
Discovering Sentinel Rules for Business
Intelligence

Morten Middelfart and Torben Bach Pedersen

March 5, 2009

TR-24

A DB Technical Report

Title Discovering Sentinel Rules for Business Intelligence

Copyright c© 2009 Morten Middelfart and Torben Bach Pedersen.
All rights reserved.

Author(s) Morten Middelfart and Torben Bach Pedersen

Publication History March, 2009. A Technical Report.

For additional information, see the DB Tech Reports homepage: 〈dbtr.cs.aau.dk〉.

Any software made available via DB Tech Reports is provided “as is” and without any express
or implied warranties, including, without limitation, the implied warranty of merchantability and
fitness for a particular purpose.

The DB Tech Reports icon is made from two letters in an early version of the Rune alphabet,
which was used by the Vikings, among others. Runes have angular shapes and lack horizontal lines
because the primary storage medium was wood, although they may also be found on jewelry, tools,
and weapons. Runes were perceived as having magic, hidden powers. The first letter in the logo
is “Dagaz,” the rune for day or daylight and the phonetic equivalent of “d.” Its meanings include
happiness, activity, and satisfaction. The second letter is “Berkano,” which is associated with the
birch tree. Its divinatory meanings include health, new beginnings, growth, plenty, and clearance.
It is associated with Idun, goddess of Spring, and with fertility. It is the phonetic equivalent of
“b.”

Abstract

This paper proposes the concept of sentinel rules for multi-dimensional data that warns
users when measure data concerning the external environment changes. For instance, a surge
in negative blogging about a company could trigger a sentinel rule warning that revenue will
decrease within two months, so a new course of action can be taken. Hereby, we expand the
window of opportunity for organizations and facilitate successful navigation even though the
world behaves chaotically. Since sentinel rules are at the schema level as opposed to the data
level, and operate on data changes as opposed to absolute data values, we are able to discover
strong and useful sentinel rules that would otherwise be hidden when using sequential pattern
mining or correlation techniques. We present a method for sentinel rule discovery and an
implementation of this method that scales linearly on large data volumes.

1 Introduction

The Computer Aided Leadership and Management (CALM) concept copes with the challenges
facing managers that operate in a world of chaos due to the globalization of commerce and con-
nectivity [17]; in this chaotic world, the ability to continuously act is far more crucial for success
than the ability to long-term forecast. The idea in CALM is to take the Observation-Orientation-
Decision-Action (OODA) loop (originally pioneered by Top Gun fighter pilot John Boyd in the
1950s [15]), and integrate business intelligence (BI) technologies to drastically increase the speed
with which a user in an organization cycles through the OODA loop. Using CALM, any organi-
zation can be described as a set of OODA loops that are continuously cycled to fulfil one or more
Key Performance Indicators (KPI’s). One way to improve the speed from observation to action
is to expand the ”horizon” by allowing the user to see data from the external environment, and
not only for the internal performance of the organization. Another way is to give early warnings
when factors change that might influence the user’s KPI’s, e.g., revenue. Placing ”sentinels” at
the outskirts of the data available seeks to harness both ways of improving reaction time and thus
organizational competitiveness.

A sentinel rule is a relationship between two measures, A and B, in an OLAP database where
we know, that a change in measure A at one point in time affects measure B within a certain warn-
ing period, with a certain confidence. If such a relationship exists, we call measure A the source
measure, and measure B the target measure. Usually, the target measure is, or contributes to, a
KPI. The source measure ideally represents the external environment, or is as close to the external
environment as possible. Examples of source measures for an organization could be: the number of
negative blog entries (external), the number of positive articles in papers (external), or the number
of complaints from customers (internal, yet as close to external as possible). Examples of target
measures could be: revenue or contribution margin. Imagine a company selling a product globally
where we discovered the sentinel rule: ”IF negative blogs go up THEN revenue goes down within
two months AND IF negative blogs go down THEN revenue goes up within two months”. Assume
that Google is searched daily for negative blogs, and the number of negative blogs is stored in the
company’s OLAP database. Also, the company’s BI solution can notify users based on sentinel
rules. When a user receives notification that the number of negative blogs goes up, he will know
that revenue will go down in two months with a certain confidence. Depending on the situation,
the user might have a number of evasive actions such as: post positive blogs to sway the mood,
or reduce cost to cope with a reduction in revenue. Regardless of the action, the sentinel rule has
raised awareness of a problem and reduced the time from observation to action. Metaphorically,
sentinels seek to do for organizations what radars do for navigation of ships.

The novel contributions in this paper include the sentinel rule concept, and an algorithm that

1

discover sentinel rules on multi-dimensional data. We give a formal definition of sentinel rules,
and we define the indication concept for rules and for source and target measures. In this context,
we provide a contradiction elimination process that allows us to generate more general rules that
are easy to interpret. We also provide a useful notation for sentinel rules. We conduct several
experiments to validate that our algorithm scales linearly on large volumes of synthetic and real-
world data and on databases with high complexity in terms of the number of measures. Since
sentinel rules operate on data changes as opposed to absolute data values, and are at the schema
level as opposed to the data level (such as association rules and sequential patterns), we can find
strong rules that neither association rules nor sequential pattern mining would find. In addition,
we found sentinel rules to be complementary to correlation techniques, since our solution finds
”micro-predictions” that hold for a smaller subset within a dataset; using correlation techniques
alone such rules would be ”hidden in the average”. We believe that we are the first to propose the
concept of sentinel rules, and to provide an algorithm and implementation for discovering them.

The next section presents the formal definition, Section 3 presents an algorithm including an
assessment of its complexity. Section 4 presents a scalability and a qualitative study. Section 5
presents the work related to the discovery of sentinel rules.

2 Problem Definition

Running Example: Imagine a company that sells products world-wide, and that we, in addition
to the traditional financial figures such as revenue, Rev, have been monitoring the environment
outside our organization and collected that information in three measures. The measure NBlgs
represents the number of times an entry is written on a blog where a user is venting a negative
opinion about our company or products. The measure CstPrb represents the number of times a
customer contacts our company with a problem related to our products. The measure WHts rep-
resents the number of hits on our website, and this figure has been cleansed in order to represent
human contact exclusively, eliminating traffic by robots etc.

Table 1. Example dataset
T : D2: M1: M2: M3: M4:

Time Region NBlgs CstPrb WHts Rev
2007-Q1 Asia 20 50 1.000 10.000
2007-Q2 Asia 21 45 1.500 9.000
2007-Q3 Asia 17 33 2.000 11.000
2007-Q4 Asia 15 34 2.500 13.000
2007-Q1 EU 30 41 3.000 20.000
2007-Q2 EU 25 36 3.500 25.000
2007-Q3 EU 22 46 4.000 28.000
2007-Q4 EU 19 37 4.500 35.000
2007-Q1 USA 29 60 5.000 50.000
2007-Q2 USA 35 70 5.500 55.000
2007-Q3 USA 40 72 6.500 45.000
2007-Q4 USA 39 73 7.500 40.000

In Table 1 we see a subset from our
database, representing each quarter in year
2007 across three geographical regions. It
should be noted that a subset like Table 1 can
easily be extracted from a multi-dimensional
database, i.e., if the desired data are the base
level of the database no processing is needed,
if the desired levels are higher than the base
level, the data might or might not be preag-
gregated. However, both extraction and ag-
gregation are typically basic built in functions
of any multi-dimensional database. The three

measures: NBlgs, CstPrb and WHts, representing the external environment around our company,
have been presented along with the internal measure, Rev, representing our Revenue. The vari-
able names: T, D2,M1...M4 have been assigned to the dimensions and measures in order to create
transparency to the formal definition in Section 2.

We are interested in discovering whether we can use any of the external measures to predict
a future impact on the internal Revenue measure; in other words we are looking for sentinel rules
where one of the measures M1...M3 can give us an early warning about changes to M4. To dis-

2

tinguish between which measures are ”causing” the other, we call the measures M1...M3 source
measures and the measure M4 is called the target measure.

Formal Definition: Let C be a multi-dimensional data cube containing a set of dimensions:
D = {D1, D2...Dn} and a set of measures: M = {M1,M2...Mp}. We denote the members of the
dimensions in D by d1, d2...dn and we denote the corresponding measure values for any combination
of dimension members by m1,m2...mp. A measure value is a function, Mi, that returns the value
of a given measure corresponding to the dimension members it is presented with. We will now
provide a series of definitions that define a source measure, A, is a sentinel for a target measure,
B, i.e., a guarded watchtower from which we monitor A in order to know about changes ahead of
time to B. The sentinel rule between A and B is denoted A Ã B. We assume, without loss of
generality, that there is only one time dimension, T , in C, and that T = D1, and subsequently
t = d1. A fact, f , in C is then defined as:

f = (t, d2, d3...dn,m1,m2...mp) (1)

Given a fact f , the measure Mi is a function Mi(t, d2, d3...dn) = mi. The ”dimension” part
of f , (t, d2, d3...dn), is called a cell. The shifting of a fact f , f ′, is a fact with the same non-time
dimension values (d2...dn) as f , but for time period t+o, if it exists in C, i.e., a period of o members
later on the time dimension. We denote the offset, o, and define the function as:

Shift(C, f, o) = f ′ = (t + o, d2, d3...dn,m′
1,m

′
2...m

′
p) if f ′ ∈ C (2)

Since we are interested in the change in data, we introduce the measure difference function, Diff.
With Diff, we find the relative changes to each of the measures during the time period specified by
the offset. Diff is defined as follows:

Diff (C, f, o) = (t, d2, d3...dn,
m′

1 −m1

m1
,
m′

2 −m2

m2
...

m′
p −mp

mp
)

where f = (t, d2, d3...dn,m1,m2...mp) ∧ f ∈ C ∧
f ′ = Shift(C, f, o) = (t + o, d2, d3...dn,m′

1,m
′
2...m

′
p) ∧ f ′ ∈ C

(3)

Given a threshold, α, we say that x ∈ Diff (C, f, o) is an indication on a measure, Mi, if:

x = (t, d2, d3...dn,
m′

1 −m1

m1
, ...,

m′
i −mi

mi
, ...,

m′
p −mp

mp
) ∧ |m

′
i −mi

mi
| = α (4)

We say that an indication on Mi, x, is positive, denoted MiN, when m′
i−mi

mi
> 0 and conse-

quently that an indication, x, is negative, denoted MiH, when m′
i−mi

mi
< 0. We define a wildcard,

∗, meaning that Mi∗ can be either MiN or MiH.

Table 2. Indications between quarters.

T : D2: M1: M2: M3: M4:
Time Region NBlgs CstPrb WHts Rev

’07:Q1→Q2 Asia neutral M2H M3N M4H
’07:Q2→Q3 Asia M1H M2H M3N M4N
’07:Q3→Q4 Asia M1H neutral M3N M4N
’07:Q1→Q2 EU M1H M2H M3N M4N
’07:Q2→Q3 EU M1H M2N M3N M4N
’07:Q3→Q4 EU M1H M2H M3N M4N
’07:Q1→Q2 USA M1N M2N M3N M4N
’07:Q2→Q3 USA M1N neutral M3N M4H
’07:Q3→Q4 USA neutral neutral M3N M4H

In our running example, when assess-
ing whether a relationship exists, we are
not concerned with minor fluctuations, so
we define a threshold of 10%, meaning that
a measure has to change at least 10% up or
down in order to be of interest. Further-
more, given the dataset we have, we are
interested in seeing the changes that occur
over quarters as presented in Table 1. This
means that we set the threshold α = 10%

3

and then the offset o = 1 Quarter. In Table 2, we have calculated the changes from each quarter
to the next and subjected each change to an evaluation against the threshold of 10% change. We
denote positive indications by N and subsequently negative by H, if a change is less than 10% in
either direction it is deemed ”neutral”. Please note that since we are dealing with changes between
periods, we naturally get one less row for each region.

ST (C, o, w) = {(Diff (C, f, o),Diff (C,Shift(C, f, w), o))|f ∈ C} (5)

A Source-Target Set, ST , is defined as paired indications of changes over time, where the source
and target measures have been shifted with the offset, o. The target measures have additionally
been shifted with a warning period, w, which is the timeframe after which we should expect a
change on a target measure, after an indication on a source measure has occurred. We say that
(x, x′) ∈ ST (C, o, w) supports the indication rule AN → BN if x is an indication of AN and x′ is an
indication of BN. In this case, we also say that x supports AN and x ′ supports BN. The support
of an indication rule is the number of (x, x′) ∈ ST (C, o, w) which supports the rule. The support
of indication rules AH → BH, AN → BH and AH → BN as well as the support for indications
AH and BH are defined similarly. We denote the support of an indication and an indication rule
by IndSupp followed by the name of the indication or indication rule, respectively, e.g., IndSuppAN
and IndSuppAN→BN.

A sentinel rule is an unambiguous relationship between A and B, thus we must first elim-
inate contradicting indication rules, if such exist, before we have a sentinel rule. We refer to
this process as the contradiction elimination process, and we use it to remove indication rules
with the same premise, but a different consequent, and vice versa, e.g., if both AN → BN and
AN → BH or if both AN → BN and AH → BN are supported. To eliminate such contradic-
tions, we pair the indication rules in two sets that do not contradict each other, and we denote
these sets by A → B and A → inv(B), as follows: A → B = {AN → BN, AH → BH} and
A → inv(B) = {AN → BH, AH → BN}. Here inv indicates an inverted relationship between the
indications on A and B, e.g. if AN then BH, and vice versa.

For the purpose of being able to deduct the support of the indication rule(s) we eliminate, we de-
fine functions for returning the premise and the consequent indication, IndPrem and IndCons, from
an indication rule AN → BN as follows: IndPrem(AN → BN) = AN and IndCons(AN → BN) = BN.
Furthermore, we define the complement of an indication as follows: AN = AH and AH = AN. We
can now define a contradicting indication rule as a function, ContraRule, for an indication rule,
IndRule, as follows:

ContraRule(IndRule) = IndPrem(IndRule) → IndCons(IndRule) (6)

ElimSupp(IndRule) = IndSuppIndRule − IndSuppContraRule(IndRule) (7)

The support after elimination, ElimSupp, of an indication rule, IndRule, where the support of
the contradicting indication rule, ContraRule(IndRule), has been eliminated can be calculated as
shown in Formula 7.

MaxRule =





{IndRulei | IndRulei ∈A → B ∧ ElimSupp(IndRulei) > 0}
if IndSuppA→B >= IndSuppA→inv(B),

{IndRulei | IndRulei ∈A → inv(B) ∧ ElimSupp(IndRulei) > 0}
if IndSuppA→B < IndSuppA→inv(B).

(8)

MaxRule is the set of indication rule(s), IndRulei , in the set (A → B or A → inv(B)) with
the highest IndSupp and where ElimSupp(IndRulei) > 0. With MaxRule, we have identified the

4

best indication rule(s) for a sentinel rule that represents an unambiguous relationship between A
and B, i.e., the non-contradicting indication rules with the highest ElimSupp. In other words, we
have eliminated the contradicting indication rules where the premise contradicts the consequent,
as well as the orthogonal indication rules where different premises have the same consequent. If
the MaxRule set consists of only one indication rule, we refer to the sentinel rule based on this as
a uni-directional rule.

We denote the support of a sentinel rule by SentSupp, followed by the name of the sentinel
rule, e.g., SentSuppAÃB . For a potential sentinel rule, A Ã B, we define SentSupp as the sum of
the support of source measure indications for the indication rule(s) contained in the sentinel rule:

SentSuppAÃB =





IndSuppAN if AH → B∗ 6∈ MaxRule,
IndSuppAH if AN → B∗ 6∈ MaxRule,
IndSuppAN + IndSuppAH otherwise.

(9)

In Formula (9) we note the difference between the support of an indication rule, IndSupp, and a
sentinel rule, SentSupp. Specifically, when calculating the support of a sentinel rule, SentSuppAÃB ,
we only consider the support of indications on the source measure (the premise), AN and AH. With
indication rules, both indications on the source and target measure needs to occur. The reason
is, that the consequential support of indications on the target measure, BN or BH, is taken into
consideration when calculating the confidence of the sentinel rule in Formula (10). In the case of a
uni-directional rule (the two first cases) we only consider the support of indications on the source
measure that have the same direction as the one indication rule in MaxRule; this is done in order
not to penalize otherwise good uni-directional rules in terms of confidence. We denote confidence
by Conf, and define the confidence for a sentinel rule, A Ã B, as follows:

ConfAÃB =

∑
IndRulei∈MaxRule ElimSupp(IndRulei)

SentSuppAÃB

(10)

The minimum threshold for SentSupp is denoted β, and the minimum threshold for Conf is
denoted γ. With these definitions, we say that a sentinel rule, A Ã B, with an offset, o, and a
warning period, w, exists in C when SentSuppAÃB = β and ConfAÃB = γ.

Sentinel rule notation: To express sentinel rules with easy readability, we use Ã to show that
there is a sentinel rule between a source measure, A, and a target measure, B. In the case, where a
bi-directional rule represents an inverted relationship between the source and the target measure,
we add inv to the target measure. In the case where the rule is uni-directional, we add N or H to
both the source and the target measure to express the direction of the sentinel rule.

Table 3. Target and source measure comparison

T : D2: M1: M2: M3: M ′
4:

Time Region NBlgs CstPrb WHts Rev

’07:Q1→Q2 Asia neutral M2H M3N M ′
4N

’07:Q2→Q3 Asia M1H M2H M3N M ′
4N

’07:Q1→Q2 EU M1H M2H M3N M ′
4N

’07:Q2→Q3 EU M1H M2N M3N M ′
4N

’07:Q1→Q2 USA M1N M2N M3N M ′
4H

’07:Q2→Q3 USA M1N neutral M3N M ′
4H

In our running example, we limit our-
selves to investigating whether sentinel
rules exist between any of the source mea-
sures M1...M3 and the target measure M4.
We now need to compare the changes in
M1...M3 to changes in M4 at a later time.
In this case, we choose the timeframe of 1
quarter again, meaning that warning pe-
riod w = 1 Quarter.

In Table 3, we show the comparison between the source measure indications and the target
measure indication one quarter later. The measure M4 is basically moved one line up -or as shown
in Table 3; one quarter back. This means that all source measures for Asia changing 2007: Q2→Q3

5

as shown in the left column are now compared on the same line, within the same row, to the change
on the target measure, M4, for Asia changing 2007: Q3→Q4 and so on. The shift of M4 shown
in the row with data for the period one quarter earlier is denoted M ′

4. Please note that since we
are looking at changes between the periods selected on the time dimension, as noted earlier, we
naturally get one less row for each geographical region, when we make the comparison across 1
quarter.

Based on Table 3, we count the support for each combination of indication changes, the indica-
tion rules, for each potential sentinel rule; in addition, we can count the support of the relationship
overall, basically the support means counting all rows that do not have a ”neutral” change on the
source measure since we define indications as being either positive or negative. For example, we see
summarized in Table 4, that the indication rule M1H → M ′

4N is supported 3 times in the dataset
shown in Table 3; we say that the indication rule M1H → M ′

4N has a support of 3, and the sentinel
rule M1 Ã M4 has a support of all indication rule combinations which in this case is 5. Table 4
through 6 lists the indication rules for each potential sentinel rule with their respective support
(Formula 9).

As mentioned earlier, the ideal sentinel rule describes changes bi-directionally so that it can
”predict” both positive and negative changes on the target measure. However, the relationship
also needs to be non-contradictory in order to be useful as a sentinel rule. To do this, we eliminate
the indications that contradict each other as described in Formulae 6 and 7. In Table 5 we find
the a uni-directional rule where the two contradicting indication rules have equal support, thus we
disregard these indications completely (Formula 9) and therefore SentSuppM2ÃM4=3. In Table 6
the contradiction elimination process does not eliminate both indication rules, it reduces the two
indication rules to one and decreases ElimSupp (Formula 7) in the calculation of confidence.

In order to identify the best sentinel rules, we set the thresholds β = 3 and γ = 60%. Table 7
through 9 show the sentinel rules from our running example and their respective conformance to the
thresholds we have set. As seen in Table 8 and 9, we end up having uni-directional sentinel rules,
since the indication rules M2N → M ′

4N and M2N → M ′
4H, as shown in Table 5, contradict each

other and have equal support. In addition, the indication rules M3N → M ′
4N and M3N → M ′

4H
contradict each other in Table 6. Of these, M3N → M ′

4N is strongest and ”wins” the elimination
process (Formula 8) as seen in Table 9.

Based on this example, we have now found that there are two sentinel rules that can provide
our company with an early warning. If we monitor the changes to M1, the number of negative
blog entries, we will know one quarter in advance whether to expect an increase or a decrease in

Indication rule and sentinel rule support

Table 4. M1 Ã M4

M1 M ′
4 IndSupp

M1N M ′
4N 0

M1H M ′
4H 0

M1N M ′
4H 2

M1H M ′
4N 3

SentSuppM1ÃM4 = 5

Table 5. M2 Ã M4

M2 M ′
4 IndSupp

M2N M ′
4N 1

M2H M ′
4H 0

M2N M ′
4H 1

M2H M ′
4N 3

SentSuppM2ÃM4 = 3

Table 6. M3 Ã M4

M3 M ′
4 IndSupp

M3N M ′
4N 4

M3H M ′
4H 0

M3N M ′
4H 2

M3H M ′
4N 0

SentSuppM3ÃM4 = 6

Table 7. M1 Ã M4

M1 M ′
4 ElimSupp

M1N M ′
4H 2

M1H M ′
4N 3

SentSuppM1ÃM4 = 5
ConfM1 ÃM4 = 5

5
= 100%

Conformance: ok

Table 8. M2 Ã M4

M2 M ′
4 ElimSupp

M2H M ′
4N 3

SentSuppM2ÃM4 = 3
ConfM2 ÃM4 = 3

5
= 100%

Conformance: ok

Table 9. M3 Ã M4

M3 M ′
4 ElimSupp

M3N M ′
4N 2

SentSuppM3ÃM4 = 6
ConfM3 ÃM4 = 2

6
= 33%

Conformance: failed

6

M4 Revenue. If we monitor the number of times a customer contacts our company with a problem
related to our products, M2, we will know one quarter ahead whether to expect an increase in
Revenue. This example demonstrates the usefulness of the sentinel concept, and the idea is that
we attempt to place our sentinels as close to the external environment as possible and with as high
reliability as possible. Using the notation defined earlier in this section, we can express the rules
found in our running example as follows: NBlgs Ã inv(Rev) and CstPrbH Ã RevN

3 The FindSentinels Algorithm

The following algorithm has been implemented in SQL on a Microsoft SQL Server 2005 as ex-
plained in Section 4. The actual SQL code can be found in Appendix A. We assume without loss
of generality that of the p measures in the dataset, C, M1...Mp−1 are the source measures and Mp

is the target measure.
Step 1 creates a temporary table where each unique value of (time dimension value) t, is sorted

in ascending order and assigned an integer, Id, growing by 1 for each t. This temporary table will
allow us to select values of t for comparison with a given distance in periods, regardless of the
format of the period field, t, in the database. To optimize performance, we create an index on the
period table. By joining 4 copies of each of the original dataset and the period table (one for each
of the periods: t, t + o, t + w, and t + w + o), we create a Source-Target set (Formula (5)) and
calculate indications (Formulae (3) and (4)) for our selected p-1 source measures and one target
measure. We calculate these indications for each cell (dimension combination) in the dataset, and
return -1, 0, or 1 depending on whether the indication is negative, neutral or positive against the
threshold α.

Step 2 counts the number of positive and negative indications on the source measure, and for
each of these source measure indications, it summarizes the indications on the target measure.
Since the indications are expressed as -1, 0 or 1, our contradiction elimination process can be car-
ried out using sum.

Step 3 retrieves the potential rules from previous output, meaning that a source measure needs
to have at least one indication with a consequential indication on the target measure, i.e., Elim-
Supp<> 0. For each of these rules, we calculate the sum of the support of source measure indica-
tions, SentSupp, the sum of absolute indications on the target measure, AbsElimSupp, as well as
MaxElimSupp which is max(ElimSupp). In addition, we calculate the Direction of the relationship
between source and target measure where 1 is straightforward and -1 is inverted. The nature of
Direction also helps us eliminate orthogonal rules since these will always have Direction=0. This is
true because an orthogonal relationship means that both positive and negative indications on the
source measure leads to only one type of indication on the target measure. Finally, we calculate the
number of indication rules, IndRuleCount, in the potential sentinel rule. This information is used
to distinguish between bi- and uni-directional rules. Using this information, we can now identify
the sentinel rules that comply with the the criteria of SentSupp >= β and Conf >= γ. In addition,
we can use the values of IndRuleCount, Direction, and MaxElimSupp to describe the sentinel rule
in accordance with our notation. We store the output in a table called FinalResult.

7

Algorithm FindSentinels
Input: A dataset, C, an offset, o, a warning period, w, a threshold for indications, α, a minimum SentSupp threshold,
β, and a minimum Conf threshold, γ.
Output: Sentinel rules with their respective SentSupp and Conf.
Method: Sentinel rules are discovered as follows:

1. Scan the dataset C once and retrieve unique values of t into an indexed subset. Use the subset to reference
each cell (t, d2, ... ,dn) ∈ C with the corresponding cells for {t + o, t + w, t + w + o} ∈ C. Output a Source-
Target set (Formula (5)) for each cell, (t, d2, ... ,dn), where the indications (Formulae (3) and (4)) on source
measures, M1...Mp−1, are calculated using {t, t + o} and the indications on target measure, Mp, is calculated
using {t + w, t + w + o}.

2. For each positive and negative source measure indication, MiInd , in the output from Step 1, count the number
of source measure indications as IndSuppi and sum the target measure indications as ElimSuppi .

3. Retrieve from the output from Step 2, each source measure, Mi ∈ M1...Mp−1, where ElimSupp<> 0.
For each of these source measures, calculate: SentSupp=sum(IndSupp),
AbsElimSupp=sum|ElimSupp|, MaxElimSupp=max(ElimSupp),
Direction=avg(sign(MiInd)*sign(ElimSupp)), and IndRuleCount as the number of different indications (posi-
tive, negative). Output the rules where SentSupp >= β and Conf = AbsElimSupp

SentSupp
>= γ, use IndRuleCount=2 to

identify bi-directional rules and Direction to describe whether the relationship is straight-forward or inverted.
For uni-directional rules (IndRuleCount= 1) use the four combinations of Direction and sign(MaxElimSupp)
to describe the relationship.

Table 10. The FinalResult table
SentinelRule SentSupp Conf

NBlgs->inv(Rev) 5 100

CstPrb dec->Rev inc 3 100

Upon execution of the algorithm, FindSentinels, with
the dataset from our running example as C, we get
the output table named FinalResult as seen in Table
10. We note that the result is similar to that of Ta-
bles 7 & 8, and we can easily recognize the sentinel rules: NBlgs Ã inv(Rev) and CstPrbH Ã RevN

Computational Complexity: When we examine the individual statements the algorithm, Find-
Sentinels, we notice that the size of output for each step is at most as large as the input, thus the
computational complexity will be dominated by the size of the input. The size of the input for
Step 3 is much smaller than for previous statements and can thus be disregarded. The retrieve of
unique t in Step 1 can be performed in O(n) using a hash-based algorithm [9], where n is the size
of the dataset, C. The indexing can be done in time O(p log p) where p is the number of periods,
and since p << n this cost can be disregarded. The major cost in Step 1 is the 8-way join, and
since p << n this cost will be dominated by the cost of the join of 4 copies of C, and even this
can be performed in time O(n) using hash-joins [9]. Since the number of source measures are a
small constant, Step 2 can also be done in O(n) using hash-aggregation [9]. In summary, the whole
algorithm can be done in time O(n), where n is the size of C, and the algorithm thus scales linearly.

4 Experiments

Setup: The experimental evaluation was conducted on an Intel Core2 Quad CPU (Q6600) 2.40GHz
PC server with 4GB RAM and 1 500GB disk (7,200 RPM) running a 32Bit version of Microsoft
SQL Server 2005 (MS SQL) on Windows Vista Business, Service Pack 1. The recovery model on
MS SQL was set to ”simple”. In addition, MS SQL is restarted and the database and logfile space
are shrunk before each run.

We use two ranges of datasets for the experiments, a range of synthetic datasets and a range
of real-world datasets. The synthetic datasets closely resemble our running example, i.e., there
are three regions and one product that are iterated over a variable number of periods and variable
number of source measures to produce a dataset of the desired size in rows and source measures.
The synthetic datasets produce the same sentinel rules as output as our running example when

8

 1

 10

 100

 1000

 0.1 1 10

S
ec

on
ds

Million rows

 1

 10

 100

 1000

 1 10 100

S
ec

on
ds

Source measures

 1

 10

 100

 1 10 100 1000

S
ec

on
ds

Warning period

 1

 10

 100

 1000

 0.1 1 10

S
ec

on
ds

Million rows

(a) Scale rows (log) (b) Scale source (log) (c) Scale warning (log) (d) ”Real data” (log)

 0

 200

 400

 600

 800

 1000

 0 2 4 6 8 10

S
ec

on
ds

Million rows

 0

 500

 1000

 1500

 2000

 0 20 40 60 80 100 120 140

S
ec

on
ds

Source measures

 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000

S
ec

on
ds

Warning period

 0
 100
 200
 300
 400
 500
 600
 700
 800

 0 1 2 3 4 5 6 7 8

S
ec

on
ds

Million rows

(e) Scale rows (f) Scale source (g) Scale warning (h) ”Real data”

Figure 1: Performance results

subjected to our SQL implementation. The synthetic datasets with three source measures and
one target measure, similar to our running example, ranges from 100,000 to 10,000,000 rows with
1,000,000 row intervals from 2,000,000 to 10,000,000 rows, and includes datasets with 500,000 and
1,500,000 rows in order to monitor the behavior of the SQL implementation more closely at low
data volumes. In addition, we generate datasets with 1,000,000 rows and with 1, 10, 20, 50, 100
and 150 source measures and one target measure.

The real-world datasets are produced based on a dataset from a medium-sized Danish company
with one location and one product, the original dataset contains 78 months (6.5 years) of monthly
aggregated measures of Website hits, Support cases, New customers and Revenue. Descendants of
this dataset are produced by adding the original dataset to itself the number of times needed to
get the desired number of rows, but each time the dataset is added, it is done with a new product
number. By doing this, we end up having a significant amount of data with real-world patterns.
Using this approach, all real-world datasets have a number of rows in multiples of 78, namely: 78;
780; 7,800; 78,000; 312,000; 468,000; 624,000; 780,000; 1,560,000; 3,120,000; 4,680,000; 6,240,000
and 7,800,000 rows. The results presented represent the average time for 5 runs.

Synthetic data - scaling number of rows: We run the SQL implementation against all the
synthetic datasets with three source and one target measure. We have plotted the results in both
logarithmic scale, Figure 1(a), and linear scale, Figure 1(e), in order to get a better impression of
the scaling at both the low end and the high end. We notice that the SQL implementation scales
linearly as expected based on our assessment of the O(n) computational complexity. We attribute
the jump in process time that occurs between the experiments on 5,000,000 and 6,000,000 rows,
to the DBMS’ inability to handle everything in memory thus requiring more disk I/O. A similar
factor is seen between the experiments on 1,500,000 and 2,000,000 rows.
Synthetic data - scaling source measures: The SQL implementation is run against the syn-
thetic datasets with a varying number of source measures and 1,000,000 rows. The results are
plotted in Figures 1(b) and 1(f). We observe a linear behavior in computation time until we reach
more than 100 source measures where process time increases drastically. However, 100 measures is
a very high number in a normal OLAP cube, since real-world implementations in our experience
typically have a sum of source and target measures less than 50.
Synthetic data - scaling warning period: In this experiment, we vary the warning period,
w, with the values: 1, 10, 20, 100, 200, 500, 1000 on a dataset with 1,000,000 rows. Results are
plotted in Figures 1(c) and 1(g). As expected, the SQL implementation is almost unaffected by a
variation in warning period, the process time remains close to constant because the intermediate
results of the SQL solution’s steps are about the same size.

9

Real-world data - scaling number of rows: Changing now to real-world datasets, we run
the SQL implementation on the real-world datasets with varying number of rows. The results are
plotted in Figures 1(d) and 1(h). In general, we observe a behavior close to linear, but the jump in
process time due to a change from memory to disk, appear different from what we observed in the
experiments on synthetic data. We attribute the variance to the fact that the joins behave slightly
different since the period field has lower cardinality and the product field has higher cardinality in
the real-world datasets compared to the synthetic datasets. We acknowledge, however, that overall
the SQL implementation scales linearly on real-data; additionally, we notice that the performance
on real-world data is faster than the performance on the synthetic data with a factor of 1.4 at
7,800,000 rows.
Qualitative Experiment: Other than a performance assessment of our SQL implementation, we
conduct an experiment by allowing the o and w values to vary on the original real-world dataset.
Our inspiration is a business case in which we want to find the best sentinel rules in terms of
SentSupp and Conf. We vary the granularity of the offset period, o, to be either month, quarter or
year. We vary the warning period, w, to be of same granularity as the offset, and to start anywhere
in between the period defined by the offset and 12 months prior to the period defined by the offset.
When running this experiment, we found an interesting sentinel rule with SentSupp of 33 out of 78
input rows and 79.5% Conf that told us that if the number of Website hits goes up one year, the
revenue will go up the following year. Although this rule is not a surprise, since we are dealing with
a company in growth, we notice that our solution has discovered a sentinel rule by autonomously
selecting o and w on real data, and the rule is exactly of the type and on the level of detail that
we are looking for.
Experiment Summary: From the experiments we validate that our SQL implementation does
indeed have O(n) computational complexity, and that it scales linearly to 10 million rows of ag-
gregate data. We recall that a real-world dataset can easily be as small as 78 rows. A real-world
scenario can, however, increase in complexity when the cardinality increases on the dimensions
involved. From these experiments, we would expect that good performance can be gained for a
real-world organization, e.g., on 6.5 years of data aggregated monthly for a company with 100
geographical locations and 1,000 products gives 7,800,000 rows. Furthermore, we found that even
though a brute-force approach was applied in fitting o and w to get the best sentinel rules, such
an approach can realistically be used on a real dataset to provide relevant results.

5 Related Work

For decades, focus has been on immediate data warehousing challenges of obtaining and storing
data for business purposes, and making it accessible with high performance [24]. OLAP applications
have emerged, but with the exception of Kimball’s ”Analytical Cycle” [14], there has been little
theory such as CALM [17] about how to combine specific BI technologies to meet the management
challenge of turning data into valuable decisions.

The idea that some actions or incidents are interlinked has been well explored in association
rules [1]. The traditional case study of association rules has been basket-type association rules, and
significant effort has been put into optimizing the initially proposed Apriori algorithm [4], including
its extension to exploit the performance of a parallel shared-nothing multiprocessor system [3].
Improvements in performance as well as lower memory usage compared to the Apriori algorithm
has been gained by growing a compressed frequent pattern tree in memory [13], and improvements
in the selection process of thresholds that determine the interestingness of rules has also been
introduced [22].

10

Sequential pattern mining introduces a sequence in which actions or incidents take place, with
the intention of predicting one action or incident based on knowing another one. This adds to
the complexity of association rules which makes the Apriori approach even more costly [5], thus
new approaches to improving the performance of mining sequential patterns have emerged [12, 18,
21, 19]. Another aspect of sequential pattern mining has been the various approaches to handling
the period of the sequence, e.g., involving multiple time granularities [6] or allowing for partial
periodicity of patterns [10]. The focus on user control of the sequential pattern mining process in
terms of applying constraints [8], and in a querying-type approach [7] has also been explored. The
introduction of multi-dimensional databases has given rise to multi-dimensional pattern mining [20]
which applies the same techniques to more dimensions than just one.

In general, association rule mining seeks to find co-occurrence patterns within absolute data
values, whereas our solution works on the relative changes in data. In addition, association rule
mining typically works on categorical data, i.e., dimension values, whereas our solution works
on numerical data such as measure values. Sequential pattern mining allows a time period to
pass between the premise and the consequent in the rule, but it remains focused on co-occurrence
patterns within absolute data values for categorical data. Furthermore, our solution generates rules
at the schema level, as opposed to the data level, using a contradiction elimination process. The
combination of schema-level rules based on relative changes in data allows us to generate fewer, more
general, rules that cannot be found with neither association rules nor sequential pattern mining.
In Appendix B we demonstrate why sequential pattern mining does not find any meaningful rules
in our running example presented in Section 2.

Other approaches to interpreting the behavior of data sequences are various regression [2]
and correlation [11, 23] techniques which attempt to describe a functional relationship between
one measure and another. In comparison, we can say that sentinel rules are a set of ”micro-
predictions” that are complementary to regression and correlation techniques. Sentinel rules are
useful for discovering strong relationships between a smaller subset within a dataset, and thus
they are useful for detecting warnings whenever changes (that would otherwise go unnoticed) in a
relevant source measure occur. In addition, regression and correlation techniques do not support
uni-directional relationships such as our solution. Regression and correlation based techniques, on
the other hand, are useful for describing the overall trends within a dataset. In Appendix C, we
specifically demonstrate using a concrete, realistic example how correlation tend to blind the user
by the average.

Finally, the work on similarity search in timeseries databases [2] attempt to describe periods in
which one measure behaves similar to another. This work is different from sentinel rules since it
does not generate schema-level rules (or rules at all), furthermore it does not allow the description
of a uni-directional relationships.

6 Conclusion and Future Work

We have proposed a novel approach for discovering so-called sentinel rules in a multi-dimensional
database for business intelligence. The sentinel rules were generated at schema level, which means
that they are more general and cleansed for contradictions, and thus easy to interpret. These
sentinel rules can be used to expand the window of opportunity for an organization to act based
on changes in the environment in which it operates. We demonstrated how an implementation in
SQL could be done, and we showed that it scales linearly on large volumes of both synthetic and
real-world data. We also demonstrated that sentinel rules with relevance for decision making can
be extracted from real-world data. In this context, we proved the possibility of automatic fitting

11

of both warning and observation periods. With regards to novelty, we specifically demonstrated
that sentinel rules are different from sequential pattern mining, since sentinel rules operate at the
schema level and use a contradiction elimination process to generate fewer, more general rules.
Furthermore, we found sentinel rules to be complementary to correlation techniques, in that they
could discover strong relationships between a smaller subset within a dataset; a relationship that
would otherwise be ”hidden in the average” using correlation techniques alone.

There are several perspectives for future work. First, an idea would be to use the SQL implemen-
tation described in this paper as a baseline for new improved algorithms in terms of performance.
Secondly, the ability to automatically fit o and w on large volumes of data and different granu-
larities should be explored. Third, it would make sense to seek for rules where multiple source
measures are combined into a sentinel rule. Fourth, a natural development would also be to seek
sentinel rules for multiple target measures at the same time to improve overall performance. Fifth,
an idea could be to improve the solution in the multi-dimensional environment by allowing the sen-
tinel rule mining to fit the aggregation level on dimensions automatically as well as automatically
select the location and shape of the data area where the sentinel rules best apply.

From a business and decision-making stand point, more effort should be put into automatically
pruning the sentinel rules found e.g., by assessing their interrelated relevance. Additionally, the
degree of balance between the positive and the negative indications behind the sentinel rule, or
to which degree rules are irrelevant based on orthogonal relationships between the source and the
target measure, should be further explored in order for it to be automated.

7 Acknowledgments

This work was supported by TARGIT A/S. The SQL implementation and server setup was assisted
by lead-programmers Jan Krogsgaard and Jakob Andersen.

References

[1] R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets of items in
large databases. In Proc. of ACM SIGMOD, pp. 207–216, 1993.

[2] R. Agrawal, K.I. Lin, H.S. Sawhney, and K. Shim. Fast similarity search in the presence of
noise, scaling, and translation in timeseries databases. In Proc. of VLDB, pp. 490–501, 1995.

[3] R. Agrawal and J.C. Shafer. Parallel mining of association rules. IEEE TKDE 8(6): 962–969,
1996.

[4] R. Agrawal and R. Srikant. Fast Algorithms for Mining Association Rules in Large Databases.
In Proc. of VLDB, pp. 487–499, 1994.

[5] R. Agrawal and R. Srikant. Mining Sequential Patterns. In Proc. of ICDE, pp. 3–14, 1995.

[6] C. Bettini, X.S. Wang, and S. Jajodia. Mining temporal relationships with multiple granular-
ities in time sequences. IEEE DEBU 21(1): 32–38, 1998.

[7] L. Feng, J.X. Yu, H. Lu, and J. Han. A template model for multidimensional inter-transactional
association rules. VLDB J. 11(2): 153–175, 2002.

[8] M. Garofalakis, R. Rastogi, and K. Shim. Spirit: Sequential pattern mining with regular
expression constraints. In Proc. of VLDB, pp. 223–234, 1999.

12

[9] G. Graefe, R. Bunker, and S. Cooper. Hash Joins and Hash Teams in Microsoft SQL Server.
In Proc. of VLDB, pp. 86–97, 1998.

[10] J. Han, G. Dong, and Y. Yin. Efficient mining of partial periodic patterns in time series
database. In Proc. of ICDE, pp. 106–115, 1999.

[11] J. Han and M. Kamber. Data Mining Concepts and Techniques. (2nd Ed.) Morgan Kaufmann
Publishers, 2006.

[12] J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal, and M. Hsu. FreeSpan: frequent pattern-
projected sequential pattern mining. In Proc. of KDD, pp. 355–359, 2000.

[13] J. Han, J. Pei, and Y. Yin. Mining Frequent Patterns without Candidate Generation. In Proc.
of ACM SIGMOD, pp. 1–12, 2000.

[14] R. Kimball. The Data Warehouse Lifecycle Toolkit: Expert Methods for Designing, Developing,
and Deploying Data Warehouses. Wiley, 1998.

[15] W.S. Lind. Maneuver Warfare Handbook. Westview Press, 1985.

[16] Microsoft Corporation. Microsoft Time Series Algorithm Technical Reference (Analysis Ser-
vices - Data Mining). <technet.microsoft.com/en-us/library/bb677216(SQL.100).aspx> cur-
rent as of June 29th 2008.

[17] M. Middelfart. CALM: Computer Aided Leadership & Management - How Computers can Un-
leash the Full Potential of Individuals and Organizations in a World of Chaos and Confusion.
iUniverse, 2005.

[18] J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal, and M.C. Hsu. PrefixSpan:
Mining Sequential Patterns by Prefix-Projected Growth. In Proc. of ICDE, pp. 215–224, 2001.

[19] J. Pei, J. Han, B. Mortazavi-Asl, J. Wang, H. Pinto, Q. Chen, U. Dayal, and M. Hsu. Mining
Sequential Patterns by Pattern-Growth: The PrefixSpan Approach. IEEE TKDE 16(11):
1424–1440, 2004.

[20] H. Pinto, J. Han, J. Pei, K. Wang, Q. Chen, and U. Dayal. Multi-Dimensional Sequential
Pattern Mining. In Proc. of CIKM, pp. 81–88, 2001.

[21] R. Srikant and R. Agrawal. Mining Sequential Patterns: Generalizations and Performance
Improvements. In Proc. of EDBT, pp. 3–17, 1996.

[22] T. Wu, Y. Chen, and J. Han. Association Mining in Large Databases: A Re-examination of
Its Measures. In Proc. of PKDD, pp. 621–628, 2007.

[23] Y. Zhu and D. Shasha. StatStream: Statistical Monitoring of Thousands of Data Streams in
Real Time. In Proc. of VLDB, pp. 358–369, 2002.

[24] R. Zurawski (ed.), C.S. Jensen, and T.B. Pedersen. The Industrial Information Technology
Handbook, Multidimensional Databases and OLAP. CRC Press, 2005.

13

Appendix

A SQL-Based Implementation

The following SQL is written for Microsoft SQL Server 2005 as explained in Section 3. We assume
without loss of generality that of the p measures in the dataset, C, M1...Mp−1 are the source mea-
sures and Mp is the target measure.

Statement 1 creates a temporary table called Period where each unique value of (time dimen-
sion value) t, is sorted in ascending order and assigned an integer, Id, growing by 1 for each t. This
table will allow us to select values of t for comparison with a given distance in periods, regardless
of the format of the period field, t, in the database. In Statement 2, we create an index on the
period table to optimize performance of the following operations.

By joining 4 copies of each of the original dataset and the period table (one for each of the
periods: t, t+o, t+w, and t+w+o) in Statement 3, we create a table called Result3 which contains
the indications on the source measures as a result of the differences in measure values from period
id to period id+o. In addition, we calculate the indications on the target measure from period
id+w to period id+w+o. We calculate these indications for each cell (dimension combination) in
the dataset. The custom function, Ind, handles the Formulae (3) and (4) and returns -1, 0, or 1
depending on whether the indication is negative, neutral or positive against the threshold α. This
statement handles the shifting of facts, Formulae (1) and (2), and produces a Source-Target set
(Formula (5) for our selected p-1 source measures and one target measure. After executing State-
ment 3, we have a table which contains the same information as Table 3 in our running example
with indications expressed as -1, 0 or 1.

Statement 4 counts the number of positive and negative indications on the source measure, and
for each of these source measure indications, it summarizes the indications on the target measure.
The output is stored in Result4. Since the indications are expressed as -1, 0 or 1, our contradiction
elimination process can be carried out simply by this summation.

Statement 5 retrieves the potential rules from Result4, meaning that a source measure needs
to have at least one indication with a consequential indication on the target measure, i.e., Elim-
Supp<> 0. For each of these rules, we calculate the sum of the support of source measure indi-
cations, SentSupp, the numeric sum of indications on the target measure, AbsElimSupp, as well
as MaxElimSupp which is max(ElimSupp). In addition, Statement 5 calculates the Direction of
the relationship between source and target measure where 1 is straightforward and -1 is inverted.
The nature of Direction also helps us eliminate orthogonal rules since these will always have Di-
rection=0. This is true because an orthogonal relationship means that both positive and negative
indications on the source measure leads to only one type of indication on the target measure. Fi-
nally, Statement 5 calculates the number of indication rules, IndRuleCount, in the potential sentinel
rule. This information is used to distinguish between bi- and uni-directional rules. The output of
Statement 5 is stored in Result5.

Using Result5 in Statement 6, we identify the sentinel rules that comply with the criteria of
SentSupp >= β and Conf >= γ. We use the values of IndRuleCount, Direction, and MaxElimSupp
to describe the sentinel rule in accordance with our notation. The output is stored in FinalResult.

14

SQL Statements for FindSentinels(C, o, w, α, β, γ)

(1) SELECT T, ROW NUMBER() OVER (ORDER BY T) AS Id

INTO Period FROM (SELECT DISTINCT T FROM C) AS subselect

(2) CREATE INDEX PeriodIndex ON Period(T)

(3) SELECT a.T, a.D2, ... , a.Dn,

Ind ((b.M1-a.M1)/a.M1,α) AS M1ind,

Ind ((b.M2-a.M2)/a.M1,α) AS M2ind,

...

Ind ((d.Mp-c.Mp)/c.Mp,α) AS TMind

INTO Result3

FROM C a, C b, C c, C d,

Period pa, Period pb, Period pc, Period pd,

WHERE a.t=pa.t AND b.t=pb.t AND c.t=pc.t AND d.t=pd.t AND

a.D2=b.D2 AND a.D2=c.D2 AND a.D2=d.D2 AND

...

a.Dn=b.Dn AND a.Dn=c.Dn AND a.Dn=d.Dn AND

pb.id=pa.id+o AND pc.id=pa.id+w pd.id=pa.id+w+o

Custom function Ind is implemented as follows for source and target measure:

SIGN(ROUND(((b.Mi-a.Mi)/a.Mi)*100/α, 0, 1)) AS Miind

SIGN(ROUND(((d.Mp-c.Mp)/c.Mp)*100/α, 0, 1)) AS TMind

(4) SELECT sourcemeasure, Ind, COUNT(*) AS IndSupp, SUM(TMind) AS ElimSupp

INTO Result4

FROM (SELECT "M1" AS SourceMeasure, M1ind AS Ind, TMind FROM Result3

UNION ALL SELECT "M2" AS SourceMeasure, M2ind AS Ind, TMind FROM Result3

...

UNION ALL SELECT "Mp−1" AS SourceMeasure, Mp−1ind AS Ind, TMind

FROM Result3) AS subselect

WHERE Ind<>0

GROUP BY SourceMeasure, Ind

(5) SELECT SourceMeasure, SUM(IndSupp) AS SentSupp,

SUM(ABS(ElimSupp)) AS ElimSupp, MAX(ElimSupp) AS MaxElimSupp,

AVG(SIGN(Ind)*SIGN(ElimSupp)) AS Direction,

COUNT(*) AS IndRuleCount

INTO Result5

FROM Result4

WHERE ElimSupp<>0

GROUP BY SourceMeasure

15

(6) SELECT SentinelRule, SentSupp, Conf INTO FinalResult FROM

(SELECT SourceMeasure+’->inv(target)’ AS SentinelRule,

SentSupp, ElimSupp*100/SentSupp AS Conf FROM Result5

WHERE Direction<0 and IndRuleCount=2

UNION ALL SELECT SourceMeasure+’->target’ AS SentinelRule,

SentSupp, ElimSupp*100/SentSupp AS Conf FROM Result5

WHERE Direction>0 and IndRuleCount=2

UNION ALL SELECT SourceMeasure+’ inc->target dec’ AS SentinelRule,

SentSupp, ElimSupp*100/SentSupp AS Conf FROM Result5

WHERE Direction<0 and MaxElimSupp<0 and IndRuleCount=1

UNION ALL SELECT SourceMeasure+’ dec->target inc’ AS SentinelRule,

SentSupp, ElimSupp*100/SentSupp AS Conf FROM Result5

WHERE Direction<0 and MaxElimSupp>0 and IndRuleCount=1

UNION ALL SELECT SourceMeasure+’ dec->target dec’ AS SentinelRule,

SentSupp, ElimSupp*100/SentSupp AS Conf FROM Result5

WHERE Direction>0 and MaxElimSupp<0 and IndRuleCount=1

UNION ALL SELECT SourceMeasure+’ inc->target inc’ AS SentinelRule,

SentSupp, ElimSupp*100/SentSupp AS Conf FROM Result5

WHERE Direction>0 and MaxElimSupp>0 and IndRuleCount=1

) as subselect

WHERE SentSupp>=β and Conf>=γ

16

B Sentinels Rules vs. Sequential Pattern Mining

Sequential pattern mining identifies patterns of items that occur with a certain frequency in a
dataset of transactions grouped in sequences, i.e., a sequence could look like this: {(ab)c}, where
(ab) and c are transactions. The support of patterns such as ”item a leads to item c” are found by
counting the number of times a transaction containing a is followed by a transaction containing c.

To exemplify the difference between our solution and sequential pattern mining; specifically
the difference between working on absolute data values and relative data changes, we can simply
subject our running example dataset in Table 1 to sequential pattern mining. Since all values in
this dataset are unique, we will only find patterns with an absolute support of only 1 and confidence
of 100%, as follows:

”NBlgs=20 leads to Rev=9000”
”CstPrb=50 leads to Rev=9000”
”WHts=1000 leads to Rev=9000”
”NBlgs=20 and CstPrb=50 leads to Rev=9000”
”NBlgs=20 and WHts=1000 leads to Rev=9000”
”NBlgs=20 and CstPrb=50 and WHts=1000 leads to Rev=9000”
...

The rules above above have been generated using only the first line in the dataset in Table 1,
meaning that the complete set would generate 12x6=72 rules. If we think of a 1,000 record dataset
with the same properties as Table 1, such a dataset would result in 6,000 rules. In other words,
since the data-level rules generated by sequential pattern mining are value specific, as opposed
to relative change ”events” at the schema level, we get a large output in which we do not find
any significant patterns. Thus no meaningful, high-level rules can be found by sequential pattern
mining directly.

17

C Sentinels Rules vs. Correlation Techniques

If we compare sentinel rules with correlation techniques, one could intuitively think that corre-
lations would be able to detect exactly the same relationships as sentinel rules, at least when
comparing correlations to bi-directional sentinel rules. However, when subjecting data to correla-
tion techniques [11, 23], we do not find the same explicit relationships as we do with sentinel rules.

The reason that correlation techniques gives different results compared to our sentinel rules, lies
in the fact, that correlation techniques are focused on identifying relationships with the minimal
Euclidean distance between pairs, this means that there is a tendency to favor ”smooth” data
series with few outliers. On the other hand, the intention of sentinel rules is to give a user an early
warning, and from an operational perspective we can even say that we are particularly interested in
the source measure changes (perhaps unusual/”outlier”) that appear to have consequential change
effect on the target measure. This difference means (from a sentinel perspective) that correlation
techniques ”blind us by the average” when our goal is to get an early warning.

Tables 11-13 exemplify these differences by describing the relationship between a source mea-
sure, A, and a target measure, B, with both sentinel rules and correlation. The data series in
Tables 11-13 have been pre-processed so that each line represents a combination of A for time
period, t, and B for time period, t + w (w = 1). The distance in time between the lines is o. We
operate with the same values for α, β, and γ as in our running example, specifically: α = 10%,
β = 3, and γ = 60%. For correlation, we say that it needs to account for more than 50% of the
variation (correlation-coefficient2 > 0.5) between the series in order to be relevant. In fact, it does
not even make sense to consider correlations that account for 50% or less, since such correlations
would be less precise than simply flipping a coin to decide whether target measure, B, will go up or
down. We can now read the individual indications directly, and by correlating the two data series,
we get a lagged correlation with the same warning period as the sentinel rules. Table 11 shows
a bi-directional sentinel rule, A Ã inv(B), that is not discovered using correlation techniques,
Table 12 shows a uni-directional sentinel rule, AH Ã BN, that is not discovered using correlation
techniques. In Table 13, correlation and sentinel rules both find a uni-directional rule, AH Ã BN.

The data from Table 11 is plotted in Fig. 2(a), note again that the top line (B) is shifted
w = 1 period(s) backwards. We note the visible changes for A and B, where A has been scaled by
a factor of 6 for better visibility. The changes that leads to sentinel rules have been highlighted
by an arrow from A to B. When looking at Fig. 2(a) it seems clear that there is a relationship

Table 11. A Ã inv(B)

A B Indication

99 1000
89 1100 AH → BN
90 1001
98 1015
113 900 AN → BH
101 1025 AH → BN
108 1100
105 1090
109 1040
90 1145 AN → BH
Sentinel rule:
SentSuppAÃinv(B) = 4
ConfAÃinv(B) = 100%

Correlation:
Coefficient = -0.4307
Accounts for = 18.55%

Table 12. AH Ã BN
A B Indication

500 1000
400 1200 AH → BN
363 1095
399 1200
350 1400 AH → BN
316 1265
323 1285
355 1410
300 1600 AH → BN
329 1755

Sentinel rule:
SentSuppAHÃBN = 3
ConfAHÃBN = 100%

Correlation:
Coefficient = -0.6919
Accounts for = 47.87%

Table 13. AH Ã BN
A B Indication

100 1000
90 1100 AH → BN
81 1210 AH → BN
73 1331 AH → BN
66 1464 AH → BN
59 1611 AH → BN
53 1772 AH → BN
48 1949 AH → BN
43 2144 AH → BN
39 2358 AH → BN
Sentinel rule:
SentSuppAHÃBN = 9
ConfAHÃBN = 100%

Correlation:
Coefficient = -0.9688
Accounts for = 93.85%

18

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1 2 3 4 5 6 7 8 9 10

V
al

ue

Period

A * 6
B

 800

 850

 900

 950

 1000

 1050

 1100

 1150

 1200

 80 85 90 95 100 105 110 115 120

B

A
(a) Linear Plot (b) Scatter Plot

Figure 2: Graphs based on data from Table 11.

between the changes. However, when displaying the same data in a scatter plot, Fig. 2(b), to test
the correlation visually, we find that the relationship between A and B seems to be rather chaotic
or at least non-linear. This is the reason that we get a very poor correlation, whereas on the other
hand, we find a strong sentinel rule based on four indications.

Following these examples, we confirm the differences between sentinel rules and correlation
thecniques by applying correlation techniques [11, 23] to our running example in Table 1. Correla-
tion techniques find lagged correlations between all source measures and the target measure, but
the only correlation that accounts for more than 50% of the variation, is identified between WHts
and Rev which is in contrast to the bi- and uni-directional sentinel rules between NBlgs and Rev,
and between CstPrb and Rev, which we found with our solution.

In summary, we could say that sentinel rules are a set of ”micro-predictions” that are com-
plementary to correlation techniques. Sentinel rules are useful for discovering strong relationships
between a smaller subset within a dataset, and thus they are useful for detecting warnings when-
ever changes (that would otherwise go unnoticed) in a relevant source measure occur. Correlation
techniques, on the other hand, are useful for describing the overall trends within a dataset.

19

