
Trees or Grids? Indexing Moving Objects in
Main Memory

DariusŠidlauskas, SimonašSaltenis, Christian W. Christiansen, Jan M. Johansen,
DonatašSaulys

December 24, 2009

TR- 26

A DB Technical Report

Title Trees or Grids? Indexing Moving Objects in Main Memory

Copyright c© 2009 DariusŠidlauskas, SimonašSaltenis, Christian W.
Christiansen, Jan M. Johansen, DonatasŠaulys. All rights reserved.

Author(s) Darius Šidlauskas, SimonašSaltenis, Christian W. Christiansen, Jan M.
Johansen, DonatasŠaulys

Publication History Extended version of: DariušSidlauskas, SimonašSaltenis, Christian
W. Christiansen, Jan M. Johansen, DonatasŠaulys, “Trees or Grids?
Indexing Moving Objects in Main Memory”, inProceedings of the 17th
ACM SIGSPATIAL International Conference on Advances in Geographic
Information Systems, Seattle, WA, USA, November 2009, pp. 236–245.

For additional information, see the DB TECH REPORTShomepage:〈dbtr.cs.aau.dk〉.

Any software made available viaDB TECH REPORTS is provided “as is” and without any express or
implied warranties, including, without limitation, the implied warranty of merchantability and fitness for a
particular purpose.

The DB TECH REPORTSicon is made from two letters in an early version of the Rune alphabet, which
was used by the Vikings, among others. Runes have angular shapes andlack horizontal lines because the
primary storage medium was wood, although they may also be found on jewelry, tools, and weapons. Runes
were perceived as having magic, hidden powers. The first letter in the logo is “Dagaz,” the rune for day
or daylight and the phonetic equivalent of “d.” Its meanings include happiness, activity, and satisfaction.
The second letter is “Berkano,” which is associated with the birch tree. Its divinatory meanings include
health, new beginnings, growth, plenty, and clearance. It is associatedwith Idun, goddess of Spring, and
with fertility. It is the phonetic equivalent of “b.”

Abstract

New application areas, such as location-based services, rely on the efficient management of large
collections of mobile objects. Maintaining accurate, up-to-date positions of these objects results in
massive update loads that must be supported by spatial indexing structures and main-memory indexes
are usually necessary to provide high update performance. Traditionally, the R-tree and its variants were
used for indexing spatial data, but most of the recent research assumes that a simple, uniform grid is the
best choice for managing moving objects in main memory.

We perform an extensive experimental study to compare the two approaches on modern hardware.
As the result of numerous design-and-experiment iterations, we propose the update- and query-efficient
variants of the R-tree and the grid. The experiments with these indexes reveal a number of interesting
insights. First, the coupling of a spatial index, grid or R-tree, with a secondary index on object IDs
boosts the update performance significantly. Next, the R-tree, when combined with such a secondary
index, can provide update performance competitive with thegrid. Finally, the grid can compete with
the R-tree in terms of the query performance and it is surprisingly robust to varying parameters of the
workloads. In summary, the study shows that, in most cases, the choice of the index boils down to the
issues such as the ease of implementation or the support for spatially extended objects.

1 Introduction

A large class of emerging applications rely on monitoring of continuously evolving phenomena using vast
quantities of online sensors. For example, advanced Location-Based Services (LBS) or Intelligent Transport
Systems (ITS) rely on monitoring of collections of moving objects. Increasinglywidespread availability of
mobile devices with integrated positioning technology, such as GPS, transforms these types of systems from
research prototypes to widely-deployed, commercial applications. A recent example is Google Latitude1,
which gained over one million users just a week after it was launched.

The architecture of such systems includes a server and a collection of monitored objects which regularly
send their updated positions to the server in order to keep the location information up to date. The LBSs
query the server with spatial queries like ”which cars are currently located within a specified area?” To
process such queries efficiently, the server has to maintain a spatial indexthat, in addition to speeding up
the query processing, is also able to absorb all of the incoming updates.

The following scenario helps to understand the rate of the incoming location updates. Two million
mobile users are moving in an urban area with an average speed of 30 km/h, (circa 8.3 m/s). If an accuracy
of 50 meters is required, each moving object has to send a new update every 6 seconds on average, i.e.,
whenever it is about to move 50 meters away from the previously reported position. At the server, this
results in one update every 3 microseconds. The rate increases furtherif more objects are tracked and/or
higher accuracy is required. As hard drives, involving moving mechanical parts, become too slow for
such applications, main-memory solutions have to be employed. This is enabled by dropping prices and
increasing capacities of RAM chips.

Previous research on main-memory indexing focused mainly on query performance. For example, the
versatile and query-efficient R-tree was made cache-conscious [18]to optimize the use of the fast CPU
caches. More recently, a number of papers on continuous processingof spatial queries [7, 22, 29] suggest
using simple, uniform grids to index spatial positions of moving objects. It is argued that such grids are
much faster to update, as the classical R-tree is known for its poor update performance. On the other hand,
one can expect that uniform grids may not be good to adapt to skew in the workloads. Unfortunately,
to the best of our knowledge, there is no comprehensive experimental comparison of these main-memory
structures.

1http://www.google.com/latitude

1

0 2 4 6 8 10 12

R−tree

Grid

u−R−tree

u−Grid

CPU (#cycles × 103)

1 2 3 4 5

CPU Time (microseconds)

Computation
L1 D−stalls
L2 D−stalls
TLB D−stalls
Other stalls

Figure 1: CPU cycles/time breakdown in update processing

To identify the efficient variants of the two indexes we explore several design options in a number of
design-and-experiment iterations. Specifically, we show that by using theso-called bottom-up updates [20],
i.e., coupling a primary indexes with a secondary index on object IDs (see Section 3.1), both grids and R-
trees are able to process the incoming updates in less than 1 microsecond on average (for the scenario similar
to the one mentioned above). Figure 1 demonstrates this. At the bottom, it showsthe update performance
of the R-tree and the Grid, with their parameters tuned to the specific hardware. The bars at the top show
that the improved versions of these structures achieve over fourfold and sixfold performances improvement,
respectively, without significantly sacrificing the query performance (not shown in the figure).

The rest of the paper is organized as follows. The classical grid and R-tree indexes are briefly presented
in Section 2. Section 3 describes the proposed main-memory efficient variants of these indexes. Section 4
presents experimental setting and reports the results of the performance study. Section 5 gives an overview
of the related work. We conclude in Section 6.

2 The Grid and the R-tree

As the main challenge in the considered applications is the processing of veryhigh update rates, the main-
tenance cost of the employed spatial index has to be as low as possible. In addition, the choice of the index
should enable exploiting the available body of research on the index-based spatial query processing. There-
fore, we focus on well-known, simple, and CPU-light index structures: the grid and the R-tree. Note that
the grid and the R-tree are representatives of the two broad classes of indexes—space and data partitioning
indexes, respectively.

This section gives an overview of the basic versions of the two indexes. We focus mostly on how updates
are performed. More details can be found in the provided references.

In this section and in the rest of the paper, we assume that each update is a five-tuple (oid , oldx , oldy , x, y).
It can be represented as a pair of the deletion of (oldx , oldy) and the insertion of (x, y) for the object iden-
tified by oid . Note that the bottom-up update technique, as described in Section 3.1, reduces the update
message to a three-tuple (oid , x , y).

2.1 The Grid

A fixed grid [3] is a simple space-partitioning index where a predefined monitored area is divided into
rectangular cells. Objects with coordinates within the boundaries of a grid cell belong to that particular cell.

2.1.1 Structure

Since update performance is the main focus of this paper, we consider a constant, uniform grid with equally-
sized cells. Such a grid requires minimal maintenance costs. Thus, no grid refinement or rebalancing is

2

Figure 2: Grid index structure (the gray part is present only in the u-Grid)

performed when objects move from one grid cell to another as it is done in adaptive grids, such as the grid
file [23], or in hierarchical space partitioning methods, such as the quad tree [12].

Figure 2 illustrates the overall design of the grid structure (ignore the graycomponent for now). The
grid covers a predefined part of the coordinate space,grid area. It is stored as a two-dimensional array,
where each element of the array corresponds to a square spatial areawith a side length ofgcs. Each grid
cell within the array stores a pointer to the linked list of buckets that contain theobject data. The buckets
have a fixed size,bs, and the grouping of objects into buckets follows no specific ordering. Thus, the grid is
defined by the three parameters:grid area, gcs, andbs.

Since the data to be processed during updating and querying is loaded in blocks (cache lines) to the CPU
cache, when compared to a simple linked list of objects, large buckets increase the data access locality and
enable the more effective prefetching of data by modern CPUs [11].

Each bucket has object data and meta data fields. The meta data field containsa pointer to the next
bucket in the list and the current number of objects in the bucket.

2.1.2 Updates

All updates in the grid can be categorized aslocal or non-local. Any update involves determining the old
cell of the object (usingoldx andoldy) and the new cell (usingx andy). If the old and the new cells are the
same cell, the update is local and it involves scanning the buckets of the cell tolocate the needed object and
simply updating itsx andy coordinates. The non-local update requires to delete the object from theold cell
and insert into the new cell.

The insertion and deletion algorithms ensure that all except the first bucket of a grid cell are full. Thus,
a new object is always inserted at the end of the first bucket. In case it isfull, a new bucket is allocated and
the necessary pointers are updated so that it becomes the first bucket. The deletion algorithm always moves
the last object of the first bucket into the place of the object to be deleted. If the first bucket becomes empty,
it is removed and the next bucket becomes the first or the grid cell becomesempty, storing a null pointer.

3

2.1.3 Queries

A range query is defined by a rectangle given by two corner points (xqmin
, yqmin

) and (xqmax
, yqmax

). The
range query algorithm for the grid proceeds as follows. First, the cells covered by the range query are split
into two groups—fully covered and partially covered. The objects from thefully covered cells are put into
the result list by reading the corresponding buckets. The buckets fromthe partially covered cells are scanned
and the objects are checked individually to determine whether they are within the range of the issued query.

A kNN query is defined by a query point,q, and the number of nearest neighbors required,k. A number
of algorithms were proposed for performing kNN queries on grids [7, 29, 22]. All of them are based on
a similar procedure. The underlying idea is that all cells are divided into different groups, such that cells
within each group have similar minimum distances to the query point. Then, using apriority queue to store
the cells, the cells are traversed, from the closest to the furthest, untilk nearest objects are determined.
We use an implementation of the algorithm recently described by Wu and Tan [27]. An array-based heap
structure is used to implement the priority queue.

2.2 The R-tree

An R-tree-based indexing [14] and query processing has remained a focus of research in spatial databases
for more than two decades now. The R-tree is known for its robustness to data skew, the support for a large
number of different query algorithms, and its suitability for the indexing of spatially-extended objects (in
addition to point objects). The main problem with the traditional R-tree is its poor update performance.

2.2.1 Structure

The R-tree is a balanced, data-partitioning tree index. It is a hierarchy ofminimum bounding rectangles
(MBRs). An MBR is the smallest rectangle that encloses a group of spatial objects. There are two types
of nodes in the R-tree: internal nodes, which are nodes containing pointers to other nodes, and leaf nodes,
which are nodes at the lowest level of the tree and contain moving objects. As illustrated in Figure 3 (ignore
the gray components for now), an internal node is composed of the node meta data (a number of entries and
a leaf flag) followed by a number of child entries. Each internal node’s entry has a pointer to a child and an
MBR that encloses the objects within that child. Similarly, a leaf node is composedof the same meta data
fields but followed by a number of leaf entries.

The main parameter defining the R-tree is the node size (ns). Note that we express it in cache lines.
Another parameter is minimum children (mc), expressed as a fraction of the full node. In any node of the
tree, its entries must occupy at leastmc percent ofns. Otherwise, the node is considered underfull.

2.2.2 Updates

The classic R-tree processes each update as a combination of separate top-down deletion and insertion
operations.

The deletion algorithm descends the tree from the root to the leaves, searching for (oldx , oldy). This
is done by recursively accessing the nodes with MBRs that contain (oldx , oldy). Note that, due to possible
overlap between the MBRs, more than one path down the tree may be visited. After the required leaf node
is located, the appropriate entry is deleted. Finally, ancestor MBRs, which may become not minimum, are
adjusted by traversing the tree up to the root. Furthermore, the nodes that are underfull have to be handled
with an expensive reinsertion of their entries.

The insertion algorithm begins by traversing the tree from the root to a leaf node as well. At each node,
a heuristic functionchoosesubtreeis called to choose the most suitable subtree to decent further. When a
suitable leaf node for a new object is located, the object is inserted there. As ancestor MBRs may not be

4

Figure 3: Structure of a conventional R-tree (the gray elements are present only in the u-R-tree)

valid anymore, they are adjusted by traversing the tree back to the root. Insertion of a new leaf entry may
also cause a node overflow which is handled by a node split algorithm. Because such a split produces an
additional node and an additional parent entry in the parent node, the parent node may be split too and the
split may propagate up the tree.

Summarizing, a single update operation results in four (possibly partial) tree traversals. This is the main
reason for the inefficiency of the R-tree updates.

2.2.3 Queries

A range query in the R-tree is performed as a depth-first traversal from the root down to the leaves access-
ing the nodes with MBRs overlapping the query area. At the leaf nodes, objects satisfying the query are
outputted.

A kNN query in the R-trees is processed as a best-first traversal [16]. Similarly to the kNN query
processing in the grid index, it uses a priority queue storing the accessedMBRs organized on the minimum
distance between an MBR and the query point. We use the same implementation of the priority queue both
for the R-tree and for the grid.

3 Update-Efficient Indexes

Having surveyed the classic grid and R-tree index structures, in this section, we present various design
alternatives for improving the performance of these indexes in main memory.

3.1 Bottom-up Updates

As described above, in order to support fast range and kNN queries, the grid and the R-tree index the data on
its spatial information, i.e., object coordinates make up the index key. This means that during the updates,
the old object data must be located using spatial information (oldx , oldy). In the grid, this means accessing
the right grid cell and traversing a list of buckets associated with that cell. In the R-tree, this means doing a
top-down traversal, possibly following several paths down the tree.

5

Figure 4: Bottom-up update in the u-R-tree

Furthermore, once the old position is deleted, the index is accessed again to insert the new position. The
key property of the update workloads generated by most of the above-mentioned applications is theupdate
locality—the next update from an object is likely to be close to the previous one. Thus it is very probable
that the new location have to be inserted in the same node or bucket as the old one.

To avoid the expensive top-down index searches and to leverage the update locality, we employ asec-
ondary index, which usesoid as the index key and points to the location in a primary index associated with
that key. In other words, it provides a direct access to the object’s datain the primary index. This way,
near constantO(1) updating time can be achieved. A hash-table is a suitable candidate for such secondary
indexes, as it supports efficient insertions, deletions, andoid equality queries. This idea, called bottom-up
updates was first proposed to speed up the updates of the disk-based indexes [19, 20]. Note that (oldx , oldy)
are no longer necessary in an update message.

On the other hand, an overall index size increases significantly

3.1.1 Bottom-up Updates in the Grid

In Figure2, the grid’s secondary index is depicted in gray. An entry in thesecondary index is composed of
four fields. The pointerptr1 points to the bucket that contains the object, whereasptr2 points to the grid
cell that contains that bucket. The fieldidx is an offset for object’s position within the bucket.

When the new cell for the incoming update is determined, it is compared with the current cell referenced
by the pointerptr2 to check whether the update moves the object to a different cell, i.e., whetherthe update
is non-local. Then,ptr1 andidx are used to compute the direct address of the entry to be updated. Note
that no scanning of buckets is required, which is particularly desirable in grids with large cell and bucket
sizes. If an update is non-local, the pointerptr2 is also used during the delete operation to move the last
object from the first bucket of a grid cell into the bucket space of the deleted object (see Section 2.1.2).
Note, that such moving of an object requires updating itsptr1 andidx values in the secondary index, but
that is a small cost to pay for the benefits of the secondary index.

6

3.1.2 Bottom-up Updates in the R-tree

To integrate the bottom-up updates in the R-tree, but not to complicate the already CPU-heavy algorithms
too much, we use a simplified versions of the algorithms proposed by Lee et al[20].

First, the structure of the R-tree is augmented as shown in Figure 3 (see the gray elements). That is, a
backward pointer,parentptr, is added to each node such that the parent node can be identified withoutthe
prior top-down traversal. The added parent index,parent idx, together with the parent pointer, provides a
direct access to the corresponding parent’s entry when MBR changesneed to be propagated. In addition,
a copy of the node’s MBR in the meta data enables to know whether the MBR wasinvalidated without
accessing the parent node, hence increasing memory-access locality and, thus, potentially decreasing CPU
cache misses.

Similarly to the grid’s updating, the exact object’s place in the tree is determined using the pointerptr
and the offsetidx. If the new object’s coordinates are inside the leaf node’s MBR and the oldcoordinates
were not on the rectangle’s boundary, then the update is carried out immediately by simply overwriting the
outdated data. We call this kind of update apure-local update(see Figure 4). In case the old coordinates
were on the MBR’s boundary, the MBR must be shrunk and changes propagated up the tree (using parent
pointers andidx indexes). Shrinking an MBR is an expensive operation since it involves scanning all the
entries within the node to compute the new MBR. We call this kind of update ashrinking-local update.

When the new object’s position exceeds its current bounding rectangle, the tree is ascended looking for
a less local solution (find optimal nodeprocedure in Figure 4). This bottom-up traversal stops when an
MBR is found that covers the new position or the root node is reached. Then, starting from the node where
the bottom-up traversal stopped, the tree is traversed down recursivelyusing thechoosesubtreealgorithm,
exactly as in the normal R-tree top-down insertion.

If the newly determined optimal leaf is the same as the leaf where the old position ofthe object is
stored, the outdated data is overwritten and the bounding rectangle is expanded to include the new position.
Finally, necessary MBR modifications are propagated up the tree as in the regular R-tree. We call this kind
of update anexpanding-local update. On the other hand, when the optimal node is different from the old
one, anon-localupdate has to be carried out. This involves removing the object from its current leaf and
inserting it into the optimal leaf, which, in turn, requires updating the secondary index and may cause node
overflows and/or underflows.

Note that, while the parent pointer and the parent index speed up local updates, this is at the cost of
the added maintenance of these fields during non-local updates. Specifically, when a node is split, half of
the children get a new parent node (the split-off node). In case of a leaf node, the “children” are entries
in the secondary index. Thus, the parent pointers and parent indexesof these children have to be updated.
A similar procedure applies to merges of nodes (see Section 3.2). An alternative, middle-ground solution
could be to have just a parent pointer without a parent index. Nevertheless, the experiments show that having
idx pays off by eliminating the need to scan a node when looking for a particular entry. This is especially
desirable since update processing favours the trees with large node sizes (see Section 4.4.1).

3.2 Node Splitting and Merging in the R-tree

The split algorithms of the advanced R-tree variants such as the R*-tree [2] are CPU heavy. On the other
hand, the experiments show that the CPU-efficient Guttman’s linear split algorithm tends to produce nodes
with high spatial overlap. This is mainly due to a minimum node capacity constraint, which arbitrarily
assigns a number of entries to the least populated node at the end of the splitprocedure.

The previous work [5] shows that linear splitting time and the query performance similar to that of an
R*-tree [2] can be achieved using the k-means clustering algorithm. Our experiments confirm that and we
use the k-means split algorithm for all our main-memory R-tree variants.

7

The R-tree algorithms handle an underfull node by de-allocating it and reinserting its entries into the
tree, but this is very expensive. To avoid this cost, underfull node is merged with a sibling node (with a pos-
sible split following the merge). The partner for merging is chosen by using the insertion’schoosesubtree
algorithm with an MBR of the underfull node and the parent node as the parameters.

3.3 Making the Secondary Index Primary

The idea of the bottom-up updates can be driven even further. Our experiments indicate that under our
default workload (see Section 4.4.1), more than 90% of the updates are pure local updates.

To speed up the processing of these updates further, the object’s data can be stored in the “secondary”
index so that all the necessary information to process the local update is available after a single look up. The
grid bucket or the R-tree leaf node then stores justoids which are used to retrieve the data from the hash
table when querying.

Note that in the case of the R-tree, in addition to the object’s data, the entry of the secondary index has
to store a copy of the MBR of the leaf node that contains this object. This is necessary, so that the type
of the update can be determined without accessing the leaf’s meta data in the R-tree. As our experiments
show, the maintenance of this MBR overwhelms any performance gains (seeSection 4.4.2).

This has

3.4 Cache-conscious Techniques

The main idea in the design of cache-conscious indexes explored in recent studies is to pack more entries
in an index node the size of which is close to the cache line size or a small factorthereof. For example, the
so-called pointer elimination technique, applied in the CSB+-tree [25], doubles the fanout, which leads to
the reduction in the tree height. This, in turn, incurs less cache misses duringthe tree traversal. However,
in the R-tree, MBRs and not child pointers occupy most of the index data andpointer elimination does not
widen the tree significantly. Therefore, the authors of the cache-conscious R-tree (CR-tree) [18] employ the
so-called relative representation and quantization techniques, which, in combination, reduce the MBR size
to less than a fourth.

However, the more recent work [15] shows that the size of a node in the cache-conscious B+-tree has
to be much larger than the cache-line size. Our experiments, described in Section 4.4.1, confirm this. They
show that main-memory R-trees benefit from even larger node sizes. Thismeans that for realistic settings,
the above-mentioned techniques for increasing the fanout do not usuallylead to tree height reduction.

Consider the following example. In our experiments with the kNN query processing, the R-tree exhibits
the best performance when constructed with the node size of eight cachelines (512 bytes). The first column
in Table 1 shows the observed tree characteristics after indexing 2 million moving objects. Note that the
result is a five-level tree. The computation is performed assuming that, in the 32-bit system, the pointer
size and each of the spatial coordinates occupy 4 bytes and the MBR is 16 bytes. This leads to 25 and 42
for internal and leaf fanouts, respectively. The average fullness ofinternal and leaf nodes was observed,
in the experiments, to be 62 and 68 percent, respectively. Thus, we need76,805 leaf nodes to store 2M
objects (#objects/(leaf fanout × 0.62)) and, consequently, the tree height without the leaf level is 4
(⌈logint.fanout×0.68 76, 805⌉ = ⌈3.97⌉).

Based on these observations, the remaining two columns indicate that the increased fanout by the con-
sidered approaches can not widen the tree significantly. In CSB+-tree approach, the child pointers in internal
entry are eliminated (minus 4 bytes) and only the pointer to the first child is addedin the meta data (plus 4
bytes). In the CR-tree approach, the reference MBR is added to the meta data (plus 16 bytes) and the regular
MBR in the internal entry is replaced by a quantized relative MBR (minus 12 bytes)2. In spite of this, the

2Assuming we reduce the MBR size to a fourth, which is the best case [18].

8

Table 1: Effects of the different cache-conscious techniques
R-tree CSB+-tree CR-tree

Characteristic approach [25] approach [18]
Meta data 8B 12B 24B
Int. entry 20B 16B 8B
Leaf entry 12B 12B 12B
Int. fanout 25 31 61
Leaf fanout 42 41 40
#leaves req. 76,805 78,679 80,646
Int. height ⌈3.97⌉ ⌈3.7⌉ ⌈3.03⌉
Total height 5 5 5

total tree height remains five in both cases.
Since the ineffectiveness of these techniques can be already shown using the smallest optimal node

size reported by any of the experiments (eight cache lines), we do not employ these techniques in our
implementations, as our indexes are usually configured with much larger nodesizes (see Section 4.4) where
the effect is even more minimized. Moreover, note that these techniques would add an overhead in the
insert/delete algorithms, resulting in higher update costs.

3.5 Summary

The following introduces naming conventions and succinctly summarizes the implemented indexes that are
studied experimentally in the next section.

R-tree: the conventional R-tree index (Figure 3 without the gray elements). An original update algorithm
is a bit improved since it never performs reinsertion (which is very expensive) but rather merges the
underfull node with its sibling (see Section 3.2).

u-R-tree: an update efficient variant of the R-tree where a secondary index is employed to support faster
update rates (Figure 3 with the gray elements).

u+-R-tree: further u-R-tree optimization for update processing where all object data is stored in the sec-
ondary index rather than in leaf nodes (see Section 3.3).

Grid: simple implementation of the fixed uniform grid (see Section 3.3).

u-Grid: an update efficient variant of the grid which is coupled with a secondaryindex. As in the u-R-tree,
the updates are processed by accessing the secondary index, and queries are processed by accessing
the grid structure (Figure 2 with the gray elements).

u+-Grid: similarly to the u+-R-tree, in order to boost local update processing, all object data is stored in
the secondary index rather than in grid cell buckets (see Section 3.3).

4 Experimental Study

In this section we present the experimental study performed with the index variants designed in the previous
section and summarize the main results.

9

4.1 Hardware and Software

All experiments were conducted on two machines, termedsystem1andsystem2, with Intel Core 2 Duo pro-
cessors (2.20GHz and 2.60GHz) running under Linux 2.6.24 (32-bit and 64-bit variants) and each installed
with 3.5 GB of RAM. The L1 cache is 32KB (16KB for instructions and 16KB for data), the unified L2
cache is 4MB and the cache line size is 64B for both machines. Note that although the CPU cache sizes are
the same on both machines, due to 64-bit coordinates and pointers, the effective size of the cache insystem2
is reduced when measured in terms of the data elements.

The previously described spatial indexes and their variants were implemented in C++. In order to avoid
unaligned accesses in main memory, the functionposix memalign (instead of the standardmalloc)
was used to allocate memory for data structures on a cache-line boundary.Additionally, a layout of each
data structure was examined with thepahole program [8] to be sure all alignment holes were removed
and better utilization of each cache line was achieved.

4.2 Measurement Tools and Methodology

In the cost drill-down experiments we avoid any approximations that simulation would impose by us-
ing hardware performance counters available on most modern microprocessors3. The architecture of the
used processor provides five hardware counters for event measurement [1]. We employed the Perfor-
mance API (PAPI [13]), a specification of a cross-platform interface tohardware performance counters,
and theperfctr library to calculate the occurrence of various events. For instance, the performance met-
ric CPU timewas derived based on the count of CPU cycles and the processor’s speed expressed in Hertz
(#cycles/cpu speed).

In order to show where each index operation spends most of the CPU cycles, the cycles are broken
down into the following components: useful computation cycles (Cc), cycles stalled due to instruction and
data misses at level 1 and level 2 caches (CL1i, CL1d, CL2i, andCL2d, respectively), cycles stalled due
to instruction (Citlb) and data (Cdtlb) misses in TLB (Translation Lookaside Buffer), cycles stalled due to
branch misprediction (Cbr), and cycles stalled due to other resource issues (Co), e.g., instruction-length
decoder stalls and dependency stalls. Thus, the following equation holds:

Cop = Cc + CL1i + CL1d + CL2i + CL2d + Citlb + Cdtlb + Cbr + Co (1)

Table 2 shows a detailed list of the cost components and the way they were calculated. Since code footprint
for each index operation is small and fits in the L1 instruction cache, the instruction-cache miss rate is very
low (throughout the experiments,#misses/(#hits + #misses) never exceeded 0.1%). Thus, instruction
misses at both cache levels and TLB were excluded. The latency of 2/2, 64/39, and 18/21 cycles for each of
L1d, L2d, and data TLB misses onsystem1/system2were determined by using the Calibrator, a cache and
TLB calibration tool4.

However, the chosen experimental setup suffers from the following caveats. Firstly, the act of measuring
perturbs the phenomenon being measured. The counting instructions introduce some overhead and cause
cache pollution. Thecost utility provided with PAPI assured that the overheads in both the number of
additional instructions and the number of machine cycles for executing thePAPI start/PAPI stop
call pair and thePAPI read call are less than 5% for granularity of the measured code. Secondly, the
processor with out-of-order execution might make the data inaccurate, e.g., by reading the counter before
index operation is finished. PAPI is addressing this problem but it might notalways be the case [10].
Thirdly, some of the stalls can be overlapped as modern processors use various techniques for hiding them

3Although initially the cache simulator Cachegrind was employed to get a better insight of the cache behavior.
4http://www.cwi.nl/˜manegold/Calibrator/

10

Table 2: Method of measuring each of the cost components (system1/system2)
Comp. Method
Cc (total cycles) - (cycles stalled on any resource)
CL1i excluded due to small code footprint
CL1d #misses * 2/2 cycles
CL2i excluded due to small code footprint
CL2d #misses * 64/39 cycles
Citlb excluded due to small code footprint
Cdtlb #misses * 18/21 cycles
Cbr actual stalled cycles
Co (cycles stalled on any res.) - (all of the above)

(e.g., non-blocking caches, speculative and out-of-order execution). We did not measure the overlapped
cycles.

In order to have the smallest possible overhead from any other operatingsystem processes, the experi-
ments were executed in run-level 1 mode of the operating system (single user, no GUI, no networking, no
daemons, etc.) with the highest possible process priority. In addition, before taking any measurement, the
main memory and caches were warmed up with multiple runs of the index operationsas well as the count-
ing instructions. All the experiments were run ten times and standard deviationsand means were calculated
for each index operation. Whenever the standard deviation divided by the mean was more than 1%, the
experiment was rerun. Otherwise, the run with the lowest (least interrupted) counter values was recorded.

Notably, during every experiment only a pair of events was measured dueto hardware limitation, as
most events occupy more than 1 register (out of 5 available on the machines)5; thus, the experiments took a
significant amount of time to carry out.

4.3 Workloads

The implemented indexes were exercised using a number of benchmark experiments, each defined by a
set of workload parameters. A modified version of the COST benchmark [17] was used to generate the
synthetic workloads so as to stress test the indexes under the controlled and varying conditions.

As a point of reference, we have identified adefaultworkload with the settings that represent a scenario,
which we consider realistic for the type of LBS application described in Section 1. The values for default
workload parameters are shown in Table 3. Specifically, a given number of objects (objects) move in the
two-dimensional monitored area (100×100 km2). One of the maximum speedsspeed i is randomly assigned
to each moving object. The objects move between a given number of nodes (hubs) in the simulated road
network. An object generates an update, whenever it moves a given accuracythreshold from its previously
reported position. Four queries are issued every 2K updates. Equal amount of range and kNN queries
are issued with a given queried fraction of the total data space (selectivity) for a range query and a given
number of nearest neighbours required (k) for a kNN query.

The following describes the five experimental settings and the varied workload parameters.

Study 0: default parameter values.This experiment was used to determine the optimal index parameters.
Parameter values are shown in Table 3.

Study 1: number of objects.The number of objects is varied to test the scalability of the indexes, i.e.,
objects = 1M, 2M, 4M, 8M.

5We did not use the multiplexing feature of PAPI that allows counting more events than physically supported by the hardware,
as it incurs more overhead and adversely affects the precision [10].

11

Table 3: Default workload parameters
Parameter Value Parameter Value
objects 2M speedi 12, 25, 38, 50 m/s
threshold 100 m hubs 500
selectivity 0.5% k 100

Table 4: Optimal index parameters (system1/system2)
Index Parameter Index Parameter

Grid
gcs = 300/300

R-tree
ns = 14/17

bs = 768/1024 mc = 8/8%

u-Grid
gcs = 5500/5500

u-R-tree
ns = 76/83

bs = 128/192 mc = 10/8%

u+-Grid
gcs = 5500/5500

u+-R-tree
ns = 37/75

bs = 256/256 mc = 5/8%

Study 2: position skew.The number of hubs is varied to change the objects distribution of spatial positions
from highly clustered to uniform, i.e.,hubs = 5, 50, 200, 500, 1000, 3000.

Study 3: position accuracy threshold.The threshold for sending updates is varied to change the fraction of
local updates in the workload, i.e.,threshold = 50, 100, 500, 1000 m.

Study 4: query parameters.For the range query, its selectivity is varied (selectivity = 0.05, 0.25, 0.5, 1,
5, 10, 20% of the monitored area), while for the kNN query, the number of nearest neighbors is varied
(k = 1, 10, 100, 1000, 5000, 10000, 15000).

4.4 Results

We proceed to describe the results of the performed experimental studies.

4.4.1 Determining Optimal Index Parameters

In the first set of experiments, using the default workload, the best parameter values are determined for the
R-tree variants (nsandmc) and the grid variants (gcsandbs).

To determine the optimal values ofnsandmc, the following tests were run. The index was exercised
with nsvalues varying from 2 to 1200 cache lines and each of these node sizes was paired with a different
value ofmc (from 5 to 30%). The results of such tests for the u-R-tree are depicted inFigure 5. The left
vertical axis represents the average CPU time performing a single operation(update, range query, or kNN
query) while the horizontal axis shows different values for the node size in cache lines. For each different
value ofmca separate line is used. The darker the line, the lower value it represents.Additionally, to have
an idea of how the height of the constructed tree is changing, the blue line is drawn with the values on the
right vertical axis.

It is not surprising that the bigger the node size is, the better update performance is achieved as huge
nodes result in a larger fraction of local updates and fewer costly splittingoperations. On the other hand,
huge node sizes reduce the query performance for both types of queries. However, the graphs show that, in
the range of up to 200 cache lines, it is possible to choose the index parameters so that performance is close
to optimal for both updates and queries.

12

0 200 400 600 800 1000 1200
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
x 10

−6

 ns =76 cache lines
 mc =10 %

node size (cache lines)

C
P

U
 (

se
co

nd
s)

Update

0

1

2

3

4

5

6

T
re

e
he

ig
ht

0 200 400 600 800 1000 1200
4

5

6

7

8

9

10

11

12

13

14
x 10

−4

 ns =61 cache lines
 mc =20 %

node size (cache lines)

C
P

U
 (

se
co

nd
s)

Range query

5%
8%
10%
15%
20%
25%
30%
chosen point

0

1

2

3

4

5

6

T
re

e
he

ig
ht

0 200 400 600 800 1000 1200
1

2

3

4

5

6

7

8
x 10

−4

 ns =13 cache lines
 mc =5 %

node size (cache lines)

C
P

U
 (

se
co

nd
s)

kNN query

0

1

2

3

4

5

6

T
re

e
he

ig
ht

Figure 5: Determining optimal parameters for the u-R-tree

0 1000 2000 3000 4000 5000 6000
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
x 10

−6

 g

cs
 =

55
00

 m

 b
s

=1
28

 B

gcs (meters)

C
P

U
 (

se
co

nd
s)

Update

0 1000 2000 3000 4000 5000 6000
0

0.5

1

1.5

2

2.5

3

3.5
x 10

−3

 gcs =400 m
 bs =1024 B

gcs (meters)

C
P

U
 (

se
co

nd
s)

Range query

64 B
128 B
192 B
256 B
512 B
768 B
1024 B
chosen point

0 1000 2000 3000 4000 5000 6000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

−3

 gcs =400 m
 bs =1024 B

gcs (meters)

C
P

U
 (

se
co

nd
s)

kNN query

Figure 6: Determining optimal parameters for the u-Grid

Figure 5 shows that themcparameter has a noticeable impact only in update processing. The trees con-
figured with lower values tend to perform better, as the lower requirement for the minimum node capacity
incurs fewer expensive merge operations, which is confirmed by the profiling data.

The similar experiments were run with the grid-based structures. Figure 6 shows the results for the u-
Grid. The grid cell size was varied from 50 to 5500 meters and run in combination with different capacities
of the buckets (from 64 to 1024 bytes). Notably, the update-efficient values (for bothgcs and bs) are
completely different from the query-efficient values. The update performance benefits from more local
updates caused by large cells (and smaller buckets), while querying benefits from larger buckets and cell
sizes that match the average selectivity of the queries. Intuitively, the updates would be fastest with a
single-cell grid, i.e., no grid at all.

Since update performance is much more critical in update-intensive applications, we configure the in-
dexes with update-efficient parameters. Table 4 contains the chosen optimal values for all indexes on both
systems. For a 64-bit system (system2), the graphs show similar patterns as those shown in Figures 5 and
6, but the values of the parameters tend to be larger. As mentioned above, the update- and query-efficient
parameters for the u-Grid differ significantly, thus we also have a configuration the u-Grid to favour queries

13

(u-Grid(qe)).
For the conventional grid and the R-tree, the observed optimal parameter values are relatively close to

each other among all the three types of operations. That is, setting update-efficient parameters has almost no
negative effects on the query performance. This is not surprising, since, without the benefit of the secondary
index, both updates and queries traverse the same index structure. This explains why, in some experiments,
the R-tree and the grid process queries faster than the other index variants with the update-efficient settings
of the index parameters.

4.4.2 Comparison of the Indexes

In the following, the results of a number of experimental studies on varying workloads are presented. All
figures show the average elapsed CPU time per index operation.
Study 1: Number of objects
Figure 7 shows the results of the first experimental study undersystem1. Note the log scale on the vertical
axis. As the number of indexed objects increases, the update performance degrades most rapidly for the con-
ventional R-tree and the grid, while the bottom-up strategy significantly improves the update performance.
This especially makes grid variants (u- and u+-) a very scalable solution.

The processing cost of both query types is increasing for all indexes as the number of returned objects
increases. As expected, the worst performance is shown by the u+-variants. Another observation is that
the optimization of the u+-variants for local updates does not improve them in general by a significant
margin. Quick profiling showed that the increased cost in processing non-local updates ties with the gains in
processing local updates. As a result, no clear performance gain is achieved in updating while the querying
is worsened significantly. This trend repeats in all of the conducted experiments.

Another interesting trend that also repeats in the following experiments is that the u-Grid, when con-
figured with the query-efficient parameters (u-Grid(qe)), still performs updates slightly better and achieves
very similar (range) and even better (kNN) query performance than the tree variants.

Figure 8 shows that the same performance trends are also observed onsystem2. In fact, we could not find
any qualitative differences between the results from both systems in all of the performed experiments. Thus,
in the following, we show only the results fromsystem1. In addition, since the conventional R-tree performs
significantly worse in update processing, we exclude it from update graphs in the following figures. For the
same reason, we exclude the u+-Grid from both range and kNN query graphs.
Study 2: Position skew
In this study, the number of hubs in a simulated road network is varied to change the distribution of spatial
positions of objects from highly clustered (few hubs) to almost uniform (many hubs). Figure 9 shows that
in general all indexes tend to perform worse when objects are highly clustered (except for the improved grid
variants). However, when the number of hubs exceeds 50, there is no significant difference between the
indexes.

In terms of querying (both range and kNN), the better performance is exhibited by the R-tree variants,
however, when the u-Grid is tuned to a given query workload, it outperforms the other indexes (see the
graphs of the u-Grid(qe)).
Study 3: Position accuracy threshold
Varying the accuracy threshold values from 50 to 2000 meters results in a significant decrease of the fraction
of (pure) local updates (e.g., from 94% to 17% in the u-R-tree). Figure 10 shows that this mostly affects
the R-tree-based indexes in update processing. When the accuracy threshold is more than 500 meters (or
less than 66% of the updates are local), any grid-based index outperforms the R-tree-based variant. The
threshold does not seem to have any significant impact on querying.
Study 4: Query parameters
Figure 11 depicts the behavior of the indexes when query parameters arevaried. Unsurprisingly, the perfor-

14

1M 2M 4M 8M
10

−7

10
−6

10
−5

Update
C

P
U

 (
se

co
nd

s)
, l

og
 s

ca
le

of objects
1M 2M 4M 8M

10
−4

10
−3

10
−2

10
−1

Range query

of objects
1M 2M 4M 8M

10
−5

10
−4

10
−3

10
−2

10
−1

kNN query

of objects

R−tree
u−R−tree

u+−R−tree
Grid
u−Grid

u+−Grid
u−Grid(qe)

Figure 7: Increasing the number of objects (system1)

1M 2M 4M 8M
10

−7

10
−6

10
−5

Update

C
P

U
 (

se
co

nd
s)

, l
og

 s
ca

le

of objects
1M 2M 4M 8M

10
−4

10
−3

10
−2

10
−1

Range query

of objects
1M 2M 4M 8M

10
−5

10
−4

10
−3

10
−2

10
−1

kNN query

of objects

R−tree
u−R−tree

u+−R−tree
Grid
u−Grid

u+−Grid
u−Grid(qe)

Figure 8: Increasing the number of objects (system2)

5 50 200 500 1000 3000
0

1

2

3

4

5

6

7

8

9
x 10

−6 Update

C
P

U
 (

se
co

nd
s)

of hubs

u−R−tree

u+−R−tree
Grid
u−Grid

u+−Grid
u−Grid(qe)

5 50 200 500 1000 3000
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4
x 10

−3 Range query

of hubs
5 50 200 500 1000 3000

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

−3 kNN query

of hubs

R−tree
u−R−tree

u+−R−tree
Grid
u−Grid
u−Grid(qe)

Figure 9: Increasing the position skewness

15

50 100 500 1000 2000
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

−6 Update

C
P

U
 (

se
co

nd
s)

Threshold, meters

u−R−tree

u+−R−tree
Grid
u−Grid

u+−Grid
u−Grid(qe)

50 100 500 1000 2000
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4
x 10

−3 Range query

Threshold, meters

R−tree
u−R−tree

u+−R−tree
Grid
u−Grid
u−Grid(qe)

50 100 500 1000 2000
0

1

2

3

4

5

6

7

8
x 10

−4 kNN query

Threshold, meters

Figure 10: Increasing the number of non-local updates

0.05 0.25 0.5 1 5 10 20
10

−5

10
−4

10
−3

10
−2

10
−1

Range query

C
P

U
 (

se
co

nd
s)

, l
og

 s
ca

le

Selectivity (% of queried area)
1 10 100 1K 10K

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

kNN query

k nearest neighbors

R−tree
u−R−tree
Grid
u−Grid
u−Grid(qe)

Figure 11: Varying the query parameters

mance of the range and the kNN queries is degrading with the increasing selectivity and nearest neighbors
required, as the number of objects to be returned is increasing. The steepest degradation is observed with
very largeselectivity (more than 1%) andk (more than 1K) parameters.

4.4.3 Index Size Analysis

A usage of a secondary index has a negative impact on overall index size. Figure 12 depicts the sizes of all
studied indexes populated with two million objects (i.e., under the default workload). The obvious increase
of index size is visible when the R-tree is coupled with a secondary index (u-R-tree), and increases further
when secondary index is treated as primary (u+-R-tree). This is not surprising since additional structure
needs to be stored in main memory. The further increase in the u+-R-tree is mainly due to additional copy
of MBR for each entry in the secondary index.

Interestingly, it is not the case for the grid-based indexes. The size of the regular grid is even decreased
by circa 30 % when it is coupled with a secondary index. This can be explained by the following. The Grid
favours small grid cell sizes (300 meters) whereas the u-Grid prefers the larger ones (5500 meters), as was
demonstrated in Section 4.4.1. The grid constructed with smallergcs results in a larger number of cells and,
consequently, in a larger number of buckets. Also the profiling data indicated that the average fullness of the

16

Size, MB

0 10 20 30 40 50 60 70 80 90

R−tree

Grid

u−R−tree

u−Grid

u+−R−tree

u+−Grid

Primary Secondary

Figure 12: Index sizes

buckets in the Grid is less than one third, while in the u-Grid it is almost full (more than 90 %). Therefore,
the decrease in size of the u-Grid is due to a better utilization of buckets and cells. When the secondary
index is treated as primary, the size is just slightly increased comparing to the u-Grid.

However, the capacities of main memory available on nowadays machines by far exceed the aforemen-
tioned sizes. Recent study [9] showed that current hardware can easily index up to a hundred million of
moving objects. Therefore, we conclude that index size is a minor issue in thiscontext.

4.4.4 Execution Time Breakdown

In order to see where the different index variants spend their executiontime, the cost of updates and queries
was broken down into the cost components (see Section 4.2). Each bar in Figures 13, 14, and 15 represents
a contribution of the components as a number of cycles (bottom horizontal axis) and time (upper horizontal
axis) spent during the execution of one operation.

Figure 13 depicts such a breakdown for update processing. Three interesting observations can be made:
(i) bottom-up updates reduces the computation cycles significantly (over twofold for the grid-based and
almost tenfold for the tree-based indexes), (ii) the major bottleneck is the L2 data cache misses, and (iii)
on average, the useful computation cycles take less than half, implying that most of the time the processor
is stalled. A deeper analysis of the results indicates that the average numberof L2d misses per update
operation is very similar to the average number of L1d misses in the u- and u+-variants of the indexes,
implying that these misses involve the whole memory hierarchy and, thus, can not be avoided (compulsory
misses). We hypothesize that most of the misses occur when performing a look-up in the hash-table.

Figures 14 and 15 show the same breakdown for range and kNN queries, respectively. As expected,
the huge performance difference between u- and u+-variants in querying is purely due to increased L2 data
cache misses, i.e., object’s data storage in the secondary index does not add any significant computational
overhead, but incurs waiting cycles for the data to be fetched from the secondary index. At the same time,
TLB data and other stalls become more apparent. The kNN queries are processed faster but the fraction of
useful computation cycles is more or less the same. In contrast to L2d misses inupdating, for queries, the
techniques such as prefetching might help to reduce the stalls.

Also, note that a proper configuration might reduce some of the L2d misses.For instance, consider how
the contribution of the L2d misses in the u-Grid is reduced when it is configuredwith the query-efficient
parameters (see u-Grid(qe) in Figure 14), whereas this incurs unnecessary stalls in update processing (see
u-Grid(qe) in Figure 13).

17

0 2 4 6 8 10 12

R−tree

Grid

u−R−tree

u+−R−tree

u+−Grid

u−Grid

u−Grid(qe)

CPU (#cycles × 103)

1 2 3 4 5

CPU Time (microseconds)

Computation
L1 D−stalls
L2 D−stalls
TLB D−stalls
Other stalls

Figure 13: CPU cycles/time breakdown in update processing

0 2 4 6 8 10 12 14 16 18

R−tree

Grid

u−R−tree

u+−R−tree

u+−Grid

u−Grid

u−Grid(qe)

CPU (#cycles × 106)

1 2 3 4 5 6 7 8

CPU Time (milliseconds)

Figure 14: CPU cycles/time breakdown in range query processing

0 2 4 6 8 10

R−tree

Grid

u−R−tree

u+−R−tree

u+−Grid

u−Grid

u−Grid(qe)

CPU (#cycles × 106)

1 2 3 4

CPU Time (milliseconds)

Figure 15: CPU cycles/time breakdown in kNN query processing

4.4.5 Other Observations

Having constructed index structures with the determined optimal parameters, we can look at other interest-
ing, performance-related observations. Figure 16 shows the percentage of each update type when the default
workload is processed by the u-R-tree and u+-R-tree. Since more than 90 % of updates are pure-local, one
might think the idea to optimize them further by making the secondary index primary(see Section 3.3)
should be beneficial. The performed micro-benchmarks (Figure 17) indicate that it does improve the pro-
cessing of pure-local updates (by circa 25 %) while the performance ofnon-local updates is dropped by
only 5 %. However, the overall performance gain is minor (see Figure 18)due to significant cost increase
in the rare update types (both shrinking- and expanding-local updates occur less than 1 % of the time). That
is, the average number of CPU cycles spend in shrinking and expanding updates increased over tenfold and
fourfold, respectively (see Figure 17). The main reason for this is the following. The u+ variant of the
R-tree index, in addition tooid and (x, y)-coordinates, has to store a replica of object’s bounding rectangle
in a secondary index. Whenever the MBR changes (caused by shrinking- or expanding-local update), its
all copies in the secondary index have to be updated as well, i.e., all the leaf node entries are accessed in
the secondary index and the stored MBRs are updated. The profiling dataconfirmed that significant CPU
cycles increase is in this maintenance overhead.

18

92%

< 1%
< 1%

7%

u−R−tree

Pure−local Shrinking−local Expanding−local Non−local

94%

< 1%
< 1%

5%

u+−R−tree

Figure 16: Percentage of each update type within default workload

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

x 10
4

Pure−local

Shrinking−local

Expanding−local

Non−local

CPU cycles

992

753

4525

47437

7756

35094

11429

11995
u−R−tree

u+−R−tree

Figure 17: Average CPU cycles per update

CPU cycles

0 2 4 6 8 10 12 14 16 18

x 10
7

u−R−tree

u+−R−tree

Pure−local Shrinking−local Expanding−local Non−local

Figure 18: CPU cycles spend within each update type

Note that the simpler grid-based indexes do not have shrinking or expanding updates. Therefore, the
u+-Grid achieves relatively better performance in updating versus the u-Grid. Also note that we are not
talking here about the increased cost in query processing, as whenever the bucket or node is reached in the
u+-variants, the query must access the secondary index to get the data foreach object. The gains and looses
are exploited in Section 4.4.2 where all indexes are compared under different workloads.

5 Related Work

A substantial body of research has accumulated concerning moving object indexing on disk, and recent
surveys cover different aspects of this research [24, 21]. Furthermore, benchmarks comparing their perfor-
mance were proposed as well [17, 6].

A popular technique to reduce the update rate and to provide predictions ofnear-future positions is using
functions of time to approximate movement (e.g., the TPR-tree [26] indexes linear functions). However, the
index operations become very CPU intensive. Thus, fewer but more expensive updates might not pay off.
Therefore, in this paper we consider indexing simple (x,y)-coordinates of moving objects.

Since even a single disk I/O during update operation is a bottleneck in update-intensive applications,
bulk-loading techniques look attractive. The idea is to accumulate the incoming updates and perform them
in groups so that the cost is shared among several operations that workwith the same page. Thus, various
buffering strategies were applied for both disk-based grids [28] and R-trees [4]. In memory, such techniques
were applied by Zhou and Ross [30]. Note that buffering strategies areorthogonal to the techniques used in

19

this paper and can be applied to further enhance performance.
In our proposed main-memory index variants, we use the simplified version ofthe bottom-up update

strategy which was successfully used in disk-based indexes [20]. As mentioned in Section 3.1, it is based on
the observation that moving objects exhibit locality-preserving updates [19] which mostly lead to minimal
changes in spatial index structure.

In recent works, the grid structure was a popular main-memory solution forcontinuous kNN query
monitoring [7, 29, 22]. Similarly to the u+-Grid, the work by Chon et al. [7] stores only object IDs in grid
cells and uses a hash table for frequent random accesses. However, their main focus is continuous-query
support. For tree-based indexes, in Section 3.4 we carefully considered the applicability of several existing
cache-conscious techniques [18, 25].

Very recently, Dittrich et al. [9] proposed an interesting main-memory indexing method for moving ob-
jects called MOVIES. The approach is based on frequently building short-lived throwaway indexes where
the query result staleness is traded for both update and query efficiency. We, in contrast, follow the tradi-
tional performance trade-off between updates and queries while delivering the most up-to-date positions to
each query request.

6 Conclusions

Motivated by new, update-intensive applications involving tracking of large collections of two-dimensional
moving objects, we explore the main-memory indexing of such objects. First, through a number of iterations
of designing and experimenting, we identify update and query efficient variants of the well known grid and
R-tree indexes. The extensive performance experiments with these indexes reveal a number of interesting
insights.

First, the bottom-up updating, facilitated by the secondary hash index, significantly boosts the update
performance. This makes the R-tree indexes competitive with the grid indexesfor update processing. Next,
the query performance of the uniform grid is surprisingly robust and competitive with the query performance
of the R-tree. In summary, the two optimized versions of indexes are comparable in update and both range
and kNN query performance.

Having observed that, we conclude that other factors need to be considered when choosing an index.
For instance, the u-Grid is simpler than the u-R-tree. Thus, it is easier to implement. On the other hand,
grids, in contrast to R-trees, require specifying a predefined spatial area. Also, R-trees, in contrast to grids,
support spatially-extended objects which may be useful when modeling the inherently inaccurate positions
of moving objects.

References

[1] Intel 64 and IA-32 architectures software developer’s manual. Intel Corporation, March 2009.

[2] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The r*-tree: an efficient and robust access
method for points and rectangles.SIGMOD Rec., 19(2):322–331, 1990.

[3] J. L. Bentley and J. H. Friedman. Data structures for range searching. ACM Comput. Surv., 11(4):397–
409, 1979.

[4] L. Biveinis, S.Šaltenis, and C. S. Jensen. Main-memory operation buffering for efficient r-tree update.
In VLDB, pages 591–602, 2007.

[5] S. Brakatsoulas, D. Pfoser, and Y. Theodoridis. Revisiting r-treeconstruction principles. InADBIS,
pages 149–162, 2002.

20

[6] S. Chen, C. S. Jensen, and D. Lin. A benchmark for evaluating moving object indexes. InVLDB,
volume 1, pages 1574–1585, 2008.

[7] H. D. Chon, D. Agrawal, and A. El Abbadi. Range and knn query processing for moving objects in
grid model.Mob. Netw. Appl., 8(4):401–412, 2003.

[8] A. C. de Melo. The 7 dwarves: debugging information beyond gdb. In Proc. of the Linux Symp., 2007.

[9] J. Dittrich, L. Blunschi, and M. A. V. Salles. Indexing moving objects using short-lived throwaway
indexes. InSSTD, pages 189–207, 2009.

[10] J. Dongarra, K. London, S. Moore, P. Mucci, D. Terpstra, H.You, and M. Zhou. Experiences and
lessons learned with a portable interface to hardware performance counters. Parallel and Distributed
Processing Symposium, International, 0:289b, 2003.

[11] U. Drepper. What every programmer should know about memory. Technical report, Red Hat, Inc.,
2008.

[12] R. A. Finkel and J. L. Bentley. Quad trees a data structure for retrieval on composite keys.Acta
Informatica, 4(1):1–9, March 1974.

[13] B. D. Garner, S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci. A portable programming
interface for performance evaluation on modern processors.The Inter. Journal of High Perf. Comp.
Appl., 14:189–204, 2000.

[14] A. Guttman. R-trees: a dynamic index structure for spatial searching. SIGMOD Rec., 14(2):47–57,
1984.

[15] R. A. Hankins and J. M. Patel. Effect of node size on the performance of cache-conscious b+-trees.
SIGMETRICS Perform. Eval. Rev., 31(1):283–294, 2003.

[16] G. R. Hjaltason and H. Samet. Distance browsing in spatial databases.ACM Trans. Database Syst.,
24(2):265–318, 1999.

[17] C. Jensen, D. Tiesyte, and N. Tradisauskas. The COST Benchmark–Comparison and evaluation of
spatio-temporal indexes. InDatabase Systems for Advanced Applications, pages 125–140, 2006.

[18] K. Kim, S. K. Cha, and K. Kwon. Optimizing multidimensional index trees formain memory access.
SIGMOD Rec., 30(2):139–150, 2001.

[19] D. Kwon, S. Lee, and S. Lee. Indexing the current positions of moving objects using the lazy update
r-tree. InMDM, pages 113–120, 2002.

[20] M. L. Lee, W. Hsu, C. S. Jensen, B. Cui, and K. L. Teo. Supporting frequent updates in r-trees: a
bottom-up approach. InVLDB, pages 608–619, 2003.

[21] M. F. Mokbel, T. M. Ghanem, and W. G. Aref. Spatio-temporal access methods.IEEE Data Engi-
neering Bulletin, 26:40–49, 2003.

[22] K. Mouratidis, D. Papadias, and M. Hadjieleftheriou. Conceptual partitioning: an efficient method for
continuous nearest neighbor monitoring. InSIGMOD, pages 634–645, 2005.

[23] J. Nievergelt, H. Hinterberger, and K. C. Sevcik. The grid file: Anadaptable, symmetric multikey file
structure.ACM Trans. Database Syst., 9(1):38–71, 1984.

21

[24] B. C. Ooi, K. L. Tan, and C. Yu. Frequent update and efficient retrieval: an oxymoron on moving
object indexes? InWISEW, page 3, 2002.

[25] J. Rao and K. A. Ross. Making b+- trees cache conscious in main memory. SIGMOD Rec., 29(2):475–
486, 2000.

[26] S. Šaltenis, C. S. Jensen, S. T. Leutenegger, and M. A. Lopez. Indexing the positions of continuously
moving objects. InSIGMOD, pages 331–342, 2000.

[27] W. Wu and K.-L. Tan. isee: Efficient continuous k-nearest-neighbor monitoring over moving objects.
In SSDBM, page 36, 2007.

[28] X. Xiong, M. F. Mokbel, and W. G. Aref. Lugrid: Update-tolerantgrid-based indexing for moving
objects. InMDM, page 13, 2006.

[29] X. Yu, K. Q. Pu, and N. Koudas. Monitoring k-nearest neighborqueries over moving objects. In
ICDE, pages 631–642, 2005.

[30] J. Zhou and K. A. Ross. Buffering accesses to memory-residentindex structures. InVLDB, pages
405–416, 2003.

22

