Trees or Grids? Indexing Moving Objects in
Main Memory

DariusSidlauskas, Simon&Saltenis, Christian W. Christiansen, Jan M. Johansen,
DonatasSaulys

December 24, 2009

TR- 26

A DB Technical Report

Title Trees or Grids? Indexing Moving Objects in Main Memory

Copyright © 2009 DariusSidlauskas, SimonaSaltenis, Christian W.
Christiansen, Jan M. Johansen, Don&aalys. All rights reserved.

Author(s) Darius éidlauskasv, Simonaéaltenis, Christian W. Christiansen, Jan M.
Johansen, Donat&aulys

Publication History Extended version of: DariuSidlauskas, SimonaSaltenis, Christian
W. Christiansen, Jan M. Johansen, Donaémjlys, “Trees or Grids?
Indexing Moving Objects in Main Memory”, ifProceedings of the 17th
ACM SIGSPATIAL International Conference on Advances in Geograph
Information Systemseattle, WA, USA, November 2009, pp. 236-245.

For additional information, see the DBECH REPORTShomepage{dbt r . cs. aau. dk).

Any software made available viaB TECH REPORTSIs provided “as is” and without any express or
implied warranties, including, without limitation, the implied warranty of merdadility and fitness for a
particular purpose.

The DB TecH RePORTSicon is made from two letters in an early version of the Rune alphabet, which
was used by the Vikings, among others. Runes have angular shapkslamdrizontal lines because the
primary storage medium was wood, although they may also be found on jeteells; and weapons. Runes
were perceived as having magic, hidden powers. The first letter in tloeiddtpagaz,” the rune for day

or daylight and the phonetic equivalent of “d.” Its meanings include imgss, activity, and satisfaction.
The second letter is “Berkano,” which is associated with the birch tree.iMitsatiory meanings include
health, new beginnings, growth, plenty, and clearance. It is assoeidtteddun, goddess of Spring, and
with fertility. It is the phonetic equivalent of “b.”

Abstract

New application areas, such as location-based servidgsomethe efficient management of large
collections of mobile objects. Maintaining accurate, agdate positions of these objects results in
massive update loads that must be supported by spatialimgsttuctures and main-memory indexes
are usually necessary to provide high update performanmeglitibnally, the R-tree and its variants were
used for indexing spatial data, but most of the recent rebemgsumes that a simple, uniform grid is the
best choice for managing moving objects in main memory.

We perform an extensive experimental study to compare tbeapproaches on modern hardware.
As the result of numerous design-and-experiment iteratioe propose the update- and query-efficient
variants of the R-tree and the grid. The experiments witkaliadexes reveal a number of interesting
insights. First, the coupling of a spatial index, grid orrRBet, with a secondary index on object IDs
boosts the update performance significantly. Next, theeR;twhen combined with such a secondary
index, can provide update performance competitive withgttie. Finally, the grid can compete with
the R-tree in terms of the query performance and it is sungfig robust to varying parameters of the
workloads. In summary, the study shows that, in most cakes;hoice of the index boils down to the
issues such as the ease of implementation or the suppopdtialy extended objects.

1 Introduction

A large class of emerging applications rely on monitoring of continuously evplphenomena using vast
guantities of online sensors. For example, advanced Location-Basgade3gLBS) or Intelligent Transport
Systems (ITS) rely on monitoring of collections of moving objects. Increaswglgspread availability of
mobile devices with integrated positioning technology, such as GPS, trarsstioese types of systems from
research prototypes to widely-deployed, commercial applications. Aresample is Google Latitude
which gained over one million users just a week after it was launched.

The architecture of such systems includes a server and a collection of redrotgects which regularly
send their updated positions to the server in order to keep the location inionnog to date. The LBSs
query the server with spatial queries like "which cars are currently Idcaithin a specified area?” To
process such queries efficiently, the server has to maintain a spatialtiratein addition to speeding up
the query processing, is also able to absorb all of the incoming updates.

The following scenario helps to understand the rate of the incoming locatidatesa Two million
mobile users are moving in an urban area with an average speed of 30 &mvé 83 m/s). If an accuracy
of 50 meters is required, each moving object has to send a hew updayebeseconds on average, i.e.,
whenever it is about to move 50 meters away from the previously repodsitign. At the server, this
results in one update every 3 microseconds. The rate increases flirtigee objects are tracked and/or
higher accuracy is required. As hard drives, involving moving mechhmparts, become too slow for
such applications, main-memory solutions have to be employed. This is engbtkdgping prices and
increasing capacities of RAM chips.

Previous research on main-memory indexing focused mainly on queryrpenice. For example, the
versatile and query-efficient R-tree was made cache-consciousdIgjtimize the use of the fast CPU
caches. More recently, a number of papers on continuous processspgtial queries [7, 22, 29] suggest
using simple, uniform grids to index spatial positions of moving objects. Itgeed that such grids are
much faster to update, as the classical R-tree is known for its poor upgldtempance. On the other hand,
one can expect that uniform grids may not be good to adapt to skew indHdoads. Unfortunately,
to the best of our knowledge, there is no comprehensive experimemglacson of these main-memory
structures.

http://www.google.com/latitude

CPU Time (microseconds)
1 2 3 4 5
T T T T T

Il Computation
[llL1 D-stalls
[CJL2 D-stalls
[JTLB D-stalls
[l other stalls

u-Grid
u-R-tree
Grid

R-tree

‘ ‘ ‘ ‘ ‘ ‘
0 2 4 6 8 10 12
CPU (#cycles x 10%)

Figure 1: CPU cycles/time breakdown in update processing

To identify the efficient variants of the two indexes we explore seversibdeoptions in a number of
design-and-experiment iterations. Specifically, we show that by usirgpticalled bottom-up updates [20],
i.e., coupling a primary indexes with a secondary index on object IDs (@e#@08 3.1), both grids and R-
trees are able to process the incoming updates in less than 1 microsecerdamedfor the scenario similar
to the one mentioned above). Figure 1 demonstrates this. At the bottom, it 8iewgdate performance
of the R-tree and the Grid, with their parameters tuned to the specific hardivae bars at the top show
that the improved versions of these structures achieve over fourfdidigiold performances improvement,
respectively, without significantly sacrificing the query performano¢ ¢hown in the figure).

The rest of the paper is organized as follows. The classical grid anekeRndexes are briefly presented
in Section 2. Section 3 describes the proposed main-memory efficienttgapiathese indexes. Section 4
presents experimental setting and reports the results of the performadgeSection 5 gives an overview
of the related work. We conclude in Section 6.

2 The Grid and the R-tree

As the main challenge in the considered applications is the processing diigérypdate rates, the main-
tenance cost of the employed spatial index has to be as low as possibdielitlarg the choice of the index
should enable exploiting the available body of research on the indextbpatial query processing. There-
fore, we focus on well-known, simple, and CPU-light index structures:gtiid and the R-tree. Note that
the grid and the R-tree are representatives of the two broad classeexédr—space and data partitioning
indexes, respectively.

This section gives an overview of the basic versions of the two indexe$ods mostly on how updates
are performed. More details can be found in the provided references.

In this section and in the rest of the paper, we assume that each updateitgle @id, oldx, oldy, z, y).
It can be represented as a pair of the deletiorvéf(, oldy) and the insertion ofa(, y) for the object iden-
tified by oid. Note that the bottom-up update technique, as described in Section 3.tesetie update
message to a three-tuplei{, =, y).

2.1 The Grid
A fixed grid [3] is a simple space-partitioning index where a predefined nrexwitarea is divided into
rectangular cells. Objects with coordinates within the boundaries of a drioedeng to that particular cell.
2.1.1 Structure

Since update performance is the main focus of this paper, we considestact uniform grid with equally-
sized cells. Such a grid requires minimal maintenance costs. Thus, no finelment or rebalancing is

next # of object | coord | coord
bucket |entries ID X y

meta [entryljentry2jentry3je.

A Bucket 2

meta |entryljentry2

Bucket 1 & Secondary Index
Y ; ' [ptrl | ptr2 | idx | oid
e |
b |€-ccmmmmeafaaaan
Grid X

Figure 2: Grid index structure (the gray part is present only in the u}Grid

performed when objects move from one grid cell to another as it is doneaptiad grids, such as the grid
file [23], or in hierarchical space partitioning methods, such as the qead®].

Figure 2 illustrates the overall design of the grid structure (ignore the gyaponent for now). The
grid covers a predefined part of the coordinate spaca, area. It is stored as a two-dimensional array,
where each element of the array corresponds to a square spatialiireaside length ofjcs. Each grid
cell within the array stores a pointer to the linked list of buckets that containtijext data. The buckets
have a fixed sizejs, and the grouping of objects into buckets follows no specific orderings;Tihe grid is
defined by the three parameteysid_area, gcs, andbs.

Since the data to be processed during updating and querying is loadedks {dache lines) to the CPU
cache, when compared to a simple linked list of objects, large buckets sedteadata access locality and
enable the more effective prefetching of data by modern CPUs [11].

Each bucket has object data and meta data fields. The meta data field canpaimser to the next
bucket in the list and the current number of objects in the bucket.

2.1.2 Updates

All updates in the grid can be categorizedl@sal or non-local Any update involves determining the old
cell of the object (usingldx andoldy) and the new cell (using andy). If the old and the new cells are the
same cell, the update is local and it involves scanning the buckets of the loelate the needed object and
simply updating itsc andy coordinates. The non-local update requires to delete the object froofdtiell
and insert into the new cell.
The insertion and deletion algorithms ensure that all except the first bofcaayrid cell are full. Thus,

a new object is always inserted at the end of the first bucket. In caskiit, ia new bucket is allocated and
the necessary pointers are updated so that it becomes the first bunketel€tion algorithm always moves
the last object of the first bucket into the place of the object to be deldtiek first bucket becomes empty,
it is removed and the next bucket becomes the first or the grid cell becamay, storing a null pointer.

2.1.3 Queries

A range query is defined by a rectangle given by two corner paits (, ¥g,,...) aNd €4,.00 s Ygimas)- ThE
range query algorithm for the grid proceeds as follows. First, the cellsred by the range query are split
into two groups—fully covered and partially covered. The objects fronfute covered cells are put into
the result list by reading the corresponding buckets. The bucketsfrepartially covered cells are scanned
and the objects are checked individually to determine whether they are wighiarige of the issued query.
A kNN query is defined by a query point, and the number of nearest neighbors requited number
of algorithms were proposed for performing KNN queries on grids [7,229. All of them are based on
a similar procedure. The underlying idea is that all cells are divided interdift groups, such that cells
within each group have similar minimum distances to the query point. Then, upingréy queue to store
the cells, the cells are traversed, from the closest to the furthest,kunéhrest objects are determined.
We use an implementation of the algorithm recently described by Wu and TanAB7rray-based heap
structure is used to implement the priority queue.

2.2 The R-tree

An R-tree-based indexing [14] and query processing has remairmxlia 6f research in spatial databases
for more than two decades now. The R-tree is known for its robustnesgasklew, the support for a large
number of different query algorithms, and its suitability for the indexing attigfly-extended objects (in
addition to point objects). The main problem with the traditional R-tree is its ppdate performance.

2.2.1 Structure

The R-tree is a balanced, data-partitioning tree index. It is a hierarchyiremum bounding rectangles
(MBRs). An MBR is the smallest rectangle that encloses a group of spéietts. There are two types
of nodes in the R-tree: internal nodes, which are nodes containing pototether nodes, and leaf nodes,
which are nodes at the lowest level of the tree and contain moving objestbugtrated in Figure 3 (ignore
the gray components for now), an internal node is composed of the nddelata (a number of entries and
a leaf flag) followed by a number of child entries. Each internal nodeiy éias a pointer to a child and an
MBR that encloses the objects within that child. Similarly, a leaf node is compufdhé same meta data
fields but followed by a number of leaf entries.

The main parameter defining the R-tree is the node size (Note that we express it in cache lines.
Another parameter is minimum childrem(¢), expressed as a fraction of the full node. In any node of the
tree, its entries must occupy at least percent ofns. Otherwise, the node is considered underfull.

2.2.2 Updates

The classic R-tree processes each update as a combination of sepadbeviodeletion and insertion
operations.

The deletion algorithm descends the tree from the root to the leaveshisegfor (oldz, oldy). This
is done by recursively accessing the nodes with MBRs that conséin, (oldy). Note that, due to possible
overlap between the MBRs, more than one path down the tree may be visitedth&ftequired leaf node
is located, the appropriate entry is deleted. Finally, ancestor MBRs, whigtbe@me not minimum, are
adjusted by traversing the tree up to the root. Furthermore, the nodesehatderfull have to be handled
with an expensive reinsertion of their entries.

The insertion algorithm begins by traversing the tree from the root to a ¢elef as well. At each node,
a heuristic functiorchoosesubtreeis called to choose the most suitable subtree to decent further. When a
suitable leaf node for a new object is located, the object is inserted therandestor MBRs may not be

e >| node metadata int. entry 1|int. entry 2| |
E : * # of leaf parent | parent i child *
H | E entries| flag | IER ptr idx ptr MBR | |
] _______________________________________ M * | Secondary Index
. - _- — = = = ptr idx oid
: child node |e----r--msommemmemaanon [
Leaf node Tt
| node metadata | leaf entry 1 | leaf entry 2 | e |
E # of leaf parent parenf 'object coord | coord | | _.__.
E | entries| flag RIBR ptr idx ID x y |<-
A4

Figure 3: Structure of a conventional R-tree (the gray elements arenrasly in the u-R-tree)

valid anymore, they are adjusted by traversing the tree back to the roettidmsof a new leaf entry may
also cause a node overflow which is handled by a node split algorithm.uBesach a split produces an
additional node and an additional parent entry in the parent node, teetpede may be split too and the
split may propagate up the tree.

Summarizing, a single update operation results in four (possibly partial) énesrsals. This is the main
reason for the inefficiency of the R-tree updates.

2.2.3 Queries

A range query in the R-tree is performed as a depth-first traversaltfie root down to the leaves access-
ing the nodes with MBRs overlapping the query area. At the leaf nodgsgtelsatisfying the query are
outputted.

A KNN query in the R-trees is processed as a best-first traversal Rijilarly to the KNN query
processing in the grid index, it uses a priority queue storing the acchH3Rd organized on the minimum
distance between an MBR and the query point. We use the same implementatiempabtity queue both
for the R-tree and for the grid.

3 Update-Efficient Indexes

Having surveyed the classic grid and R-tree index structures, in this seet® present various design
alternatives for improving the performance of these indexes in main memory.

3.1 Bottom-up Updates

As described above, in order to support fast range and KNN qu#reegrid and the R-tree index the data on
its spatial information, i.e., object coordinates make up the index key. Thisstleanduring the updates,
the old object data must be located using spatial informatéfx(oldy). In the grid, this means accessing
the right grid cell and traversing a list of buckets associated with that ocethel R-tree, this means doing a
top-down traversal, possibly following several paths down the tree.

incomming update new

is new within its MBR ?
g

was old position
on MBR boundary?
.

Yes

es
No e
|_non-I:aI upTate—l |_expaTding-I:al —l |_pure-local—| rshriang-lo;I]

update update update

| @ | | l | | l |

Figure 4: Bottom-up update in the u-R-tree

Furthermore, once the old position is deleted, the index is accessed agaertdhie new position. The
key property of the update workloads generated by most of the abowgemed applications is thepdate
locality—the next update from an object is likely to be close to the previous ones iTluvery probable
that the new location have to be inserted in the same node or bucket as tmeold o

To avoid the expensive top-down index searches and to leveragedateupcality, we employ aec-
ondary indexwhich use®id as the index key and points to the location in a primary index associated with
that key. In other words, it provides a direct access to the object’sinldkee primary index. This way,
near constan®(1) updating time can be achieved. A hash-table is a suitable candidate foresumidary
indexes, as it supports efficient insertions, deletions,@dequality queries. This idea, called bottom-up
updates was first proposed to speed up the updates of the disk-bdeeesifil9, 20]. Note thabv{dz, oldy)
are no longer necessary in an update message.

On the other hand, an overall index size increases significantly

3.1.1 Bottom-up Updates in the Grid

In Figure2, the grid’s secondary index is depicted in gray. An entry irsét®ndary index is composed of
four fields. The pointeptr! points to the bucket that contains the object, whegga8 points to the grid
cell that contains that bucket. The field: is an offset for object’s position within the bucket.

When the new cell for the incoming update is determined, itis compared with trencuaell referenced
by the pointeptr2 to check whether the update moves the object to a different cell, i.e., wlieéhepdate
is non-local. Thenptr! andidxz are used to compute the direct address of the entry to be updated. Note
that no scanning of buckets is required, which is particularly desirableds with large cell and bucket
sizes. If an update is non-local, the poinger2 is also used during the delete operation to move the last
object from the first bucket of a grid cell into the bucket space of tHetel@ object (see Section 2.1.2).
Note, that such moving of an object requires updatingitd andidz values in the secondary index, but
that is a small cost to pay for the benefits of the secondary index.

3.1.2 Bottom-up Updates in the R-tree

To integrate the bottom-up updates in the R-tree, but not to complicate theyaG@adtheavy algorithms
too much, we use a simplified versions of the algorithms proposed by Legéfal

First, the structure of the R-tree is augmented as shown in Figure 3 (seathelgments). That is, a
backward pointeparentptr, is added to each node such that the parent node can be identified witbout
prior top-down traversal. The added parent indetentidx, together with the parent pointer, provides a
direct access to the corresponding parent’'s entry when MBR chamegelto be propagated. In addition,
a copy of the node’s MBR in the meta data enables to know whether the MBRnhvalglated without
accessing the parent node, hence increasing memory-access loaditiiies) potentially decreasing CPU
cache misses.

Similarly to the grid’s updating, the exact object’s place in the tree is determsiad the pointeptr
and the offsetdz. If the new object’s coordinates are inside the leaf node’s MBR and thecmiddinates
were not on the rectangle’s boundary, then the update is carried out iatelgdby simply overwriting the
outdated data. We call this kind of updatpuare-local updatgsee Figure 4). In case the old coordinates
were on the MBR’s boundary, the MBR must be shrunk and changeagated up the tree (using parent
pointers anddx indexes). Shrinking an MBR is an expensive operation since it involvasnéng all the
entries within the node to compute the new MBR. We call this kind of updateiaking-local update

When the new object’s position exceeds its current bounding rectangleethis ascended looking for
a less local solutionfihid_optimalnodeprocedure in Figure 4). This bottom-up traversal stops when an
MBR is found that covers the new position or the root node is reachezh, Btarting from the node where
the bottom-up traversal stopped, the tree is traversed down recurssiaty thechoosesubtreealgorithm,
exactly as in the normal R-tree top-down insertion.

If the newly determined optimal leaf is the same as the leaf where the old positite abject is
stored, the outdated data is overwritten and the bounding rectangle isdexjparinclude the new position.
Finally, necessary MBR modifications are propagated up the tree as irgtlan®&-tree. We call this kind
of update arexpanding-local updateOn the other hand, when the optimal node is different from the old
one, anon-localupdate has to be carried out. This involves removing the object from iterdugaf and
inserting it into the optimal leaf, which, in turn, requires updating the seegnddex and may cause node
overflows and/or underflows.

Note that, while the parent pointer and the parent index speed up localaegpdhis is at the cost of
the added maintenance of these fields during non-local updates. Sgbgifihen a node is split, half of
the children get a new parent node (the split-off node). In case offantebe, the “children” are entries
in the secondary index. Thus, the parent pointers and parent indetesse children have to be updated.
A similar procedure applies to merges of nodes (see Section 3.2). An &itermaiddle-ground solution
could be to have just a parent pointer without a parent index. Nevesthéle experiments show that having
idx pays off by eliminating the need to scan a node when looking for a particoliay. & his is especially
desirable since update processing favours the trees with large nogéssizeSection 4.4.1).

3.2 Node Splitting and Merging in the R-tree

The split algorithms of the advanced R-tree variants such as the R*-fraeefZPU heavy. On the other
hand, the experiments show that the CPU-efficient Guttman’s linear spliithlgaends to produce nodes
with high spatial overlap. This is mainly due to a minimum node capacity constramchvarbitrarily
assigns a humber of entries to the least populated node at the end of tipecdure.

The previous work [5] shows that linear splitting time and the query perfocmaimilar to that of an
R*-tree [2] can be achieved using the k-means clustering algorithm. (uariexents confirm that and we
use the k-means split algorithm for all our main-memory R-tree variants.

The R-tree algorithms handle an underfull node by de-allocating it ande®ing its entries into the
tree, but this is very expensive. To avoid this cost, underfull node igedewith a sibling node (with a pos-
sible split following the merge). The partner for merging is chosen by usmgtertion’schoosesubtree
algorithm with an MBR of the underfull node and the parent node as ttaaers.

3.3 Making the Secondary Index Primary

The idea of the bottom-up updates can be driven even further. Ourievgrds indicate that under our
default workload (see Section 4.4.1), more than 90% of the updatesraréopal updates.

To speed up the processing of these updates further, the object'satidbe@ stored in the “secondary”
index so that all the necessary information to process the local updatélede after a single look up. The
grid bucket or the R-tree leaf node then stores juigs which are used to retrieve the data from the hash
table when querying.

Note that in the case of the R-tree, in addition to the object’s data, the entrg séttondary index has
to store a copy of the MBR of the leaf node that contains this object. This &ssary, so that the type
of the update can be determined without accessing the leaf's meta data irtrige As our experiments
show, the maintenance of this MBR overwhelms any performance gainSésgen 4.4.2).

This has

3.4 Cache-conscious Techniques

The main idea in the design of cache-conscious indexes explored irt stadies is to pack more entries
in an index node the size of which is close to the cache line size or a small flaeteof. For example, the
so-called pointer elimination technique, applied in the CS&e [25], doubles the fanout, which leads to
the reduction in the tree height. This, in turn, incurs less cache misses dueitge traversal. However,
in the R-tree, MBRs and not child pointers occupy most of the index data@inter elimination does not
widen the tree significantly. Therefore, the authors of the cache-icussR-tree (CR-tree) [18] employ the
so-called relative representation and quantization techniques, whiabribication, reduce the MBR size
to less than a fourth.

However, the more recent work [15] shows that the size of a node inattleeeconscious Btree has
to be much larger than the cache-line size. Our experiments, describectionSe4.1, confirm this. They
show that main-memory R-trees benefit from even larger node sizesmiBhaigs that for realistic settings,
the above-mentioned techniques for increasing the fanout do not ukadlyo tree height reduction.

Consider the following example. In our experiments with the KNN query pging, the R-tree exhibits
the best performance when constructed with the node size of eightloaef€s12 bytes). The first column
in Table 1 shows the observed tree characteristics after indexing 2 million ghobjects. Note that the
result is a five-level tree. The computation is performed assuming that, ir2thé S8ystem, the pointer
size and each of the spatial coordinates occupy 4 bytes and the MBR dek6 B his leads to 25 and 42
for internal and leaf fanouts, respectively. The average fullnegstefhal and leaf nodes was observed,
in the experiments, to be 62 and 68 percent, respectively. Thus, we78eg@b leaf nodes to store 2M
objects @ objects/(leaf _fanout x 0.62)) and, consequently, the tree height without the leaf level is 4
([logint.fanautXO.GiS 76, 805-| = (397—‘)

Based on these observations, the remaining two columns indicate that theseatfanout by the con-
sidered approaches can not widen the tree significantly. In'Gi&&e approach, the child pointers in internal
entry are eliminated (minus 4 bytes) and only the pointer to the first child is addied meta data (plus 4
bytes). In the CR-tree approach, the reference MBR is added to the atatgptiis 16 bytes) and the regular
MBR in the internal entry is replaced by a quantized relative MBR (minus 1@sfy In spite of this, the

2Assuming we reduce the MBR size to a fourth, which is the best case [18].

Table 1: Effects of the different cache-conscious techniques

R-tree CSB-tree CR-tree
Characteristic approach [25] approach [18]
Meta data 8B 12B 24B
Int. entry 20B 16B 8B
Leaf entry 12B 12B 12B
Int. fanout 25 31 61
Leaf fanout 42 41 40
#leaves req. | 76,805 78,679 80,646
Int. height [3.97] [3.7] [3.03]
Total height 5 5 5

total tree height remains five in both cases.

Since the ineffectiveness of these techniques can be already showntlus smallest optimal node
size reported by any of the experiments (eight cache lines), we do ndoeitmese techniques in our
implementations, as our indexes are usually configured with much largesizadgsee Section 4.4) where
the effect is even more minimized. Moreover, note that these techniqudd aad an overhead in the
insert/delete algorithms, resulting in higher update costs.

3.5 Summary

The following introduces naming conventions and succinctly summarizes thenmepted indexes that are
studied experimentally in the next section.

R-tree the conventional R-tree index (Figure 3 without the gray elements). imaf update algorithm
is a bit improved since it never performs reinsertion (which is very expenbut rather merges the
underfull node with its sibling (see Section 3.2).

u-R-tree an update efficient variant of the R-tree where a secondary indewrptoged to support faster
update rates (Figure 3 with the gray elements).

ut-R-tree further u-R-tree optimization for update processing where all objeet idastored in the sec-
ondary index rather than in leaf nodes (see Section 3.3).

Grid: simple implementation of the fixed uniform grid (see Section 3.3).

u-Grid: an update efficient variant of the grid which is coupled with a seconddex. As in the u-R-tree,
the updates are processed by accessing the secondary index esied que processed by accessing
the grid structure (Figure 2 with the gray elements).

ut-Grid: similarly to the u-R-tree, in order to boost local update processing, all object dataredsito
the secondary index rather than in grid cell buckets (see Section 3.3).

4 Experimental Study

In this section we present the experimental study performed with the indi@xisdesigned in the previous
section and summarize the main results.

4.1 Hardware and Software

All experiments were conducted on two machines, tereystemandsystem2with Intel Core 2 Duo pro-
cessors (2.20GHz and 2.60GHz) running under Linux 2.6.24 (32-8i64rbit variants) and each installed
with 3.5 GB of RAM. The L1 cache is 32KB (16KB for instructions and 16K @ata), the unified L2
cache is 4MB and the cache line size is 64B for both machines. Note thatgfittioeiCPU cache sizes are
the same on both machines, due to 64-bit coordinates and pointers, ttiveffeze of the cache isystem2
is reduced when measured in terms of the data elements.

The previously described spatial indexes and their variants were implesriar@e-+. In order to avoid
unaligned accesses in main memory, the funcgosi x_nmemal i gn (instead of the standandal | oc)
was used to allocate memory for data structures on a cache-line bouddhliyionally, a layout of each
data structure was examined with thbahol e program [8] to be sure all alignment holes were removed
and better utilization of each cache line was achieved.

4.2 Measurement Tools and Methodology

In the cost drill-down experiments we avoid any approximations that simulatiadwmpose by us-
ing hardware performance counters available on most modern micregmée The architecture of the
used processor provides five hardware counters for event nesasot [1]. We employed the Perfor-
mance API (PAPI [13]), a specification of a cross-platform interfachaware performance counters,
and theper f ct r library to calculate the occurrence of various events. For instanceetf@mance met-
ric CPU timewas derived based on the count of CPU cycles and the processeed sxpressed in Hertz
(#cycles/ cpu_speed).

In order to show where each index operation spends most of the CRé&kclee cycles are broken
down into the following components: useful computation cyctég,(cycles stalled due to instruction and
data misses at level 1 and level 2 cach@g:(, Cr14, Cr2i, andCpaq4, respectively), cycles stalled due
to instruction ;) and data Cyy) misses in TLB (Translation Lookaside Buffer), cycles stalled due to
branch misprediction(f;,), and cycles stalled due to other resource isstg3, (€.9., instruction-length
decoder stalls and dependency stalls. Thus, the following equation holds:

Cop = Ce+ Cr1i + Cria + Crai + Craa + Cisp + Caup + Cpr + Co (1)

Table 2 shows a detailed list of the cost components and the way they iewkated. Since code footprint
for each index operation is small and fits in the L1 instruction cache, the dtistnucache miss rate is very
low (throughout the experimentgmisses/(#hits + #misses) never exceeded 0.1%). Thus, instruction
misses at both cache levels and TLB were excluded. The latency of 283, @&hd 18/21 cycles for each of
L1d, L2d, and data TLB misses @ystemisystem2vere determined by using the Calibrator, a cache and
TLB calibration tool*.

However, the chosen experimental setup suffers from the followingatavFirstly, the act of measuring
perturbs the phenomenon being measured. The counting instructionsuceredme overhead and cause
cache pollution. Theost utility provided with PAPI assured that the overheads in both the number of
additional instructions and the number of machine cycles for executinBARE st art/ PAPI st op
call pair and the®PAPI r ead call are less than 5% for granularity of the measured code. Secondly, the
processor with out-of-order execution might make the data inaccuratebg.geading the counter before
index operation is finished. PAPI is addressing this problem but it mightlhays be the case [10].
Thirdly, some of the stalls can be overlapped as modern processoranmgswtechniques for hiding them

3Although initially the cache simulator Cachegrind was employed to get a bestghtrof the cache behavior.
*http://www.cwi.nl/"manegold/Calibrator/

10

Table 2: Method of measuring each of the cost components (systeml/system?2
Comp. | Method
C. (total cycles) - (cycles stalled on any resource)
Crii excluded due to small code footprint
Criq | #misses * 2/2 cycles
Cra; excluded due to small code footprint
Croq | #misses * 64/39 cycles
Cinp excluded due to small code footprint
Cap #misses * 18/21 cycles
Chr actual stalled cycles
Co (cycles stalled on any res.) - (all of the above)

(e.g., non-blocking caches, speculative and out-of-order exeg¢utite did not measure the overlapped
cycles.

In order to have the smallest possible overhead from any other opesgtem processes, the experi-
ments were executed in run-level 1 mode of the operating system (singlexagaUl, no networking, no
daemons, etc.) with the highest possible process priority. In addition;ebiefing any measurement, the
main memory and caches were warmed up with multiple runs of the index operasiove| as the count-
ing instructions. All the experiments were run ten times and standard deviatidmaeans were calculated
for each index operation. Whenever the standard deviation dividedebgndan was more than 1%, the
experiment was rerun. Otherwise, the run with the lowest (least intedupdeinter values was recorded.

Notably, during every experiment only a pair of events was measuredodugrdware limitation, as
most events occupy more than 1 register (out of 5 available on the machihes) the experiments took a
significant amount of time to carry out.

4.3 Workloads

The implemented indexes were exercised using a number of benchmarkreqs, each defined by a
set of workload parameters. A modified version of the COST benchmaikwas used to generate the
synthetic workloads so as to stress test the indexes under the contralledrsimg conditions.

As a point of reference, we have identifiedefaultworkload with the settings that represent a scenario,
which we consider realistic for the type of LBS application described in Sedtidl he values for default
workload parameters are shown in Table 3. Specifically, a given nunflmdyjects @bjects) move in the
two-dimensional monitored ared)() x 100 km?). One of the maximum speeeégeed; is randomly assigned
to each moving object. The objects move between a given number of nades (h the simulated road
network. An object generates an update, whenever it moves a giwareagthreshold from its previously
reported position. Four queries are issued every 2K updates. Eopmaird of range and kNN queries
are issued with a given queried fraction of the total data spagec{ivity) for a range query and a given
number of nearest neighbours requirédifor a KNN query.

The following describes the five experimental settings and the varied vaatidarameters.

Study 0: default parameter valueBhis experiment was used to determine the optimal index parameters.
Parameter values are shown in Table 3.

Study 1. number of objectsThe number of objects is varied to test the scalability of the indexes, i.e.,
objects = 1M, 2M, 4M, 8M.

SWe did not use the multiplexing feature of PAPI that allows counting moretsxthan physically supported by the hardware,
as it incurs more overhead and adversely affects the precision [10].

11

Table 3: Default workload parameters

Parameter Valug Parameter Value
objects 2M || speed 12, 25, 38, 50 m/s
threshold 100 m || hubs 500
selectivity 0.5% || k 100

Table 4: Optimal index parametersyétemisystemp

Index Parameter | Index Parameter
crd 258::722%322 Retree 250:2184//81%
Rl T

Study 2: position skew.he number of hubs is varied to change the objects distribution of spatitibpes
from highly clustered to uniform, i.ehubs = 5, 50, 200, 500, 1000, 3000.

Study 3: position accuracy thresholthe threshold for sending updates is varied to change the fraction of
local updates in the workload, i.éhreshold = 50, 100, 500, 1000 m.

Study 4. query parametergor the range query, its selectivity is varie@lectivity = 0.05, 0.25, 0.5, 1,
5, 10, 20% of the monitored area), while for the kNN query, the numbeeaifest neighbors is varied
(k =1, 10, 100, 1000, 5000, 10000, 15000).

4.4 Results

We proceed to describe the results of the performed experimental studies.

4.4.1 Determining Optimal Index Parameters

In the first set of experiments, using the default workload, the beateter values are determined for the
R-tree variantsrisandmc) and the grid variantggsandbs).

To determine the optimal values n§ andmg, the following tests were run. The index was exercised
with nsvalues varying from 2 to 1200 cache lines and each of these node sizgsaived with a different
value ofmc (from 5 to 30%). The results of such tests for the u-R-tree are depictédjime 5. The left
vertical axis represents the average CPU time performing a single opeapidate, range query, or KNN
guery) while the horizontal axis shows different values for the nodeisizache lines. For each different
value ofmca separate line is used. The darker the line, the lower value it represeidisionally, to have
an idea of how the height of the constructed tree is changing, the blue linaws dvith the values on the
right vertical axis.

It is not surprising that the bigger the node size is, the better updateparice is achieved as huge
nodes result in a larger fraction of local updates and fewer costly splifegations. On the other hand,
huge node sizes reduce the query performance for both types aégudowever, the graphs show that, in
the range of up to 200 cache lines, it is possible to choose the index parastethat performance is close
to optimal for both updates and queries.

12

x10°° Update x10™* Range query x10™ kNN query

1.8 6 14 16 8 16
5%
13 8%
1.6 — 10%
5 " 15% 15 15
20%
25%
1.4
4 11 30% 14 14
\ X chosen point Ay /\
g 12 \ = Z 10 = g Al =
8 I 3 s & 9 3 s 8 3 A
g 1 % R Fo2 =
]) W c 8f o
\ N
i f L e 2 2 12
‘}“‘ﬁi"\ i W, |
0.8 |
ik . A A
ns =76 cache lines Loy 6 pUsy - |
mc =10 % W iR i i
o6 LAEE NI 1 M 1
5p% Uns = i
ns =61 cache lines ns —1530/cache lines
—50 0, mc =5 %
0.4 L L L L L O 4 mc \20 /0 L L L L 0 1 L L L L L 0
0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200
node size (cache lines) node size (cache lines) node size (cache lines)
Fiaure 5: Determinina ontimal narameters for the 11-R-tree
x10°° Update x107° Range query x107° kNN query
181 3.5 1r
—64B
128 B 0.9
1.6 3 —192B
256 B L
‘ 512B 0.8
768 B
14 25 L
‘\ 1024 B 0.7
X chosen point
g 7 | 2 06t
c 1.2 c 27 1<
Q | Q Q
] 3 | 2 L
& k) 805
2 1 2 2
S [} 3} o.4i‘
08¢ 03]
‘ E |
m |
\ 3 Q 0.2 \
0.6 |\ i = \
2w gcs =400 m 0.1 VA 100
S 22 bs =1024 B " g¢s =400m
al b * bs -10248 T
) 1000 2000 3000 4000 5000 6000 0 1000 2000 3000 4000 5000 6000 0 1000 2000 3000 4000 5000 6000
gcs (meters) gcs (meters) gcs (meters)

Figure 6: Determining optimal parameters for the u-Grid

Figure 5 shows that thecparameter has a noticeable impact only in update processing. The trees con
figured with lower values tend to perform better, as the lower requireroetiié minimum node capacity
incurs fewer expensive merge operations, which is confirmed by tlidipyaata.

The similar experiments were run with the grid-based structures. Figurevgsghe results for the u-
Grid. The grid cell size was varied from 50 to 5500 meters and run in connaith different capacities
of the buckets (from 64 to 1024 bytes). Notably, the update-efficielniesa(for bothgcs and bs) are
completely different from the query-efficient values. The updateoperdince benefits from more local
updates caused by large cells (and smaller buckets), while queryingtbdrmm larger buckets and cell
sizes that match the average selectivity of the queries. Intuitively, thetegpaauld be fastest with a
single-cell grid, i.e., no grid at all.

Since update performance is much more critical in update-intensive applisatie configure the in-
dexes with update-efficient parameters. Table 4 contains the chosen logtioes for all indexes on both
systems. For a 64-bit systersy6temp, the graphs show similar patterns as those shown in Figures 5 and
6, but the values of the parameters tend to be larger. As mentioned abewvpdhte- and query-efficient
parameters for the u-Grid differ significantly, thus we also have a camatigm the u-Grid to favour queries

13

(u-Grid(qge)).

For the conventional grid and the R-tree, the observed optimal paranaétes\are relatively close to
each other among all the three types of operations. That is, setting wgftieient parameters has almost no
negative effects on the query performance. This is not surprisineg sivithout the benefit of the secondary
index, both updates and queries traverse the same index structurexglaisgwhy, in some experiments,
the R-tree and the grid process queries faster than the other indextsavitinthe update-efficient settings
of the index parameters.

4.4.2 Comparison of the Indexes

In the following, the results of a number of experimental studies on varyorfleads are presented. All

figures show the average elapsed CPU time per index operation.

Study 1. Number of objects

Figure 7 shows the results of the first experimental study usyitem1 Note the log scale on the vertical
axis. As the number of indexed objects increases, the update perfahegrades most rapidly for the con-
ventional R-tree and the grid, while the bottom-up strategy significantly imprineeupdate performance.
This especially makes grid variants (u- and-a very scalable solution.

The processing cost of both query types is increasing for all index#seanumber of returned objects
increases. As expected, the worst performance is shown by'tharniants. Another observation is that
the optimization of the ©-variants for local updates does not improve them in general by a simific
margin. Quick profiling showed that the increased cost in processingpeahupdates ties with the gains in
processing local updates. As a result, no clear performance gainévagin updating while the querying
is worsened significantly. This trend repeats in all of the conducted iexpets.

Another interesting trend that also repeats in the following experiments is that@rid, when con-
figured with the query-efficient parameters (u-Grid(ge)), still pen®updates slightly better and achieves
very similar (range) and even better (KNN) query performance thandbe/ériants.

Figure 8 shows that the same performance trends are also obsesygstem2In fact, we could not find
any qualitative differences between the results from both systems in aé petfiormed experiments. Thus,
in the following, we show only the results frosystemlin addition, since the conventional R-tree performs
significantly worse in update processing, we exclude it from updatehgriaghe following figures. For the
same reason, we exclude the-Grid from both range and kNN query graphs.

Study 2: Position skew

In this study, the number of hubs in a simulated road network is varied to elthaglistribution of spatial

positions of objects from highly clustered (few hubs) to almost uniform gnfrrs). Figure 9 shows that
in general all indexes tend to perform worse when objects are highliechas(except for the improved grid
variants). However, when the number of hubs exceeds 50, there igmificaint difference between the
indexes.

In terms of querying (both range and kNN), the better performance ibiteth by the R-tree variants,
however, when the u-Grid is tuned to a given query workload, it oubpeas the other indexes (see the
graphs of the u-Grid(ge)).

Study 3: Position accuracy threshold

Varying the accuracy threshold values from 50 to 2000 meters resultggniicant decrease of the fraction
of (pure) local updates (e.g., from 94% to 17% in the u-R-tree). FigQrehbws that this mostly affects
the R-tree-based indexes in update processing. When the accureslydidris more than 500 meters (or
less than 66% of the updates are local), any grid-based index outpsrtbe R-tree-based variant. The
threshold does not seem to have any significant impact on querying.

Study 4: Query parameters

Figure 11 depicts the behavior of the indexes when query parametesargg. Unsurprisingly, the perfor-

14

CPU (seconds), log scale

CPU (seconds), log scale

10

10

10°

. . 1 . . 1 . .
M 2M am a1 2M am oM 1M 2M am Y
of objects # of objects # of objects

Figure 7: Increasing the number of objectggtem}
s Update » Range query L kNN query
. . 10 : : 10 : .
—/\~ - R-tree
—— u-R-tree
-0 u"-R-tree
—A— Grid
///A‘""A’*’_{ || —5— u-Grid q
N —O— u"-Grid
« - u-Grid(ge)| —
107 ' . 107 ' ' 107° ' '
M 2M aMm 8M 1M 2M am 8M 1M 2M am 8M
of objects # of objects # of objects
Figure 8: Increasing the number of objedggtemp
0 x10° Update 5 x107° kNN query
—[O- - u-R-tree [i —/\— - R-tree
—O- - u"-R-tree] 1.8 L u-R-tree |
—A— Grid \ —O- u"-R-tree
—B8— u-Grid 16l \ —4A— Grid i
—S—u"-Grd || \ —&— u-Grid
- u-Grid(ge) 1,4% \ « - u-Grid(ge) ||

CPU (seconds)

Update

Range query

kNN query

10

10°F

21| —H5— u-Grid

—/\— - R-tree
—O- u-R-tree
-0 u'-R-tree
—A— Grid

—&— u*-Grid _—

« - u-Grid(ge)
—

-

I

1.2
\ —
0.8
0.6
b
0.4
\ Y
_A
B o6 . 2 A - A - —Ago
% e |
(— e
0 0.4 0 . . : .
5 50 200 500 1000 3000 5 50 200 500 1000 3000 5 50 200 500 1000
of hubs # of hubs # of hubs

15

Figure 9: Increasing the position skewness

x10° Update x10°° Range query x107 kNN query

4 T 1 2.4 8
—- - u-R-tree , 4 /
~O- u"-R-tree , 2.2 _ /
357 A Grid , 1 —@7/—61\ / 7
—&— u-Grid ’ 2 N /
3t —S—u"-Grid o i N / &
< u-Grid(qe) / Wost N2 1 R o
/ P V] 1Ny \@ I /EF:?:??@(J?J &
w 25F / . 1 16l| & R-tree | 57 \\\\B/—/"/ T-q
g / 4 : —[O— - u-R-tree
o 2 // L@ 1 14} "© u'-R-tree A
o, - —4— Grid
(. —&— u-Grid N
E 5[3; N A &\ | 12 . “7 n B | - B I
1 — A ~ u-Grid(qe) 3 ~
O ~A 7o ~ -
R A g- -4 ~ _-m
L 1 1 A=A PP~ - Ael
1 e Y/ A g 2 = A ~A
b= 8 08— 5 —— & — - A foﬁ/
~— - — 777
£ S =i —
0’5%7777*::_ 55— 8 g4} A A gy ¥
T B~ =GB T
~ g A
o . . . 0.4 . . o . . .
50 100 500 1000 2000 5 100 500 1000 2000 50 100 500 1000 2000
Threshold, meters Threshold, meters Threshold, meters

Figure 10: Increasing the number of non-local updates

kNN query

Range query

—/— R-tree
—[- - u-R-tree
—A— Grid

-1| | —&— u-Grid
u-Grid(qge)

10°F

CPU (seconds), log scale

10°F

107° 10° . . .
0.05 025 05 1 5 10 20 1 10 100 1K 10K

Selectivity (% of queried area) k nearest neighbors

Figure 11: Varying the query parameters

mance of the range and the kNN queries is degrading with the increasinogj\dgleand nearest neighbors
required, as the number of objects to be returned is increasing. Theste®gradation is observed with
very largeselectivity (more than 1%) and (more than 1K) parameters.

4.4.3 Index Size Analysis

A usage of a secondary index has a negative impact on overall indexFgure 12 depicts the sizes of all
studied indexes populated with two million objects (i.e., under the default watkldde obvious increase
of index size is visible when the R-tree is coupled with a secondary indBxtfae), and increases further
when secondary index is treated as primary-Rrtree). This is not surprising since additional structure
needs to be stored in main memory. The further increase in'tie-tree is mainly due to additional copy
of MBR for each entry in the secondary index.

Interestingly, it is not the case for the grid-based indexes. The size oétjular grid is even decreased
by circa 30 % when it is coupled with a secondary index. This can be erpléiythe following. The Grid
favours small grid cell sizes (300 meters) whereas the u-Grid prefetarter ones (5500 meters), as was
demonstrated in Section 4.4.1. The grid constructed with smalkenesults in a larger number of cells and,
consequently, in a larger number of buckets. Also the profiling data inditaét the average fullness of the

16

L L L i i i i i
0 10 20 30 40 50 60 70 80 90
Size, MB
l I Frimary [Secondary l

Figure 12: Index sizes

buckets in the Grid is less than one third, while in the u-Grid it is almost full (mae €0 %). Therefore,
the decrease in size of the u-Grid is due to a better utilization of buckets dad \dthen the secondary
index is treated as primary, the size is just slightly increased comparing toGiniel u-

However, the capacities of main memory available on nowadays machinesdxcéed the aforemen-
tioned sizes. Recent study [9] showed that current hardware cily galex up to a hundred million of
moving objects. Therefore, we conclude that index size is a minor issue icothtiext.

4.4.4 Execution Time Breakdown

In order to see where the different index variants spend their exedutienthe cost of updates and queries
was broken down into the cost components (see Section 4.2). Each bguiad-13, 14, and 15 represents
a contribution of the components as a number of cycles (bottom horizomgakaxd time (upper horizontal
axis) spent during the execution of one operation.

Figure 13 depicts such a breakdown for update processing. Threesititig observations can be made:
(i) bottom-up updates reduces the computation cycles significantly (oveoltivur the grid-based and
almost tenfold for the tree-based indexes), (ii) the major bottleneck is thets2cdche misses, and (iii)
on average, the useful computation cycles take less than half, implying tisabirtbe time the processor
is stalled. A deeper analysis of the results indicates that the average nafritizdt misses per update
operation is very similar to the average number of L1d misses in the u- andiniants of the indexes,
implying that these misses involve the whole memory hierarchy and, thus, tae agoided (compulsory
misses). We hypothesize that most of the misses occur when performiniragao the hash-table.

Figures 14 and 15 show the same breakdown for range and kNN queseectively. As expected,
the huge performance difference between u- ahdiariants in querying is purely due to increased L2 data
cache misses, i.e., object’s data storage in the secondary index doefsl reotyasignificant computational
overhead, but incurs waiting cycles for the data to be fetched from tendary index. At the same time,
TLB data and other stalls become more apparent. The KNN queries aespedcfaster but the fraction of
useful computation cycles is more or less the same. In contrast to L2d miggedating, for queries, the
techniques such as prefetching might help to reduce the stalls.

Also, note that a proper configuration might reduce some of the L2d missesistance, consider how
the contribution of the L2d misses in the u-Grid is reduced when it is configuitadthe query-efficient
parameters (see u-Grid(ge) in Figure 14), whereas this incurs wsagestalls in update processing (see
u-Grid(ge) in Figure 13).

17

CPU Time (microseconds)
1 2 3 4 5
T T T T T

u-Grid(qe) [l Computation
u—-Grid IlL1 D-stalls
: L2 D-stalls

u+-Grid [I7LB D-stalls
u+-R-tree [l other stalls

u-R-tree
Grid
R-tree

0 2 4 6 8 10 12
CPU (#cycles x 103)
Figure 13: CPU cycles/time breakdown in update processing

CPU Time (milliseconds)
1 2 3 4 5 6 7 8

u-Grid(qe)
u—Grid
u+-Grid
u+-R-tree
u-R-tree
Grid
R-tree

(; E; 1‘0 £2 l;l 1‘6 1‘8
CPU (#cycles x 10°)
Figure 14: CPU cycles/time breakdown in range query processing

CPU Time (milliseconds)
1 2 3 4

u-Grid(qe)
u-Grid
u+-Grid [
u+-R-tree
u-R-tree
Grid
R-tree

0 2 4 6 8 10
CPU (#cycles x 10%)

Figure 15: CPU cycles/time breakdown in KNN query processing

4.4.5 Other Observations

Having constructed index structures with the determined optimal parametecantook at other interest-
ing, performance-related observations. Figure 16 shows the pagessftaach update type when the default
workload is processed by the u-R-tree andRr-tree. Since more than 90 % of updates are pure-local, one
might think the idea to optimize them further by making the secondary index pri(sagy Section 3.3)
should be beneficial. The performed micro-benchmarks (Figure 17)aitedibat it does improve the pro-
cessing of pure-local updates (by circa 25 %) while the performanoemiocal updates is dropped by
only 5 %. However, the overall performance gain is minor (see Figur@d@&YXo significant cost increase

in the rare update types (both shrinking- and expanding-local updetes less than 1 % of the time). That

is, the average number of CPU cycles spend in shrinking and expanutiladas increased over tenfold and
fourfold, respectively (see Figure 17). The main reason for this isdhewfing. The u" variant of the
R-tree index, in addition teid and , y)-coordinates, has to store a replica of object’s bounding rectangle
in a secondary index. Whenever the MBR changes (caused by slyrirkirexpanding-local update), its

all copies in the secondary index have to be updated as well, i.e., all theo@afemtries are accessed in
the secondary index and the stored MBRs are updated. The profilingalfiened that significant CPU
cycles increase is in this maintenance overhead.

18

u-R-tree

| - Pure-local I:l Shrinking-local :] Expanding-local - Non-local ‘

Figure 16: Percentage of each update type within default workload

Expanding-local

47437 |

Shrinking-local u+-R-tree

u-R-tree

i i i i i
0 2 4 6 8 10 12 14 16 18

CPU cycles

.

25 3 35 4 45 5 55 P "

CPU cycles 4 ’ - Pure-local I:l Shrinking-local l:l Expanding—-local - Non-local ‘
x

Figure 17: Average CPU cycles per update Figure 18: CPU cycles spend within each update type

Note that the simpler grid-based indexes do not have shrinking or exgaopddates. Therefore, the
u'-Grid achieves relatively better performance in updating versus thedi-@tso note that we are not
talking here about the increased cost in query processing, as wdrghe\bucket or node is reached in the
ut-variants, the query must access the secondary index to get the deséfoobject. The gains and looses
are exploited in Section 4.4.2 where all indexes are compared undeediffeorkloads.

5 Related Work

A substantial body of research has accumulated concerning moving adfigeging on disk, and recent
surveys cover different aspects of this research [24, 21]. Funitre, benchmarks comparing their perfor-
mance were proposed as well [17, 6].

A popular technique to reduce the update rate and to provide predictiopaefuture positions is using
functions of time to approximate movement (e.g., the TPR-tree [26] indexes fimedions). However, the
index operations become very CPU intensive. Thus, fewer but moensie updates might not pay off.
Therefore, in this paper we consider indexing simple (X,y)-coordindtesuing objects.

Since even a single disk /O during update operation is a bottleneck in uipdensive applications,
bulk-loading techniques look attractive. The idea is to accumulate the incorpdagas and perform them
in groups so that the cost is shared among several operations thatwtiotke same page. Thus, various
buffering strategies were applied for both disk-based grids [28] atvdé® [4]. In memory, such techniques
were applied by Zhou and Ross [30]. Note that buffering strategiesrtiregonal to the techniques used in

19

this paper and can be applied to further enhance performance.

In our proposed main-memory index variants, we use the simplified versitve diottom-up update
strategy which was successfully used in disk-based indexes [20]. Asaoned in Section 3.1, itis based on
the observation that moving objects exhibit locality-preserving updatg¢sfii@h mostly lead to minimal
changes in spatial index structure.

In recent works, the grid structure was a popular main-memory solutiondiatinuous KNN query
monitoring [7, 29, 22]. Similarly to the t-Grid, the work by Chon et al. [7] stores only object IDs in grid
cells and uses a hash table for frequent random accesses. Hothewemain focus is continuous-query
support. For tree-based indexes, in Section 3.4 we carefully conditter@pplicability of several existing
cache-conscious techniques [18, 25].

Very recently, Dittrich et al. [9] proposed an interesting main-memory indexiathod for moving ob-
jects called MOVIES. The approach is based on frequently building $ikied-throwaway indexes where
the query result staleness is traded for both update and query efficMfeg in contrast, follow the tradi-
tional performance trade-off between updates and queries while dietjtbe most up-to-date positions to
each query request.

6 Conclusions

Motivated by new, update-intensive applications involving tracking ofdaglections of two-dimensional
moving objects, we explore the main-memory indexing of such objects. Fitigha number of iterations
of designing and experimenting, we identify update and query efficigignta of the well known grid and
R-tree indexes. The extensive performance experiments with thesefdmseal a number of interesting
insights.

First, the bottom-up updating, facilitated by the secondary hash index, sanilfi boosts the update
performance. This makes the R-tree indexes competitive with the grid intlexgsdate processing. Next,
the query performance of the uniform grid is surprisingly robust anapsgitive with the query performance
of the R-tree. In summary, the two optimized versions of indexes are cobipanaupdate and both range
and kNN query performance.

Having observed that, we conclude that other factors need to be cmtbiden choosing an index.
For instance, the u-Grid is simpler than the u-R-tree. Thus, it is easier to imple@ea the other hand,
grids, in contrast to R-trees, require specifying a predefined spati@l Also, R-trees, in contrast to grids,
support spatially-extended objects which may be useful when modelinghteeintly inaccurate positions
of moving objects.

References

[1] Intel 64 and IA-32 architectures software developer's manuatl [Rorporation, March 2009.

[2] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. Theee: an efficient and robust access
method for points and rectangleSIGMOD Reg.19(2):322-331, 1990.

[3] J.L.Bentley and J. H. Friedman. Data structures for range seardhCM Comput. Sury11(4):397—
409, 1979.

[4] L. Biveinis, S.Saltenis, and C. S. Jensen. Main-memory operation buffering for efficieee update.
In VLDB, pages 591-602, 2007.

[5] S. Brakatsoulas, D. Pfoser, and Y. Theodoridis. Revisiting rtaestruction principles. IADBIS
pages 149-162, 2002.

20

[6] S. Chen, C. S. Jensen, and D. Lin. A benchmark for evaluating rgasiject indexes. IVLDB,
volume 1, pages 1574-1585, 2008.

[7] H. D. Chon, D. Agrawal, and A. El Abbadi. Range and knn quemgycpssing for moving objects in
grid model.Mob. Netw. Appl.8(4):401-412, 2003.

[8] A. C. de Melo. The 7 dwarves: debugging information beyond gdPrbc. of the Linux Symp2007.

[9] J. Dittrich, L. Blunschi, and M. A. V. Salles. Indexing moving objecténgsshort-lived throwaway
indexes. INSSTD pages 189-207, 2009.

[10] J. Dongarra, K. London, S. Moore, P. Mucci, D. Terpstra,Yau, and M. Zhou. Experiences and
lessons learned with a portable interface to hardware performancteceuarallel and Distributed
Processing Symposium, Internation@i289b, 2003.

[11] U. Drepper. What every programmer should know about memoeghiical report, Red Hat, Inc.,
2008.

[12] R. A. Finkel and J. L. Bentley. Quad trees a data structure foievairon composite keysActa
Informaticg 4(1):1-9, March 1974.

[13] B. D. Garner, S. Browne, J. Dongarra, N. Garner, G. Hal BnMucci. A portable programming
interface for performance evaluation on modern processbng. Inter. Journal of High Perf. Comp.
Appl, 14:189-204, 2000.

[14] A. Guttman. R-trees: a dynamic index structure for spatial searct8h@MOD Rec.14(2):47-57,
1984.

[15] R. A. Hankins and J. M. Patel. Effect of node size on the perfageaf cache-conscious b+-trees.
SIGMETRICS Perform. Eval. Re81(1):283-294, 2003.

[16] G. R. Hjaltason and H. Samet. Distance browsing in spatial databASH®#d. Trans. Database Syst.
24(2):265-318, 1999.

[17] C. Jensen, D. Tiesyte, and N. Tradisauskas. The COST Bemkh@@mparison and evaluation of
spatio-temporal indexes. Database Systems for Advanced Applicatigragies 125-140, 2006.

[18] K. Kim, S. K. Cha, and K. Kwon. Optimizing multidimensional index treesrf@in memory access.
SIGMOD Rec.30(2):139-150, 2001.

[19] D. Kwon, S. Lee, and S. Lee. Indexing the current positions ofingpobjects using the lazy update
r-tree. INMDM, pages 113-120, 2002.

[20] M. L. Lee, W. Hsu, C. S. Jensen, B. Cui, and K. L. Teo. Supipgrfrequent updates in r-trees: a
bottom-up approach. MLDB, pages 608-619, 2003.

[21] M. F. Mokbel, T. M. Ghanem, and W. G. Aref. Spatio-temporal ascmethodsIEEE Data Engi-
neering Bulletin 26:40—49, 2003.

[22] K. Mouratidis, D. Papadias, and M. Hadjieleftheriou. Conceptadtioning: an efficient method for
continuous nearest neighbor monitoring. AIGMOD, pages 634—645, 2005.

[23] J. Nievergelt, H. Hinterberger, and K. C. Sevcik. The grid file: adaptable, symmetric multikey file
structure. ACM Trans. Database Sys8(1):38-71, 1984.

21

[24] B. C. Ooi, K. L. Tan, and C. Yu. Frequent update and efficietieval: an oxymoron on moving
object indexes? IRVISEW page 3, 2002.

[25] J. Rao and K. A. Ross. Making b+- trees cache conscious in main rge8iGMOD Reg.29(2):475—
486, 2000.

[26] S.Saltenis, C. S. Jensen, S. T. Leutenegger, and M. A. Lopez. Irgithérpositions of continuously
moving objects. I'SIGMOD, pages 331-342, 2000.

[27] W. Wu and K.-L. Tan. isee: Efficient continuous k-nearest-niggghmonitoring over moving objects.
In SSDBM page 36, 2007.

[28] X. Xiong, M. F. Mokbel, and W. G. Aref. Lugrid: Update-toleragtid-based indexing for moving
objects. INMDM, page 13, 2006.

[29] X. Yu, K. Q. Pu, and N. Koudas. Monitoring k-nearest neighuoeries over moving objects. In
ICDE, pages 631-642, 2005.

[30] J. Zhou and K. A. Ross. Buffering accesses to memory-residdek structures. IWLDB, pages
405-416, 2003.

22

