithm, the parameterr should be tuned to a value so that each
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Figure 2: Accuracy with Differentr Values

reported region of sensor node has very little intersection with other regions but does not have too much overlap
with the others. However, the valuer is actually constrained by the technical configurations on the sensors. Under
the current settings, to reduce false negatives, one can use the biggestr value possible and apply the following
heuristic: First, we sortc1, c2, . . . , cm based on theiramnt values and scan those with biggeramnt values at first;
Next, for all the other non-reported regions, we cut their overlaps withci so that their area values are decreased;
Then, we reevaluate the density of these regions based on their new area values.

TheCF algorithm returns a setD of dense regions. In the pseudo code, we associate each regionci with an
additional boolean attributeci.valid, which is set toTRUE initially. The code is listed in the following.

(1) procedureCF(C, θ, α1, α2)
(2) sortC s.t. ci.amnt ≥ ci+1.amnt, i = 1, . . . , m-1
(3) b ←TRUE
(4) while b
(5) b ←FALSE
(6) for each ci ∈ C, if ci.valid :
(7) if α1 ≤ AREA(ci.shp) ≤ α2 ∧ ci.amnt

AREA(ci.shp) ≥ θ

(8) D ← D ∪ {ci}
(9) b ← TRUE; ci.valid ← FALSE
(10) for each cj ∈ C, j 6= i, if cj .valid :
(11) if cj ∩ ci 6= ∅
(12) cj .shp ← cj .shp− cj .shp ∩ ci.shp
(13) return D

This algorithm scans each element in the listC and finds out the possible dense regions. Specifically, the algorithm
reads one elementci and checks if it is dense (line 7). If so,ci is pushed to queueD and the rest of the non-dense
elements inC are checked if they have overlaps withci (lines 10–12). If a circular region, such ascj , has overlaps
with ci, the algorithm updates the geometrical representation of regioncj to exclude its overlap withci (line 12).
The while–loop (line 4–12) continues until there is no dense region left in the listC.

4.2 Varied-Circular Filtering Approach

Since the snapshot density query is issued periodically, it is possible to ask the each processing node to send out
the AMOUNT queries to sensor nodes with differentr values at different periods and combine the observations
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of all these periods. Specifically, we call this approachVCF (Varied Circular Filter). Our discussion focuses on
using two differentr values. Suppose the time period for sending out snapshot density queries isµ. Based on
this assumption, at timeta, processing nodep sends out queryAMOUNT(ra) to the sensor nodes. Then, at time
ta +µ, the nodep sends out queryAMOUNT(rb) (rb < ra). Assuming that objects do not move very much during
the periodµ, we can combine the received results for density queries. We denote the results received from the first
query as queueCa = {ca

1 , ca
2 , . . . , ca

m} and the second as queueCb.
Like theCF algorithm, theVCF algorithm uses the boolean attributeci.valid which is associated with each

regionci and is set toTRUE initially. We assume elements in bothCa, Cb are sorted based on theamntvalue. For
regionci in one of the queuesCa andCb, we use an auxiliary functionCoCenter(ci) to return the region in the
other queue that is submitted from the same sensor node asci. The algorithm also uses a variablec for an instance
of a circular region. Output of the algorithm is the set of possible density regionsD.

(1) procedureVCF(Ca, Cb, θ, α1, α2)
(2) sortCa, Cb

(3) b ← TRUE
(4) while b
(5) b ←FALSE
(6) for each ca

i ∈ Ca, if ci.valid:
(7) c ←NULL
(8) cb

j ← CoCenter(ca
i )

(9) if α1 ≤ AREA(ca
i .shp) ≤ α2 ∧ ca

i .amnt
AREA(ca

i .shp) ≥ θ

(10) c ← ca
i ; b ← TRUE; c.valid ← FALSE

(11) else

(12) if cb
j 6=NULL∧α1 ≤ AREA(cb

j .shp) ≤ α2 ∧ cb
j .amnt

(cb
j .shp)

≥ θ

(13) c ← cb
j ; b ← TRUE; c.valid ← FALSE

(14) if c 6=NULL
(15) D ← D ∪ {c}
(16) for each ck ∈ Ca ∪ Cb

(17) if ck.valid ∧ ck ∩ c 6= ∅
(18) ck.shp ← ck.shp− (ck.shp ∩ c.shp)
(19) for each cj ∈ Cb, if cj .valid:
(20) if α1 ≤ AREA(cj .shp) ≤ α2 ∧ cj .amnt

AREA(cj .shp) ≥ θ

(21) b ← TRUE; c ← cj ; do lines 16–19
(22) return D

The algorithm scans the queue with bigger circular regions in queueCa. For a circular regionca
i and its “co-center”

regioncb
j ∈ Cb, the algorithm first checks if the bigger circleca

i is a dense area (line 9). If it is not, the smallercb
j

is checked (line 12). Then, the dense regionc = ca
i or c = cb

i is pushed to queueD and other non-dense elements
in Ca andCb are scanned to remove the overlapping part withc (lines 14–18). After scanning through the queue
Ca, the algorithm checks the elements left inCb and do the same steps of checking density as well as updating
corresponding region shapes. The while–loop continues until there is no dense areas left in both queuesCa and
Cb.

Extending theVCF algorithm to three or more queues of different circular regions is straightforward. Specif-
ically, if we have several queuesC1, C2, . . . , Ck with the radius sizesr1 > r2 > . . . > rk, the algorithm can
start scanning each element in queueC1. If an element fromC1 is not dense, the algorithm checks its smaller
“co-center” peers inC2, . . . , Ck until a dense element is found (otherwise, the current loop stops and the algorithm
continues with the next element inC1). The dense region is then saved to the resultD and is also used to update the
regions that overlap with the current region. After scanning throughC1, the algorithm continues to check elements
left in C2, . . . , Ck until thevalid values of all these elements areFALSE.

4.3 Grid Filtering Approach

A simple 2D grid has been used in the proposals of related work [7] to find dense areas. Following the spirit of that
approach, we propose to use a grid-based filtering algorithm and estimate the amount of objects of each cell based
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on the overlap between grid cells and circular regions of sensor nodes. Specifically, suppose a regionc overlaps
with a grid cellg, we associateg with tuple(shp, amnt) whereshp is the geometrical description ofg andamnt

is the estimated objects amount andg.amnt = AREA(c.shp∩g.shp)×c.amnt
AREA(c.shp) .

For instance, suppose the area size of the circular regions in Figure 3 is 1. The numbers on each circle denote
the area size of the overlap between circles and grid cells. For example, value0.3 is the area size of the overlap
between circular regionc1 and grid cellg3. Since 5 objects have been detected in the circlec1, we can calculate
g3.amnt = 5 × 0.3 = 1.5. For grid cellg1, since the overlap area size betweeng1 andc1 is 0.6, and the overlap
betweeng1 andc2 (the overlap between the two circles is still considered) is0.12, the estimated objects amount
g1.amnt = 0.6× 5 + 0.12× 4 = 3.48.

c2

g2

c1

g4

g3

�
�
�
�

�
�
�
�

0.8

0.08

0.3

0.1

0.6

g

0.12

1

Figure 3: Example of Grid Filtering

After the calculation for all the grid cells, we can filter out the sparse cells based on the density threshold. The
pseudo code ofGF is listed in the following.

(1) procedureGF(G, C, θ)
(2) for eachgi ∈ G
(3) for each cj ∈ C, if gi ∩ cj 6= ∅:
(4) gi.amnt ← gi.amnt + AREA(cj .shp∩gi .shp)×cj .amnt

AREA(cj .shp)

(5) if gi.amnt ≥ θ
(6) D ← D ∪ {gi}
(7) return D

5 Discussion

Since all the algorithms proposed in Section 4 are based on the queryAMOUNT(r), these algorithms can only find
the dense regions whose center is a sensor node. When the sensor nodes are sparsely distributed andr is small,
these algorithms can not find the dense regions that are distant from any nodes. Since the location sensors can not
tell the exact locations of the moving objects in a neighborhood but just count the amount of such objects, it is
impossible to guarantee the accuracy of a density query. The proposed algorithms give feasible ways of estimating
the dense regions. Although this paper assumes that the sensor range has a circular shape, it is very easy to modify
the proposed algorithms to estimate the dense regions in terms of different shapes of sensor range.

In a density monitoring scenario of our problem setting, a functionality based on an algorithm proposed in
Section 4 is installed on each processing node. It is worth noting that different processing nodes can install
different algorithms based on their own specific situations including computation capability and geographical
proximity.
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5.1 A Tile-Based Implementation

Since bothCF andVCFalgorithms require the operations on the circle and other shapes, we implement a tile-based
solution to simplify such operations. Specifically, we apply a very dense 2D grid on the whole space and represent
each shape by the set of grid cells that cover this shape. As illustrated in Figure 4(a), a circle is represented as a set
of dark grid cells. Then, the operations on any shapes can be transformed into the operations on the corresponding
sets of grid cells. For instance, the dark cells in Figure 4(b) represent the rest of the left circle after a subtraction

��
��
��
��

��
��
��
����
��
��
��

��
��
��

��
��
��
��
��
��
����
��
��
����
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��
��
��
����
��
��
��

��
��
��
����
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

(a) Example of Circle

��
��
��
��

��
��
��
����
��
��
��

��
��
��

��
��
��
��
��
��
����
��
��
����
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

(b) Circle Subtraction

Figure 4: Tile-Based Solution

between the two circles. We name the cells of the dense 2D grid asbasic cells. As will be explained later, these
basic cells provide a concrete way of definingfalse positivesand false negativesin the empirical study of the
proposed algorithms.

5.2 Algorithm Complexity

The efficiency of the density estimation depends on several aspects, i.e., the communication among sensor nodes
and processing nodes, the computation cost at the sensor nodes, and the computational complexity of the estima-
tion algorithms at the processing nodes. Since the cost of communication and computation at sensor nodes does
not differ among the three proposed algorithms, we are focused on discussing the time complexity of these density
estimation algorithms.

Suppose a processing nodeNi receives sensed results fromNi sensor nodes, we give the brief time complexity
of each algorithm.

For algorithmCF, it uses a three-layered nested loop. For the most outer while–loop, it is executed at most
Ni times. This is because in each iteration of the while–loop, the if–statement (line 7) within the intermediate
for–loop is at least executed once, otherwiseb will be FALSE and the while–loop will be over. That means the
if–statement is executed at mostNi times, which makes the while–loop have only one iteration. Thus, the outer
nested loop is at most executedNi times. The most inner for–loop is at most executedNi − 1 times in each
iteration of the intermediate for–loop. Therefore, the worst time cost ofCF isNi · (Ni − 1).

Within the while–loop of algorithmVCF, it carries out two passes of nested loop, where the outer one is on all
sensed results of a single time stamp and the inner one on all of two consecutive time stamps. The functionality
and execution of the outer while–loop is similar to that in algorithmCF. Therefore, the worst time cost ofVCF is
4 · N 2

i .
Algorithm GF uses a nested loop on all grid cells and all sensed results. Therefore, its worst time cost is

Ni · |G|.
ComparingCF andVCF, the former is faster but the accuracy is worse as it computes the query result based

on sensed data of a single time stamp only. ForGF, its result accuracy is dependent on the grid configuration. A
fine grid partition costs more computation time and is expected to produce better results. Nevertheless, the grid
cell granularity should not be too fine as very small grid cells will probably cause many cells to be reported as
dense ones.
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6 Empirical Evaluation

To evaluate density query algorithms, we use Brinkhoff’s network-based generator of moving objects [1] to gener-
ate moving object trajectories. We use integer as unit time instance and set the whole time period from0 to 50. We
generate 10,000 moving object trajectories on the Oldenburg network and 30,000 trajectories on the San Joaquin
network. Each generated trajectory is treated as a unique moving object.

We generate both uniformly and non-uniformly distributed sensor and processing nodes based on the road
networks. To generate the uniformly distributed sensor and processing nodes, we uniformly partition the MBR
of the road networks into a 2D grid and use the center of each grid cell as the location of a node. The non-
uniformly distributed nodes are generated by randomly choosing the road network nodes as the location of sensor
or processing nodes. We assume that each sensor node can communicate to at least one adjacent sensor node and
it sends the result of theAMOUNT query only to its nearest processing node. Figure 5 describes the Oldenburg
datasets used in the empirical study.

Trajectories Trajectory Sensor and Processing Nodes
OLDN–UN Oldenburg Uniform
OLDN–NUN Oldenburg Non-uniform
OLDN–NUN’ Oldenburg Sensor nodes: Road network

nodes whose degrees≥ 3; Pro-
cessing nodes: non-uniform

Figure 5: Dataset Description

To simulate the density query, we assume that objects are moving during time instances0 to 50, and at each
time instance, we randomly select one processing node to send out theAMOUNT query. The sensor nodes then
collect the result of theAMOUNTquery based on the location of all the moving objects at the current time instance.
For theVCF algorithm, the secondAMOUNTquery is sent out afterµ time instances from the current time. Size
of the basic cells are determined as the average length of the road network edges.

Experiments have been conducted to test the three density algorithms in terms of accuracy and CPU time. The
CPU time is the sum of CPU running time of all the processing nodes. It reflects the total energy consumption
for the density computation at the processing nodes. To compare the algorithms in terms of accuracy, we also
implement the density query algorithm described in [8] and use the results of this implementation as the evaluation
target. The implementation first constructs a 2D grid over the MBR of the whole road network so that the size
of each grid cell is equal to the minimal area thresholdα1. We use the algorithm in [8] to find dense grid cells.
The basic cells that are inside each dense grid cell are marked “dense” and are used to check the result of our
proposed density query algorithms. If a basic cell is marked “dense” but is not found to be dense by our proposed
algorithms, it is afalse negative. If a basic cell is not marked “dense” but is found to be dense by our algorithms,
it is a false positive. Suppose the implementation of [8] reports the amount of dense basic cells asD, we execute
each of our proposed algorithms and collect the number of false positivesP , false negativesN and report the ratio
between these values andD.

To observe the algorithms under different settings, we tune the following parameters to report the accuracy
ratios and CPU time of the algorithms: the sensor detection range, the size of basic cell, the density threshold
value, the amount of sensor and processing nodes, the time intervalµ for collecting the second query results for
the VCF algorithm, and the grid cell amount for theGF algorithm. Note that the sensor detection range in real
world settings may be a fixed value for the same type of sensors. Such values can be different for different sensor
types. When the energy or surrounding conditions of a sensor change, this value may also change. Thus, we
choose to tune this value to empirically study how it influences the results of the density algorithms. To report the
result of each algorithm, we randomly pick 10 time instances during time period0 to 50, send out theAMOUNT
query from all the processing nodes, execute the algorithm at each processing node, and report the average result.

All experiments are performed on a Pentium IV 2.8 GHZ processor with 1 GB of main memory and running
Windows XP. The C++ programming language is used.

Figure 6 shows the result of experiments. In the experiment with sensor detection range, we tune the range
value as a ratio of the diagonal distance of the MBR of the road network. As illustrated in Figure 6(a), when the
detection range is small, many dense areas can not be scanned by the sensors so that the amount of false negative
is very big. When the detection range is increased, there are more dense areas found by the sensors so that the ratio
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(a) Sensor Detection Range Versus Accuracy (b) Basic Cells Size Versus Accuracy

(c) Density Threshold Versus Accuracy (d) Amount of Sensor Nodes Versus Accuracy

(e) Amount of Processing Nodes Versus Accuracy (f) Detail Study with VCF and GF

(g) Sensor Detection Range Versus CPU Time (h) Basic Cells Size Versus CPU Time

Figure 6:Experimental Results of the Density Query Algorithms

of false negative is decreasing. However, the amount of false positive is increasing at the same time. In the uniform
dataset, theGF algorithm returns less false negatives than the other two algorithms and is the first to achieve 0
false negatives when the detection range grows. The other two algorithms can not achieve 0 false negatives unless
the detection ranges grows very big. In the non-uniform dataset, the accuracy ratio ofCF andVCF algorithm is
very close and they both achieve 0 false negatives very early when the detection range grows with a reasonable
amount of false positives. Thus, when the distribution of sensor nodes is similar to the distribution of dataset, both
CF andVCF perform better thanGF.

In the subsequent experiments, we set the basic cells size as a ratio of the average edge length of the road
network, the density threshold as the ratio of the amount of moving objects in a single basic grid cell, the ratio of
sensor and processing node amount (in the right figure of Figure 6(d) as the percentage of sensor nodes against
the total amount of road network nodes, and vary these parameters to observe the ratio of accuracy. Similar
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observations can be found on these experiments. As illustrated in Figures 6(b) to 6(d), the accuracy ratio of
theGF algorithm is very different from the other two algorithms. In the uniform dataset, theGF algorithm has
less false negatives but more false positives thanCF andVCF when the parameter value is very small. When
the parameter value grows bigger, both theCF and theVCF algorithms have less false positives thanGF in the
uniform dataset. In the non-uniform dataset, theCF andVCF algorithms have much less false negatives and more
false positives thanGF.

Figure 6(f) shows a detailed study on theVCF andGF algorithms. For theVCF algorithm, when length of
the time intervalµ between the two queuesCa andCb grows, locations of objects inCb may be distant from their
previous locations inCa. As a result, theVCF algorithm filters out more cells that are possibly dense which,
in turn, increases false negatives and decreases false positives. For theGF algorithm, it is seen that only the
false positives of the uniform dataset and the false negatives of the non-uniform datasets are influenced by the
grid amount. When the grid becomes denser, the accuracy of the algorithm with uniform dataset becomes better.
An interesting observation is that, when the grid amount grows, the false negative amount on the non-uniform
dataset (OLDN–NUN) first decreases then increases while the amount on the OLDN–NUN’ dataset first increases
and then decreases. We believe this is due to the distribution and amount of sensor nodes at these two datasets
(OLDN–NUN has 611 sensor nodes, OLDN–NUN’ has 227 sensor nodes).

Figures 6(g) and 6(h) illustrate the effect of sensor detection range and basic cell size on CPU time. As
expected, the CPU running time increases when the detection range grows and decreases when the size of basic
cells becomes smaller. Another observation is that the CPU running time ofGF algorithm is better than the others
on uniform datasets but worse on non-uniform datasets.

To summarize,GF algorithm has the best performance when the sensor and processing nodes are uniformly
distributed whileCF andVCF algorithms are better if all nodes are non-uniformly distributed. In addition, exper-
iments were also done on the trajectory data generated based on San Joaquin road network. The results of these
experiments, not covered in detail here, are quite consistent to those reported and thus provide a further validation
of our findings.

7 Conclusion

This paper addresses mobility related density query processing in sensor networks. We have assumed a two-level
architecture with both location sensor nodes detecting moving objects and processing nodes issuing and answering
density queries. For processing nodes, we have proposed three query processing algorithms:CF, VCF andGF.
Extensive experimental evaluation results show that three algorithms in our solution are able to answer density
queries with acceptably high accuracy within short CPU times. Those results also disclose the most appropriate
scenario settings for different algorithms.
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