
ETLMR: A Highly Scalable Dimensional ETL
Framework based on MapReduce

Xiufeng Liu, Christian Thomsen and Torben Bach Pedersen

August, 2011

TR-29

A DB Technical Report

Title ETLMR: A Highly Scalable Dimensional ETL Framework based on
MapReduce

Copyright © 2011 Xiufeng Liu, Christian Thomsen and Torben Bach Ped-
ersen. All rights reserved.

Author(s) Xiufeng Liu, Christian Thomsen and Torben Bach Pedersen

Publication History Extended version of: Xiufeng Liu, Christian Thomsen and Torben Bach
Pedersen: “ETLMR: A Highly Scalable Dimensional ETL Framework
based on MapReduce” inProceedings of 13th International Conference
on Data Warehousing and Knowledge, Toulouse, France, August 2011, pp.
96-111

For additional information, see the DB TECH REPORTShomepage:〈dbtr.cs.aau.dk〉.

Any software made available viaDB TECH REPORTS is provided “as is” and without any express or
implied warranties, including, without limitation, the implied warranty of merchantability and fitness for a
particular purpose.

The DB TECH REPORTSicon is made from two letters in an early version of the Rune alphabet, which
was used by the Vikings, among others. Runes have angular shapes andlack horizontal lines because the
primary storage medium was wood, although they may also be found on jewelry, tools, and weapons. Runes
were perceived as having magic, hidden powers. The first letter in the logo is “Dagaz,” the rune for day
or daylight and the phonetic equivalent of “d.” Its meanings include happiness, activity, and satisfaction.
The second letter is “Berkano,” which is associated with the birch tree. Its divinatory meanings include
health, new beginnings, growth, plenty, and clearance. It is associatedwith Idun, goddess of Spring, and
with fertility. It is the phonetic equivalent of “b.”

Abstract

Extract-Transform-Load (ETL) flows periodically populatedata warehouses (DWs) with data from
different source systems. An increasing challenge for ETL flows is processing huge volumes of data
quickly. MapReduce is establishing itself as the de-facto standard for large-scale data-intensive process-
ing. However, MapReduce lacks support for high-level ETL specific constructs, resulting in low ETL
programmer productivity. This report presents a scalable dimensional ETL framework,ETLMR, based
on MapReduce. ETLMR has built-in native support for operations on DW-specific constructs such as
star schemas, snowflake schemas and slowly changing dimensions (SCDs). This enables ETL devel-
opers to construct scalable MapReduce-based ETL flows with very few code lines. To achieve good
performance and load balancing, a number of dimension and fact processing schemes are presented,
including techniques for efficiently processing differenttypes of dimensions. The report describes the
integration of ETLMR with a MapReduce framework and evaluates its performance on large realistic
data sets. The experimental results show that ETLMR achieves very good scalability and compares
favourably with other MapReduce data warehousing tools.

1 Introduction

In data warehousing, ETL flows are responsible for collecting data fromdifferent data sources, transforma-
tion, and cleansing to comply with user-defined business rules and requirements. Traditional ETL technolo-
gies face new challenges as the growth of information explodes nowadays, e.g., it becomes common for an
enterprise to collect hundreds of gigabytes of data for processing andanalysis each day. The vast amount of
data makes ETL extremely time-consuming, but the time window assigned for processing data typically re-
mains short. Moreover, to adapt rapidly changing business environments, users have an increasing demand
of getting data as soon as possible. The use of parallelization is the key to achieve better performance and
scalability for those challenges. In recent years, a novel “cloud computing” technology,MapReduce[9],
has been widely used for parallel computing in data-intensive areas. A MapReduce program is written as
mapandreducefunctions, which process key/value pairs and are executed in many parallel instances.

We see that MapReduce can be a good foundation for the ETL parallelization. In ETL, the data pro-
cessing exhibits thecomposableproperty such that the processing of dimensions and facts can be split into
smaller computation units and the partial results from these computation units can be merged to constitute
the final results in a DW. This complies well with the MapReduce paradigm in termof mapandreduce.

ETL flows are inherently complex, which is due to the plethora of ETL-specificactivities such as trans-
formation, cleansing, filtering, aggregating and loading. Programming of highly parallel and distributed
systems is also challenging. To implement an ETL program to function in a distributed environment is
thus very costly, time-consuming, and error-prone. MapReduce, on theother hand, provides programming
flexibility, cost-effective scalability and capacity on commodity machines and a MapReduce framework can
provide inter-process communication, fault-tolerance, load balancing andtask scheduling to a parallel ETL
program out of the box. Further, MapReduce is a very popular framework and is establishing itself as the
de-facto standard for large-scale data-intensive processing. It is thus interesting to see how MapReduce can
be applied to the field of ETL programming.

MapReduce is, however, a generic programming model. It lacks supportfor high-level DW/ETL specific
constructs such as the dimensional constructs of star schemas, snowflake schemas, and SCDs. This results
in low ETL programmer productivity. To implement a parallel ETL program on MapReduce is thus still
not easy because of the inherent complexity of ETL-specific activities such as the processing for different
schemas and SCDs.

In this report, we present a parallel dimensional ETL framework based on MapReduce, namedETLMR,
which directly supports high-level ETL-specific dimensional constructs such as star schemas, snowflake
schemas, and SCDs. We believe this to be the first report to specifically address ETL fordimensional

1

schemas on MapReduce. The report makes several contributions: We leverage the functionality of MapRe-
duce to the ETL parallelization and provide a scalable, fault-tolerable, and very lightweight ETL framework
which hides the complexity of MapReduce. We present a number of novel methods which are used to pro-
cess the dimensions of a star schema, snowflaked dimensions, SCDs and data-intensive dimensions. In
addition, we introduce the offline dimension scheme which scales better than theonline dimension scheme
when handling massive workloads. The evaluations show that ETLMR achieves very good scalability and
compares favourably with other MapReduce data warehousing tools.

The running example: To show the use of ETLMR, we use a running example throughout this report.
This example is inspired by a project which applies different tests to web pages. Each test is applied to
each page and the test outputs the number of errors detected. The test results are written into a number of
tab-separated files, which serve as the data sources. The data is processed to be stored in a DW with the
star schema shown in Figure 1. This schema comprises a fact table and threedimension tables. Note that
pagedimis a slowly changing dimension. Later, we will consider a partly snowflaked (i.e., normalized)
schema.

The remainder of this report is structured as follows: Section 2 gives a brief review of the MapReduce
programming model. Section 3 gives an overview of ETLMR. Sections 4 and 5present dimension pro-
cessing and fact processing, respectively. Section 7 introduces the implementation of ETLMR in the Disco
MapReduce framework, and presents the experimental evaluation. Section 8 reviews related work. Finally,
Section 9 concludes the report and provides ideas for future work.

2 MapReduce Programming Model

The programming model of MapReduce [9] expresses parallel computations into two primitives:mapand
reduce, taking a list of input key/value pairs, and producing a list of output key/value pairs.

Map: (k1, v1) -> list(k2, v2)
Reduce: (k2, list(v2)) -> list(v3)
Map, defined by users, takes an input(k1, v1) pair and produces a list of intermediate key/value(k2, v2)

pairs. MapReduce then groups all intermediate values with the same intermediatekeyk2, and passes them
on. Reduce, also defined by users, then takes the pair of keyk2 and the list of values fork2, and merges,
e.g., aggregates, together these values to form a possibly smaller list of valueslist(v3).

Besides themap andreduce interfaces, there are 5 other standard programming interfaces offered
by most MapReduce frameworks, including interfaces for input reading, data partitioning, combining map
output, sorting, and output writing. Users can tailor or extend these interfaces according to their require-
ments. A MapReduce framework achieves parallel computations by executing the implemented interfaces
on clustered computers, each processing a chunk of the data sets.

3 ETLMR Overview

In this section, we give an overview of ETLMR on a MapReduce framework, and describe the details of the
data processing phases.

To show the use of ETLMR, we use a running example throughout this report. This example is inspired
by the work we did in the European Internet Accessibility Observatory (EIAO) project [16], which auto-
mates the testing of the accessibility of web pages. A test is applied to each pageand the test outputs the
number of errors detected. The test results are written into a number of tab-separated files, which serve
as the data sources. The data is processed to be stored in a DW with the star schema shown in Figure 1.
This schema comprises a fact table and three dimension tables. Note thatpagedimis a slowly changing
dimension. Later, we will consider a partly snowflaked (i.e., normalized) schema.

2

Figure 1: Star schema of the running example

Figure 2: ETL Data flow on MapReduce framework

Figure 2 illustrates the data flow using ETLMR on MapReduce. In ETLMR, thedimension processing is
done at first in a MapReduce job, then the fact processing is done in another MapReduce job. A MapReduce
job spawns a number of parallel map/reduce tasks1 for processing dimension or fact data. Each task consists
of several steps, including reading data from a distributed file system (DFS), executing the map function,
partitioning, combining the map output, executing the reduce function and writingresults. In dimension
processing, the input data for a dimension table can be processed by different processing methods, e.g.,
the data can be processed by a single task or by all tasks. In fact processing, the data for a fact table is
partitioned into a number of equal-sized data files which then are processedby parallel tasks. This includes
looking up dimension keys and bulk loading the processed fact data into the DW. The processing of fact
data in the reducers can be omitted (shown by dotted ellipses in Figure 2) if no aggregation of the fact data
is done before it is loaded.

Before a MapReduce job starts, the data sets from heterogeneous storage systems are partitioned into
multiple approximately equal sized pieces, which are distributed to map/reduce tasks, and subsequently
processed into dimensions or facts. ETLMR employs the following two partitioning methods. 1)Round-
robin partitioning: This method distributes rows among the tasks such that row numbern is assigned to
task number(n modnr map) wherenr map is the number of tasks. It ensures that the input data sets are
evenly divided among the tasks. This method is suitable when a dimension’s datashould be processed by

1map/reduce task denotes map tasks and reduce tasks running separately.

3

all tasks. 2)Hash by field partitioning: This method designates one or more attributes as the partitioning
attributes. The tuples with the same hash values on the partitioning attributes are assigned to the same task.
If there arenr map tasks, a tuple with hash valuehash is assigned to task number(hash modnr map).
This method is suitable when all tuples with identical values in the hash attributes should be processed by a
single task.

ETLMR provides map readers implementing the above two partitioning methods. Inaddition, most
MapReduce frameworks provide different kind of readers for selection and allow users to customize their
own readers.

In the dimension processing, the input data sets for dimensions are processed among all map/reduce
tasks, using configurable processing methods. The most fundamental ofthese is to configure one dimension
per task, e.g., given 3 dimensions and 3 tasks, each task processes the data sets of a single dimension. Unlike
this method where only a limited number of tasks can be used, another approach is to let all tasks process a
given dimension such that each task processes parts of the dimension’s data sets. If there are dependencies
between dimensions, such as snowflaked (or normalized) dimensions, special processing methods (level-
wiseor hierarchy-wiseprocessing), are configured for dealing with the processing order and parallelization
of the dimensions. In a further optimization, dimensions can be configured to be stored distributedly over
the nodes, and loaded into the DW on demand.

In the fact processing, each map/reduce task processes an equally-sized data set, including reading data,
looking up key values from dimension tables, transformation and loading. Ifa fact is an aggregated fact,
reducers are configured for computing measures on all tuples using aggregation functions such assum,
average andcount. To optimize performance, reducers can be omitted if no aggregation is required
(dotted ellipses shown in Figure 2). Further, dimensions can be read fully or partially into main memory to
speed up the lookups of dimension keys, and bulk-loads are employed to transfer the processed data from
main memory to the DW at run-time.

Algorithm 1 details the whole process. The operations in lines 2-4 and 6-7 are the MapReduce steps
which are responsible for initialization, invoking jobs for processing dimensions and facts, and returning
processing information. Line 1 and 5 are the non-MapReduce steps whichare used for preparing input data
sets and synchronizing dimensions among nodes (if no distributed file system(DFS) is installed).

Algorithm 1 ETL process on MapReduce framework
1: Partition the input data sets;
2: Read the configuration parameters (Table 1) and initialize;
3: Read the input data and relay the data to the map function in the map readers;
4: Process dimension data and load it into online/offline dimension stores;
5: Synchronize the dimensions across the clustered computers, if applicable;
6: Prepare fact processing (connect to and cache dimensions);
7: Read the input data for fact processing and perform transformations in mappers;
8: Bulk-load fact data into the DW.

In ETLMR, all run-time parameters are stored in a single configuration file, including the settings of
data sources, partitioning methods such as the keys for partitioning, dimensions, facts, data-intensive (big)
dimensions, and the number of mappers and reducers. Table 1 summarizes the key configuration parameters.
These parameters provide users with flexibility to configure the tasks to be more efficient. For example, if
a user knows that a dimension is a data-intensive dimension, (s)he can addit to the listbigdims so that an
appropriate processing method can be chosen to achieve better performance and load balancing.

Algorithm 1 details the ETLMR process on a MapReduce framework. The operations in lines 2-4 and
6-7 are MapReduce steps, which are responsible for initialization, invoking jobs for processing dimensions
and facts, and returning processing information. Line 1 and 5 are non-MapReduce steps, which are used for

4

Table 1: The key configuration parameters
Parameters Description
Dimi Dimension table definition,i = 1, . . . , n
Facti Fact table definition,i = 1, . . . ,m
Setbigdim data-intensive dimensions whose business keys are used forpartitioning the data sets

if applicable
Dimi(a0, a1, ..., an) Define the relevant attributesa0, a1, ..., an of Dimi in data source
DimScheme Dimension scheme, online/offline (online is the default)
nr reduce Number of reducers
nr map Number of mappers

preparing input data sets and synchronizing dimensions among nodes (if no distributed file system (DFS) is
installed).

In ETLMR, all run-time parameters are stored in a single configuration file, including the settings of
data sources, partitioning methods such as the keys for partitioning, dimensions, facts, data-intensive (big)
dimensions, and the number of mappers and reducers. Table 1 summarizes the key configuration parameters.
These parameters provide users with flexibility to configure the tasks to be more efficient. For example, if
a user knows that a dimension is a data-intensive dimension, (s)he can addit to the listbigdims so that an
appropriate processing method can be chosen to achieve better performance and load balancing.

4 Dimension Processing

In ETLMR, each dimension table has a corresponding definition in the configuration file. For exam-
ple, we define the object for the dimension tabletestdimof the running example bytestdim = Cached-
Dimension(name=’testdim’, key=’testid’, defaultidvalue =-1, attributes=[’testname’, ’testauthor’], looku-
patts=[’testname’,]). It is declared as a cached dimension which means that its data can be temporarily
kept in memory. ETLMR also offers other dimension classes for declaring different dimension tables, in-
cludingSlowlyChangingDimensionandSnowflakedDimension, each of which are configured by means of
a number of parameters for specifying the name of the dimension table, the dimension key, the attributes
of dimension table, the lookup attributes (which identify a row uniquely), and others. Each class offers a
number of functions for dimension operations such aslookup, insert, ensure, etc.

ETLMR employs MapReduce’s primitivesmap, partition, combine, andreduceto process data. This
is, however, hidden from the user who only specifies transformations applied to the data and declarations
of dimension tables and fact tables. A map/reduce task reads data by iteratingover lines from a partitioned
data set. A line is first processed bymap, then bypartition which determines the target reducer, and then
by combinewhich groups values having the same key. The data is then written to an intermediate file (there
is one file for each reducer). In the reduce step, a reduce reader reads a list of key/values pairs from an
intermediate file and invokesreduceto process the list. In the following, we present different approaches to
process dimension data.

4.1 One Dimension One Task

In this approach, map tasks process data for all dimensions by applying user-defined transformations and
by finding the relevant parts of the source data for each dimension. The data for a given dimension is then
processed by a single reduce task. We name this methodone dimension one task(ODOTfor short).

The data unit moving around within ETLMR is a dictionary mapping attribute names tovalues. Here,
we call it arow, e.g.,row={’url’:’www.dom0.tl0/p0.htm’,’size’: ’12553’,’serverversion’:’SomeServer/1.0’,

5

’downloaddate’:’2011-01-31’,’lastmoddate’: ’2011-01-01’, ’test’:’Test001’, ’errors’:’7’}. ETLMR reads
lines from the input files and passes them on as rows. A mapper does projection on rows to prune unneces-
sary data for each dimension and makes key/value pairs to be processed by reducers. If we definedimi for
a dimension table and its relevant attributes,(a0, a1..., an), in the data source schema, the mapper will gen-
erate the map output,(key, value) = (dimi.name,

∏
a0,a1,...,an

(row)) wherename represents the name
of dimension table. The MapReduce partitioner partitions map output based onthe key, i.e.,dimi.name,
such that the data ofdimi will go to a single reducer (see Figure 3). To optimize, the values with identical
keys (i.e., dimension table name) are combined in the combiner before they are sent to the reducers such
that the network communication cost can be reduced. In a reducer, a rowis first processed by UDFs to do
data transformations, then the processed row is inserted into the dimension store, i.e., the dimension table
in the DW or in an offline dimension store (described later). When ETLMR does this data insertion, it has
the following reducefunctionality: If the row does not exist in the dimension table, the row is inserted.
If the row exists and its values are unchanged, nothing is done. If there are changes, the row in the ta-
ble is updated accordingly. The ETLMR dimension classes provide this functionality in a single function,
dimi.ensure(row). For an SCD, this function adds a new version if needed, and updates thevalues of the
SCD attributes, e.g., the validto and version.

We have now introduced the most fundamental method for dimension processing where only a limited
number of reducers can be utilized. Therefore, its drawback is that it is not optimized for the case where
some dimensions contain large amounts of data, namely data-intensive dimensions.

Figure 3: ODOT Figure 4: ODAT

4.2 One Dimension All Tasks

We now describe another approach in which all reduce tasks process data for all dimensions. We name it
one dimension all tasks(ODAT for short). In some cases, the data volume of a dimension is very large,
e.g., thepagedimdimension in the running example. If we employ ODOT, the task of processing data for
this dimension table will determine the overall performance (assume all tasks run on similar machines). We
therefore refine the ODOT in two places, the map output partition and the reduce functions. With ODAT,
ETLMR partitions the map output by round-robin partitioning such that the reducers receive equally many
rows (see Figure 4). In the reduce function, two issues are considered in order to process the dimension data
properly by the parallel tasks:

The first issue is how to keep the uniqueness of dimension key values as thedata for a dimension table
is processed by all tasks. We propose two approaches. The first oneis to use a global ID generator and
usepost-fixing(detailed in Section 4.4) to merge rows having the same values in the dimensionlookup
attributes (but different key values) into one row. The other approachis to use private ID generators and
post-fixing. Each task has its own ID generator, and after the data is loaded into the dimension table, post-
fixing is employed to fix the resulting duplicated key values. This requires the uniqueness constraint on the
dimension key to be disabled before the data processing.

The second issue is how to handle concurrency problem when data manipulation language (DML) SQL
such as UPDATE, DELETE, etc. is issued by several tasks. Consider,for example, the type-2 SCD table

6

pagedimfor which INSERTs and UPDATEs are frequent (the SCD attributesvalidfrom and validto are
updated). There are at least two ways to tackle this problem. The first oneis row-based commit in which a
COMMIT is issued after every row has been inserted so that the inserted row will not be locked. However,
row-based commit is more expensive than transaction commit, thus, it is not very useful for a data-intensive
dimension table. Another and better solution is to delay the UPDATE to the post-fixing which fixes all the
problematic data when all the tasks have finished.

In the following section, we propose an alternative approach for processing snowflaked dimensions
without requiring the post-fixing.

4.3 Snowflaked Dimension Processing

In a snowflake schema, dimensions are normalized meaning that there are foreign key references and hi-
erarchies between dimension tables. If we consider the dependencies when processing dimensions, the
post-fixing step can be avoided. We therefore propose two methods particularly for snowflaked dimensions:
level-wise processingandhierarchy-wise processing.

Figure 5: Level-wise processing Figure 6: Hierarchy-wise processing

Level-wise processingThis refers to processing snowflaked dimensions in an order from the leaves
towards the root (the dimension table referred by the fact table is the root and a dimension table without
a foreign key referencing other dimension tables is a leaf). The dimension tables with dependencies (i.e.,
with foreign key references) are processed in sequential jobs, e.g.,Job1depends onJob0, andJob2depends
on Job1in Figure 5. Each job processes independent dimension tables (without direct and indirect foreign
key references) by parallel tasks, i.e., one dimension table is processedby one task. Therefore, in the
level-wise processing of the running example,Job0first processestopdomaindimandserverdimin parallel,
thenJob1processesdomaindimandserverversiondim, and finallyJob2processespagedim, datedimand
testdim. It corresponds to the configurationloadorder = [(’topdomaindim’, ’serverdim’), (’domaindim’,
’serverversiondim’), (’pagedim’, ’datedim’, ’testdim’)]. With this order, a higher level dimension table (the
referencing dimension table) is not processed until the lower level ones (the referenced dimension tables)
have been processed and thus, the referential integrity can be ensured.

Hierarchy-wise processingThis refers to processing a snowflaked dimension in a branch-wise fashion
(see Figure 6). The root dimension,pagedim, derives two branches, each of which is defined as a sep-
arate snowflaked dimension, i.e.,domainsf = SnowflakedDimension([(domaindim, topdomaindim)]), and
serverversionsf = SnowflakedDimension([(serverversiondim, serverdim)]). They are processed by two par-
allel jobs,Job0andJob1, each of which processes in a sequential manner, i.e.,topdomaindimfollowed by
domaindimin Job0andserverdimfollowed byserverversiondimin Job1. The root dimension,pagedim, is
not processed until the dimensions on its connected branches have beenprocessed. It, together withdatedim
andtestdim, is processed by theJob2.

7

Figure 7: Before post-fixing Figure 8: After post-fixing

4.4 Post-fixing
As discussed in Section 4.2, post-fixing is a remedy to fix problematic data in ODAT when all the tasks
of the dimension processing have finished. Four situations require data post-fixing: 1) using a global ID
generator which gives rise to duplicated values in the lookup attributes; 2) using private ID generators
which produce duplicated key values; 3) processing snowflaked dimensions (andnot using level-wise or
hierarchy.wise processing) which leads to duplicated values in lookup andkey attributes; and 4) processing
slowly changing dimensions which results in SCD attributes taking improper values.

Example 1 (Post-fixing) Consider two map/reduce tasks, task 1 and task 2, that process thepage dimen-
sion which we here assume to be snowflaked. Each task uses a private IDgenerator. The root dimension,
pagedim, is a type-2 SCD. Rows with the lookup attribute value url=’www.dom2.tl2/p0.htm’are processed
by both the tasks.

Figure 7 depicts the resulting data in the dimension tables where the white rows were processed by task 1
and the grey rows were processed by task 2. Each row is labelled with thetaskid of the task that processed
it. The problems include duplicate IDs in each dimension table and improper values in the SCD attributes,
validfrom, validto, andversion. The post-fixing program first fixes thetopdomaindim such
that rows with the same value for the lookup attribute (i.e.,url) are merged into one row with a single ID.
Thus, the two rows withtopdom = tl2 are merged into one row. The references totopdomaindim from
domaindim are also updated to reference the correct (fixed) rows. In the same way,pagedim is updated
to merge the two rows representing www.dom2.tl2. Finally,pagedim is updated. Here, the post-fixing also
has to fix the values for the SCD attributes. The result is shown in Figure 8.

Algorithm 2 post fix(dim)
refdims← The referenced dimensions ofdim
for ref in refdimsdo

itr ← post fix(ref)
for ((taskid, keyvalue), newkeyvalue) in itr do

Updatedim setdim.key = newkeyvaluewheredim.taskid=taskidanddim.key=keyvalue

ret ← An empty list
Assignnewkeyvalues todim’s keys and add ((taskid, keyvalue), newkeyvalue) to ret
if dim is not the rootthen

Delete the duplicate rows, which have identical values indim’s lookup attributes

if dim is a type-2 SCDthen
Fix the values on SCD attributes, e.g., dates and version

return ret

The post-fixing invokes a recursive function (see Algorithm 2) to fix the problematic data in the order
from the leaf dimension tables to the root dimension table. It comprises four steps: 1) assign new IDs
to the rows with duplicate IDs; 2) update the foreign keys on the referencing dimension tables; 3) delete

8

duplicated rows which have identical values in the business key attributes and foreign key attributes; and 4)
fix the values in the SCD attributes if applicable. In most cases, it is not needed to fix something in each
of the steps for a dimension with problematic data. For example, if a global ID generator is employed,
all rows will have different IDs (such that step 1 is not needed) but they may have duplicate values in the
lookup attributes (such that step 3 is needed). ETLMR’s implementation uses an embedded SQLite database
for data management during the post-fixing. Thus, the task IDs are not stored in the target DW, but only
internally in ETLMR.

4.5 Offline Dimension

In ODOT and ODAT, the map/reduce tasks interact with the DW’s (“online”) dimensions directly through
database connections at run-time and the performance is affected by the outside DW DBMS and the database
communication cost. To optimize, theoffline dimensionscheme is proposed, in which the tasks do not in-
teract with the DW directly, but with distributed offline dimensions residing physically in all nodes. It
has several characteristics and advantages. First, a dimension is partitioned into multiple smaller-sized
sub-dimension, and small-sized dimensions can benefit dimensionlookups, especially for a data-intensive
dimension such aspagedim. Second, high performance storage systems can be employed to persist dimen-
sion data. Dimensions are configured to be fully or partially cached in main memory to speedup thelookups
when processing facts. In addition, offline dimensions do not require direct communication with the DW
and the overhead (from the network and the DBMS) is greatly reduced. ETLMR has offline dimension
implementations for one dimension one task (ODOT (offline)for short) andhybrid, which are described in
the following.

4.5.1 ODOT (offline)

Figure 9 depicts the run-time architecture when we use two map/reduce tasks toprocess data. The data for
each dimension table is saved locally in its own store in the node that processesit or in the DFS (shown in
the center of the Figure 9). The data for a dimension table is processed by one and only one reduce task,
which resembles to the online ODOT, and does the following: 1) Select the values of the fields that are
relevant to the dimension table in mappers; 2) Partition the map output based on the names of dimension
table; 3) Process the data for dimension tables by using user-defined transformation functions in the reducers
(a reducer only processes the data for one dimension table); 4) When allmap/reduce tasks have finished, the
data for all dimension tables are synchronized across the nodes if no DFSis installed (here, only the data
files of the offline dimension stores are synchronized).

Figure 9: ODOT (offline) Figure 10: Hybrid

9

4.5.2 Hybrid

Hybrid combines the characteristics of ODOT and ODAT. In this approach,the dimensions are divided
into two groups, the most data-intensive dimension and the other dimensions. The input data for the most
data-intensive dimension table is partitioned based on the business keys, e.g., on theurl of pagedim, and
processed by all the map tasks (this is similar to ODAT), while for the other dimension tables, their data is
processed in reducers, a reducer exclusively processing the data for one dimension table (this is similar to
ODOT).

This corresponds to the following steps: 1) Choose the most data-intensive dimension and partition the
input data sets, for example, on the business key values; 2) Process thechosen data-intensive dimension and
select the required data for each of the other dimensions in the mappers; 3)Round-robin partition the map
output; 3) Process the dimensions in the reducers (each is processed byone reducer); 4) When all the tasks
have finished, synchronize all the processed dimensions across the nodes if no DFS is installed, but keep
the partitioned data-intensive dimension in all nodes.

Example 2 (Hybrid) Consider using two parallel tasks to process the dimension tables of the running
example (see the upper part in Figure 10). The data for the most data-intensive dimension table,pagedim,
is partitioned into a number of chunks based on the business keyurl. The chunks are processed by two
mappers, each processing a chunk. This results to two offline stores forpagedim, pagedim-0 and
pagedim-1. However, the data for the other dimension tables is processed similarly to theoffline ODOT,
which results in the other two offline dimension stores,datedim andtestdim, respectively.

In the offline dimension scheme, the dimension data in the offline store is expected to reside in the nodes
permanently and will not be loaded into the DW until this is explicitly requested.

5 Fact Processing

Fact processing is the second phase in ETLMR, which consists of lookingup of dimension keys, doing ag-
gregation on measures (if applicable), and loading the processed facts into the DW. Similarly to the dimen-
sion processing, the definitions and settings of fact tables are also declared in the configuration file. ETLMR
provides theBulkFactTableclass which supports bulk loading of facts to DW. For example, the fact tableof
the running example is defined astestresultsfact=BulkFactTable(name=’testresultsfact’, keyrefs=[’pageid’,
’testid’, ’dateid’], measures=[’errors’], bulkloader=UDFpgcopy, bulksize=5000000). The parameters are
the fact table name, a list of the keys referencing dimension tables, a list of measures, the bulk loader func-
tion, and the size of the bulks to load. The bulk loader is a UDF which can be configured to satisfy different
types of DBMSs.

Algorithm 3 shows the pseudo code for processing facts.

Algorithm 3 process fact(row)

Require: A row from the input data and theconfig
1: facttbls← the fact tables defined inconfig
2: for facttbl in facttbls do
3: dims← the dimensions referenced byfacttbl
4: for dim in dims do
5: row[dim.key]← dim.lookup(row)

6: rowhandlers← facttbl.rowhandlers
7: for handlerin rowhandlersdo
8: handler(row)
9: facttbl.insert(row)

10

The function can be used as the map function or as the reduce function. Ifno aggregations (such as
sum, average, or count) are required, the function is configured to be the map function and the reduce
step is omitted for better performance. If aggregations are required, the function is configured to be the
reduce function since the aggregations must be computed from all the data.This approach is flexible and
good for performance. Line 1 retrieves the fact table definitions in the configuration file and they are then
processed sequentially in line 2–8. The processing consists of two major operations: 1) look up the keys
from the referenced dimension tables (line 3–5), and 2) process the fact data by therowhandlers, which are
user-defined transformation functions used for data type conversions, calculating measures, etc. (line 6–8).
Line 9 invokes the insert function to insert the fact data into the DW. The processed fact data is not inserted
into the fact table directly, but instead added into a configurably-sized buffer where it is kept temporarily.
When a buffer becomes full, its data is loaded into the DW by using the bulk load.Each map/reduce task
has a separate buffer and bulk loader such that tasks can do bulk loading in parallel.

6 Implementation and Optimization

ETLMR is designed to achieve plug-in like functionality to facilitate the integration with Python-supporting
MapReduce frameworks. In this section, we introduce the ETL programmingframework,pygrametlwhich
is used to implement ETLMR. Further, we give an overview of MapReduce frameworks with a special
focus on Disco [2] which is our chosen MapReduce platform. The integration and optimization techniques
employed are also described.

6.1 pygrametl

pygrametl was implemented in our previous work [17]. It has a number of characteristics and function-
alities. First, it is a code-based ETL framework with very high efficiency in development due to its sim-
plicity and use of Python. Second, it supports processing of dimensions inboth star schema and snowflake
schema and it, further, provides direct support of slowly changing dimensions. Regardless of the dimension
type, the ETL implementation is very concise and convenient. It uses an object to represent a dimension.
Only a single method call such asdimobj.insert(row) is needed to insert new data. In this method
call, all details, such as key assignment and SQL generation, are transparent to users.pygrametl sup-
ports the most commonly used operations on a dimension, such aslookup, insert, ensure. Third,
pygrametl supports caching, batch insertion, and bulk-load. In the implementation of ETLMR, most
functions offered bypygrametl can be re-used, but some of them need to be extended or modied to
support the MapReduce operations.

6.2 MapReduce Frameworks

There are many open source and commercial MapReduce frameworks available. The most popular one is
Apache Hadoop [4], which is implemented in Java and includes a distributed filesystem (HDFS). Hadoop
is embraced by a variety of academic and industrial users, including Amazon, Yahoo!, Facebook, and many
others [1]. Google’s MapReduce implementation is extensively used inside the company, but is not available
for public. Apart from them, many companies and research units develop their own MapReduce frameworks
for their particular needs, such as [14, 21, 11].

For ETLMR, we select the open source framework, Disco [2], as the MapReduce platform. Disco is
developed by Nokia using the Erlang and Python programming languages. Disco is chosen for the following
reasons. First, Disco’s use of Python, facilitates rapid scripting for distributed data processing programs,
e.g., a complicated program or algorithm can be expressed in tens of lines ofcode. This feature is consistent
with our aim of providing users a simple and easy means of implementing a parallelETL. Second, Disco

11

achieves a high degree of flexibility by providing many customizable MapReduce programming interfaces.
These make the integration of ETLMR very convenient by having a ”plug-in” like effect. Third, unlike the
alternatives, it provides direct support for the distributed programs written in Python. Some MapReduce
frameworks, implemented in other programming languages, also claim to support Python programs, e.g.,
Hadoop, but they require bridging middle-ware and are, thus, not implementation-friendly.

6.3 Integration with Disco

Disco’s architecture shares clear similarities to the Google and Hadoop MapReduce architectures, in which
intermediate results are stored as local files and accessed by appropriatereduce tasks. However, the current
Disco (version 0.2.4) does not include a built-in distributed file system (DFS), but it supports any POSIX-
compatible DFS such as GlusterFS. If no DFS is installed, the input files are required to be distributed
initially to each node so that they can be read locally [2]. The integration with Disco is through functional
assignment statements, or function parameters, where the parallel ETL functions work as function objects
passed directly to the corresponding interfaces from Disco.

We present the architecture of ETLMR on Disco in Figure 11, where all ETLMR processes are running
in parallel on many processors of clustered computers (or nodes). Thisarchitecture is capable of shortening
the time of data extract-transform-load by scaling up to any size of the nodes inthe cluster. Disco has a
master/worker architecture with one master and many workers. The master is responsible for scheduling
the jobs’ components(tasks) to run on the workers, assigning partitioned data sets to the workers, tracking
the status, and monitoring the health of the workers. Disco uses HTTP as the communication protocol to
distribute jobs. When the master receives ETL jobs, it puts them to a queue and distributes them to the
available workers. In each node, there is a worker supervisor startedby the master which is responsible for
spawning and monitoring all tasks on that particular node. When a worker receives a task, it runs this task
exclusively in a processor of this node, processes the input data, andsaves the processed data to the DW.

Figure 11: Parallel ETL overview

The master-workers architecture has a highly fault-tolerant mechanism. Itachieves reliability by dis-
tributing the input files to the nodes in the cluster. Each worker reports to the master periodically with the
completed tasks and their status. If a worker falls silent for longer than an interval, the master will record
this worker as dead and send out the node’s assigned tasks to the other workers.

6.4 Optimizations

The map readers that come with Disco (version 0.2.4) only support read operations on data files. The data
sets from different storage systems must, therefore, be prepared into data files. Each file is provided with a
unique address for map readers, such as a URL, file path, or distributedfile path. In many cases, however, a

12

data source may be a database, or an indexed file structure, so that we can make use of its indices for efficient
filtering, i.e., rather than returning all the data, only the columns needed for processing, or a sub-range of
the data, are selected. If the data sets are pre-split, such as several data files from heterogeneous systems, the
split parts are directly processed and combined in MapReduce. Different map readers are implemented in
ETLMR for reading data from different storage systems, such as the DBMS reader supporting user-defined
SQL statements and text file reader. If the data sets are not split, such as a big data file, Dean and Ghemwat
[8] suggest utilizing many MapReduce processes to run complete passes over the data sets, and process the
subsets of the data. Accordingly, we implement such a map reader (see Program 1). It supports reading data
from a single data source, but does not require the data sets to be split before being processed. In addition,
we implement the offline dimension scheme by using the Pythonshelve package [3], in which main-
memory database systems, such asbsdbdb, can be configured to persist dimension data. At run-time, the
dimension data is fully or partially (byleast recently used(LRU) mechanism) kept in main memory such
that thelookupoperation can be done efficiently.

Program 1 Map reader function
def map_reader(content, bkey, thispartition=this_partition()):
while True:

line = content.next()
if not line:

break
if (hash(line[bkey])%Task.num_partitions)==thispartition:

yield line

7 Experimental Evaluation

In this section, we measure the performance improvements achieved by the proposed methods. Further,
we evaluate the system scalability on various sizes of tasks and data sets andcompare with other business
intelligence tools using MapReduce.

7.1 Experimental Setup

All experiments are conducted on a cluster of 6 nodes connected througha gigabit switch and each having
an Intel(R) Xeon(R) CPU X3220 2.4GHz with 4 cores, 4 GB RAM, and a SATA hard disk (350 GB, 3
GB/s, 16 MB Cache and 7200 RPM). All nodes are running the Linux 2.6.32kernel with Disco 0.2.4,
Python 2.6, and ETLMR installed. The GlusterFS DFS is set up for the cluster. PostgreSQL 8.3 is used for
the DW DBMS and is installed on one of the nodes. One node serves as the master and the others as the
workers. Each worker runs 4 parallel map/reduce tasks, i.e., in total 20 parallel tasks run. The time for bulk
loading is not measured as the way data is bulk loaded into a database is an implementation choice which is
independent of and outside the control of the ETL framework. To includethe time for bulk loading would
thus clutter the results. We note that bulk loading can be parallelized using off-the-shelf functionality.

7.2 Test Data

We continue to use the running example. We use a data generator to generatethe test data for each ex-
periment. In line with Jean and Ghemawat’s assumption that MapReduce usuallyoperates on numerous
small files rather than a single, large, merged file [8], the test data sets are partitioned and saved into a set
of files. These files provide the input for the dimension and fact processing phases. We generate two data

13

Figure 12: Parallel ETL for
snowflake schema, 20 GB

Figure 13: Parallel ETL for star
schema, 20 GB

Figure 14: Speedup with increas-
ing tasks, 80 GB

sets,bigdimandsmalldimwhich differ in the size of thepagedimension. In particular, 80 GBbigdimdata
results in 10.6 GB fact data (193,961,068 rows) and 6.2 GBpagedimension data (13,918,502 rows) in the
DW while 80 GBsmalldimdata results in 12.2 GB (222,253,124 rows) fact data and 54 MBpagedimension
data (193,460 rows) in the DW. Both data sets produce 32 KBtest(1,000 rows) and 16 KBdatedimension
data (1,254 rows).

7.3 Scalability of Proposed Processing Methods

In this experiment, we compare the scalability and performance of the different ETLMR processing meth-
ods. We use a fixed-sizebigdim data set (20 GB), scale the number of parallel tasks from 4 to 20,
and measure the total elapsed time from start to finish. The results for a snowflake schema and a star
schema are shown in Figure 12 and Figure 13, respectively. The graphs show thespeedup, computed by
T4,odot,snowflake/Tn whereT4,odot,snowflake is the processing time forODOT using 4 tasks in a snowflake
schema andTn is the processing time when usingn tasks for the given processing method.

We see that the overall time used for the star schema is less than for the snowflake schema. This
is because the snowflake schema has dimension dependencies and hierarchies which require more (level-
wise) processing. We also see that the offline hybrid scales the best andachieves almost linear speedup.
The ODAT in Figure 13 behaves similarly. This is because the dimensions and facts in offline hybrid and
ODAT are processed by all tasks which results in good balancing and scalability. In comparison, ODOT,
offline ODOT, level-wise, and hierarchy-wise do not scale as well as ODAT and hybrid since only a limited
number of tasks are utilized to process dimensions (a dimension is only processed in a single task). The
offline dimension scheme variants outperform the corresponding online ones, e.g., offline ODOT vs. ODOT.
This is caused by 1) using a high performance storage system to save dimensions on all nodes and provide
in-memory lookup; 2) The data-intensive dimension,pagedim, is partitioned into smaller chunks which
also benefits the lookup; 3) Unlike the online dimension scheme, the offline dimension scheme does not
communicate directly with the DW and this reduces the communication cost considerably. Finally, the
results show the relative efficiency for the optimized methods which are much faster than the baseline
ODOT.

14

7.4 System Scalability

In this experiment, we evaluate the scalability of ETLMR by varying the number of tasks and the size of the
data sets. We select the hybrid processing method, use the offline dimensionscheme, and conduct the testing
on a star schema, as this method not only can process data among all the tasks(unlike ODOT in which only
a limited number of tasks are used), but also showed the best scalability in the previous experiment. In
the dimension processing phase, the mappers are responsible for processing the data-intensive dimension
pagedimwhile the reducers are responsible for the other two dimensions,datedimandtestdim, each using
only a single reducer. In the fact processing phase, no reducer is used as no aggregation operations are
required.

We first do two tests to get comparison baselines by using one task (named1-task ETLMR) and (plain,
non-MapReduce)pygrametl, respectively. Here, pygrametl also employs 2-phase processing, i.e.,the di-
mension processing is done before the fact processing. The tests are done on the same machine with a single
CPU (all cores but one are disabled). The tests process 80 GBbigdimdata. We compute the speedups by
usingT1/Tn whereT1 represents the elapsed time for 1-task ETLMR or for pygrametl, andTn the time for
ETLMR usingn tasks. Figure 14 shows that ETLMR achieves a nearly linear speedup in the number of
tasks when compared to 1-task ETLMR (the line on the top). When compared topygrametl, ETLMR has a
nearly linear speedup (the lower line) as well, but the speedup is a little lower.This is because the baseline,
1-task ETLMR, has a greater value due to the overhead from the MapReduce framework.

To learn more about the details of the speedup, we break down the execution time of the slowest task
by reference to the MapReduce steps when using the two data sets (see Table 2). As the time for dimension
processing is very small forsmalldimdata, e.g., 1.5 min for 4 tasks and less than 1 min for the others, only
its fact processing time is shown. When thebigdim data is used, we can see that partitioning input data,
map, partitioning map output (dims), and combination (dims) dominate the execution.More specifically,
partitioning input data and map (see thePart.InputandMap func.columns) achieve a nearly linear speedup
in the two phases. In the dimension processing, the map output is partitioned and combined for the two
dimensions,datedimand testdim. Also here, we see a nearly linear speedup (see thePart. and Comb.
columns). As the combined data of each is only processed by a single reducer, the time spent on reducing
is proportional to the size of data. However, the time becomes very small sincethe data has been merged in
combiners (seeRed. func.column). The cost of post-fixing after dimension processing is not listed in the
table since it is not required in this case where a global key generator is employed to create dimension IDs
and the input data is partitioned by the business key of the SCDpagedim(see section 4.4).

Table 2: Execution time distribution, 80 GB (min.)
Testing data Phase Task

Num
Part.
Input

Map
func.

Part. Comb. Red.
func.

Others Total

bigdim data

dims

4 47.43 178.97 8.56 24.57 1.32 0.1 260.95
8 25.58 90.98 4.84 12.97 1.18 0.1 135.65
12 17.21 60.86 3.24 8.57 1.41 0.1 91.39
16 12.65 47.38 2.50 6.54 1.56 0.1 70.73
20 10.19 36.41 1.99 5.21 1.32 0.1 55.22

(results in

facts

4 47.20 183.24 0.0 0.0 0.0 0.1 230.44
10.6GB
facts)

8 24.32 92.48 0.0 0.0 0.0 0.1 116.80

12 16.13 65.50 0.0 0.0 0.0 0.1 81.63
16 12.12 51.40 0.0 0.0 0.0 0.1 63.52
20 9.74 40.92 0.0 0.0 0.0 0.1 50.66

smalldim data facts

4 49.85 211.20 0.0 0.0 0.0 0.1 261.15
8 25.23 106.20 0.0 0.0 0.0 0.1 131.53
12 17.05 71.21 0.0 0.0 0.0 0.1 88.36

(results in 16 12.70 53.23 0.0 0.0 0.0 0.1 66.03
12.2GB
facts)

20 10.04 42.44 0.0 0.0 0.0 0.1 52.58

15

In the fact processing, the reduce function needs no execution time as there is no reducer. The time
for all the other parts, including map and reduce initialization, map output partitioning, writing and reading
intermediate files, and network traffic, is relatively small, but it does not necessarily decrease linearly when
more tasks are added (Otherscolumn). To summarize (seeTotal column), ETLMR achieves a nearly linear
speedup when the parallelism is scaled up, i.e., the execution time of 8 tasks is nearly half that of 4 tasks,
and the execution time of 16 tasks is nearly half that of 8 tasks.

Table 2 shows some overhead in the data reading (seePart. inputcolumn) which uses nearly 20% of
the total time. We now compare the two approaches for reading data, namely when it is split into several
smaller files (“pre-split”) and when it is available from a single big file (“no-split”). We usebigdimdata and
only process dimensions.

We express the performance improvement by the speedup,T4,no-split/Tn, whereT4,no-split is the time
taken to read data and process dimensions on the no-split data using 4 tasks(on 1 node), andTn is the time
when usingn tasks. As illustrated in Figure 15, for no-split, the time taken to read data remainsconstant
with increasing number of tasks as all read the same data sets. When the data ispre-split, the time taken
to read data and process dimensions scales much better than for no-split since a smaller sized data set is
processed by each task. In addition, pre-split is inherently faster – by afactor of 3 – than no-split. The slight
sub-linear scaling is seen because the system management overhead (e.g., the time spent on communication,
adjusting, and maintaining the overall system) increases with the growing number of tasks. However, we
can conclude that pre-split is by far the best option.

Figure 15: Speedup of pre-split
and no split, 20 GB

Figure 16: Proc. time when
scaling up bigdim data

Figure 17: Proc. time when
scaling up smalldim data

We now proceed to another experiment where we for a given number of tasks size up the data sets from
20 to 80 GB and measure the elapsed processing time. Figure 16 and Figure 17 show the results for the
bigdim andsmalldimdata sets, respectively. It can be seen that ETLMR scales linearly in the size of the
data sets.

7.5 Comparison with Other Data Warehousing Tools

There are some MapReduce data warehousing tools available, including Hive [18, 19], Pig [12] and Pentaho
Data Integration (PDI) [5]. Hive and Pig both offer data storage on the Hadoop distributed file system
(HDFS) and scripting languages which have some limited ETL abilities. They areboth more like a DBMS
instead of a full-blown ETL tool. Due to the limited ETL features, they cannot process an SCD which
requires UPDATEs, something Hive and Pig do not support. It is possibleto process star and snowflake
schemas, but it is complex and verbose. To load data into asimplifiedversion of our running example (with

16

no SCDs) require 23 statements in Pig and 40 statements in Hive. In ETLMR – whichin contrast to Pig
and Hive is dimensional – only 14 statements are required. ETLMR can also support SCDs with thesame
number of statements, while this would be virtually impossible to do in Pig and Hive. The details of the
comparison are seen in Appendix A.

PDI is an ETL tool and provides Hadoop support in its 4.1 GA version. However, there are still many
limitations with this version. For example, it only allows to set a limited number of parameters in the job
executor, customized combiner and mapper-only jobs are not supported,and the transformation components
are not fully supported in Hadoop. We only succeeded in making an ETL flow for the simplest star schema,
but still with some compromises. For example, a workaround is employed to load the processed dimension
data into the DW as PDI’stable outputcomponent repeatedly opens and closes database connections in
Hadoop such that performance suffers.

In the following, we compare how PDI and ETLMR perform when they process the star schema (with
pageas a normal dimension, not an SCD) of the running example. To make the comparison neutral, the
time for loading the data into the DW or the HDFS is not measured, and the dimensionlookup cache is
enabled in PDI to achieve a similar effect of ETLMR using offline dimensions.Hadoop is configured to
run 4 parallel task trackers in maximum on each node, and scaled by addingnodes horizontally. The task
tracker JVM option is set to be -Xmx256M while the other settings are left to the default.

Table 3 shows the time spent on processing 80 GBsmalldimdata when scaling up the number of tasks.
As shown, ETLMR is significantly faster than PDI for Hadoop in processing the data. Several reasons are
found for the differences. First, compared with ETLMR, the PDI job has one more step (the reducer) in
the fact processing as its job executor does not support a mapper-onlyjob. Second, by default the data in
Hadoop is split which results in many tasks, i.e., 1192 tasks for the fact data.Thus, longer initialization time
is observed. Further, some transformation components are observed to run with low efficiency in Hadoop,
e.g., the components to remove duplicate rows and to apply JavaScript.

Table 3: Time for processing star schema (no SCD), 80 GBsmalldimdata set, (min.)
Tasks 4 8 12 16 20

ETLMR 246.7 124.4 83.1 63.8 46.6
PDI 975.2 469.7 317.8 232.5 199.7

8 Related Work
We now compare ETLMR to other parallel data processing systems using MapReduce, and parallel DBMSs.
In addition, we study the current status of parallel ETL tools. MapReduceis a framework well suited for
large-scale data processing on clustered computers. However, it has been criticized for being too low-level,
rigid, hard to maintain and reuse [12, 18]. In recent years, an increasing number of parallel data processing
systems and languages built on the top of MapReduce have appeared. For example, besides Hive and Pig
(discussed in Section 7.5), Chaiken et al. present the SQL-like languageSCOPE [6] on top of Microsoft’s
Cosmos MapReduce and distributed file system. Friedman et al. introduce SQL/MapReduce [10], a user-
defined function (UDF) framework for parallel computation of procedural functions on massively-parallel
RDBMSs. These systems or languages vary in the implementations and functionalities provided, but overall
they give good improvements to MapReduce, such as high-level languages, user interfaces, schemas, and
catalogs. They process data by using query languages, or UDFs embedded in the query languages, and
execute them on MapReduce. However, they do not offer direct constructs for processing star schemas,
snowflaked dimensions, and slowly changing dimensions. In contrast, ETLMR runs separate ETL processes
on a MapReduce framework to achieve parallelization and ETLMR directly supports ETL constructs for
these schemas.

17

Another well-known distributed computing system is the parallel DBMS which first appeared two
decades ago. Today, there are many parallel DBMSs, e.g., Teradata, DB2, Objectivity/DB, Vertica, etc.
The principal difference between parallel DBMSs and MapReduce is that parallel DBMSs run long pipe-
lined queries instead of small independent tasks as in MapReduce. The database research community has
recently compared the two classes of systems. Pavlo et al. [13], and Stonebraker et al. [15] conduct
benchmarks and compare the open source MapReduce implementation Hadoop with two parallel DBMSs
(a row-based and a column-based) in large-scale data analysis. The results demonstrate that parallel DBMSs
are significantly faster than Hadoop, but they diverge in the effort needed to tune the two classes of systems.
Dean et al. [8] argue that there are mistaken assumptions about MapReduce in the comparison papers and
claim that MapReduce is highly effective and efficient for large-scale fault-tolerance data analysis. They
agree that MapReduce excels at complex data analysis, while parallel DBMSs excel at efficient queries on
large data sets [15].

In recent years, ETL technologies have started to support parallel processing. Informatica PowerCenter
provides a thread-based architecture to execute parallel ETL sessions. Informatica has also released Power-
Center Cloud Edition (PCE) in 2009 which, however, only runs on a specific platform and DBMS. Oracle
Warehouse Builder (OWB) supports pipeline processing and multiple processes running in parallel. Mi-
crosoft SQL Server Integration Services (SSIS) achieves parallelization by running multiple threads, mul-
tiple tasks, or multiple instances of a SSIS package. IBM InfoSphere DataStage offers a process-based
parallel architecture. In the thread-based approach, the threads arederived from a single program, and run
on a single (expensive) SMP server, while in the process-based approach, ETL processes are replicated to
run on clustered MPP or NUMA servers. ETLMR differs from the aboveby being open source and based
on MapReduce with the inherent advantages of multi-platform support, scalability on commodity clustered
computers, light-weight operation, fault tolerance, etc. ETLMR is also unique in being able to scale auto-
matically to more nodes (with no changes to the ETL flow itself, only to a configuration parameter) while
at the same time providing automatic data synchronization across nodes even for complex structures like
snowflaked dimensions and SCDs. We note that the licenses of the commercialETL packages prevent us
from presenting comparative experimental results.

9 Conclusion and Future Work
As business intelligence deals with continuously increasing amounts of data, there is an increasing need
for ever-faster ETL processing. In this report, we have presented ETLMR which builds on MapReduce to
parallelize ETL processes on commodity computers. ETLMR contains a numberof novel contributions.
It supports high-level ETL-specific dimensional constructs for processing both star schemas and snowflake
schemas, SCDs, and data-intensive dimensions. Due to its use of MapReduce, it can automatically scale
to more nodes (without modifications to the ETL flow) while it at the same time provides automatic data
synchronization across nodes (even for complex dimension structures like snowflakes and SCDs). Apart
from scalability, MapReduce also gives ETLMR a high fault-tolerance. Further, ETLMR is open source,
light-weight, and easy to use with a single configuration file setting all run-time parameters. The results of
extensive experiments show that ETLMR has good scalability and comparesfavourably with other MapRe-
duce data warehousing tools.

ETLMR comprises two data processing phases, dimension and fact processing. For dimension process-
ing, the report proposed a number of dimension management schemes and processing methods in order
to achieve good performance and load balancing. The online dimension scheme directly interacts with
the target DW and employs several dimension specific methods to process data, includingODOT, ODAT,
and level-wiseandhierarchy-wiseprocessing for snowflaked dimensions. The offline dimension scheme
employs high-performance storage systems to store dimensions distributedly on each node. The methods,
ODOT andhybrid allow better scalability and performance. In the fact processing phase, bulk-load is used
to improve the loading performance.

18

Currently, we have integrated ETLMR with the MapReduce framework, Disco. In the future, we in-
tend to port ETLMR to Hadoop and explore a wider variety of data storage options. In addition, we intend
to implement dynamic partitioning which automatically adjusts the parallel execution in response to ad-
ditions/removals of nodes from the cluster, and automatic load balancing whichdynamically distributes
jobs across available nodes based on CPU usage, memory, capacity and job size through automatic node
detection and algorithm resource allocation.

10 Acknowledgments

This work was in part supported by Daisy Innovation and the European Regional Development Fund and
the eGovMon project co-funded by the Research Council of Norway under the VERDIKT program (project
no. Verdikt 183392/S10)

References

[1] “Applications and organizations using Hadoop”. Available fromhttp://wiki.apache.org-
/hadoop/PoweredBy as of 2011-08-06.

[2] “Disco project”. Available fromhttp://discoproject.org/ as of 2011-08-06.

[3] “Shelve - Python object persistence”. Available fromhttp://docs.python.org/library/-
shelve.html as of 2011-08-06.

[4] “The Apache Hadoop Project”. Available fromhttp://hadoop.apache.org as of 2011-08-06.

[5] www.pentaho.com as of 2011-08-06.

[6] R. Chaiken, B. Jenkins, P. Larson, B. Ramsey, D. Shakib, S. Weaver and J. Zhou, “SCOPE: Easy and
Efficient Parallel Processing of Massive Data Sets”. InPVLDB, 1(2): 1265–1276, 2008.

[7] J. Dittrich, J. A. Quiane-Ruiz, A. Jindal, Y. Kargin, V. Setty and J. Schad, “Hadoop++: Making a
Yellow Elephant Run Like a Cheetah (Without It Even Noticing)”. InPVLDB, 3(1), 2010.

[8] J. Dean and S. Ghemawat, “MapReduce: A Flexible Data Processing Tool”. In CACM, 53(1): 72–77,
2010.

[9] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing onLarge Clusters”. InProc. of
OSDI, pp. 137–150, 2004.

[10] E. Friedman, P. Pawlowski, and J. Cieslewicz, “SQL/MapReduce: APractical Approach to Self-
describing, Polymorphic, and Parallelizable User-defined Functions”. In PVLDB, 2(2): 1402–1413,
2009.

[11] G. Kovoor, J. Singer and M. Lujan, “Building a Java MapReduce Framework for Multi-core Architec-
tures”. InProc. of MULTIPROG, 2010.

[12] C. Olston, B. Reed, U. Srivastava, R. Kumar and A. Tomkins, “Pig Latin: A Not-so-foreign Language
for Data Processing”. InProc. of SIGMOD, pp. 1099–1110, 2008.

[13] A. Pavlo, E. Paulson, A. Rasin, D. Abadi, D. DeWitt, S. Madden andM. Stonebraker, “A Comparison
of Approaches to Large-scale Data Analysis”. InProc. of SIGMOD, pp. 165–178, 2009.

19

[14] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski and C. Kozyrakis, “Evaluating MapReduce for
Multi-core and Multiprocessor Systems”. InProc. of HPCA, pp. 13–24, 2007.

[15] M. Stonebraker, D. Abadi, D. DeWitt, S. Madden, E. Paulson, A. Pavlo and A. Rasin, “MapReduce
and Parallel DBMSs: friends or foes?”. InCACM, 53(1): 64–71, 2010.

[16] C. Thomsen and T. Pedersen, “Building a Web Warehouse for Accessibility Data”. InProc. of DOLAP,
2009.

[17] C. Thomsen and T. Pedersen, “pygrametl: A Powerful ProgrammingFramework for Extract-
Transform-Load Programmers”. InProc. of DOLAP, 2009.

[18] A. Thusoo, J. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony,H. Liu, P. Wyckoff, and R. Murthy,
“Hive: A Warehousing Solution Over a Map-reduce Framework”. InPVLDB, 2(2): 1626–1629, 2009.

[19] A. Thusoo, J. Sarma, N. Jain, Z. Shao, P. Chakka, N. Zhang, S. Anthony, H. Liu and R. Murthy,
“Hive-A Petabyte Scale Data Warehouse Using Hadoop”. InProc. of ICDE, pp. 996–1005, 2010.

[20] P. Vassiliadis and A. Simitsis, “Near Real Time ETL”. InJ. of New Trends in Data Warehousing and
Data Analysis, pp. 1–31, 2008.

[21] R. Yoo, A. Romano and C. Kozyrakis, “Phoenix Rebirth: Scalable MapReduce on a Large-scale
Shared-memory System”. InProc. of IISWC, pp. 198–207, 2009.

Appendix

A Comparison with other MapReduce tools for BI

ETL tools are used for extracting, transforming and loading data into a data warehouse. While this in some
cases can be done by only using DBMS software, the typical scenario is that a specialized, stand-alone
ETL tool is used. The reason is that ETL tools allow users to do things that are difficult to do with DBMS
software such as reading different file formats, copying and writing filesin different formats, sending email
notifications, connecting to web services, etc. The large amount of different ETL tools available on the
market in itself proves the industry-need for stand-alone ETL tools. In thefollowing we compare ETLMR
to Hive [18, 19] and Pig [12] which are generic MapReduce-based data warehouse systems for storing data
and analysis. This is thus somewhat similar to comparing ETL tools and DBMSs, but for completeness
we include the comparisons here. Unlike Hive and Pig, ETLMR does not have its own data storage (note
that the offline dimension store is only for speedup purpose), but is an ETL tool suitable for processing
large scale data in parallel. Hive and Pig share large similarity, such as usingHadoop MapReduce, using
Hadoop distributed file system (HDFS) as their data storage, integrating a command line user interface,
implementing a query language, being able to do some ETL data analysis, and others. In the following, we
compare their ETL features with ETLMR.

Table 4 summarizes the comparison. First, each system has a user interface. Hive provides an SQL-
like language HiveQL and a shell, Pig provides a scripting language Pig Latinand a shell, and ETLMR
provides a configuration file to declare dimensions, facts, UDFs, and other run-time parameters. Unlike
Hive and Pig which require users to write data processing scripts explicitly,ETLMR is intrinsically an
ETL tool which implements ETL process within the framework. The advantage isthat users do not have
to learn the details of each ETL step, and are able to craft a parallel ETL program even without much
ETL knowledge. Second, each system supports UDFs. In Hive and Pig, an external function or user
customized code for a specific task can be implemented as a UDF, and integrated into their own language,

20

Table 4: The comparison of ETL features
Feature ETLMR HIVE PIG
User Interface Configuration file Shell/HiveQL/Web

JDBC/ODBC
Shell/Pig Latin

ETL knowledge required Low High High
User Defined Functions
(UDF)

Yes Yes Yes

Filter/Aggregation/Join Yes Yes Yes
Star Schema Yes (explicit) By handcode (implicit) By handcode (implicit)
Snowflake Schema Yes (explicit) By handcode (implicit) By handcode (implicit)
Slowly Changing Di-
mension (SCD)

Yes (explicit) No No

ETL details to users Transparent Fine-level Fine-level

e.g., functions for serialization/deserialization data. In ETLMR, UDFs are anumber ofrowhandlers (see
Section 4 and 5) integrated intomap and reducefunctions. These UDFs are defined for data filtering,
transformation, extraction, name mapping. ETLMR also provides other ETL primitive constructs, such
as hash join or merge join between data sources, and the aggregation of facts by plugable function, i.e.,
used as the reduce function (see Section 5). In contrast, Hive and Pig achieve the functionlity of ETL
constructs through a sequence of user-written statements, which are latertranslated into execution plans,
and executed on Hadoop. Third, as ETLMR is a specialized tool developed for fast implementation of
parallel ETLs, it explicitly supports the ETLs for processing different schemas, including star schema,
snowflake schema and SCDs, and very large dimensions. Therefore, the implementation of a parallel ETL
program is very concise and intuitive for these schemas, i.e., only fact tables, their referenced dimensions
androwhandlersif necessary must be declared in the configuration file. Although Hive andPig both are
able to process star and snowflake schemas technically, implementing an ETL,even the most simple star
schema, is not a trivial task as users have to dissect the ETL, write the processing statements for each ETL
step, implement UDFs, and do numerous testing to make them correct. Moreover, as the HiveQL and Pig
Latin lack UPDATE and DELETE operations, they are not able to process SCDs, which require UPDATE
operation on a dimension’s valid date or/and version. Fourth, ETLMR is an alternative to traditional ETL
tools but offer better scalability. In contrast, Hive and Pig are obviously not optimal for the situation, where
an external DW is used.

In order to make the comparison more intuitive, we create ETL programs for processing the snowflaked
schema for the running example (see Figure 5) in each of the tools. The scripts are shown in Appendix A.1,
A.2 and A.3, respectively. In each script, the UDFs are not shown, butindicated by self-explaining names
(starting withUDF). As described, the implementation of ETLMR only includes a number of declarations
in the configuration file, such as dimensions, fact tables, data sources and other parameters, and a single line
to start the program. All the ETL details are transparent to users. In contrast, the scripts of Hive and Pig
include the finest-level details of the ETL. In ETLMR, as only declarations are required, its script is more
concise and readable, e.g., only containing 14 statements for processing the snowflaked schema (a statement
may span several lines by “\” in Python). In contrast, the implementations consist of 23 and 40 statements
by using HiveQL and Pig Latin, respectively (each statement ends with “;”). In addition, although we have a
clear picture of the ETL processing of this schema, we still spent severalhours to write scripts for Hive and
Pig (the time of implementing UDFs is not included), and test each step. In contrast, it is of high efficiency
to script in ETLMR.

21

A.1 ETLMR
The configuration file, config.py
Declare all the dimensions:
datedim = Dimension(name=’date’,key=’dateid’,attributes=[’date’,’day’,’month’,\

’year’,’week’,’weekyear’],lookupatts=[’date’])
testdim = Dimension(name=’test’,key=’testid’,defaultidvalue=-1,\

attributes=[’testname’],lookupatts=[’testname’])
pagedim = SlowlyChangingDimension(name=’page’,key=’pageid’,lookupatts=[’url’], attributes=[’url’,\

’size’, ’validfrom’,’validto’,’version’,’domain’, ’serverversion’], versionatt=’version’,\
srcdateatt=’lastmoddate’,fromatt=’validfrom’,toatt=’validto’,srcdateatt=’lastmoddate’)

topdomaindim = Dimension(name=’topdomain’,key=’topdomainid’,\
attributes=[’topdomain’],lookupatts=[’topdomain’])

domaindim = Dimension(name=’domain’,key=’domainid’, attributes=[’domain’, ’topdomainid’],\
lookupatts=[’domain’])

serverdim = Dimension(name=’server’,key=’serverid’,attributes=[’server’],lookupatts=[’server’])
serverversiondim = Dimension(name=’serverversion’,key=’serverversionid’,attributes=[’serverversion’,\

’serverid’],lookupatts=[’serverversion’],refdims=[serverdim])

Define the snowflaked referencing-ship:
pagesf = [(pagedim, [serverversiondim, domaindim]),(serverversiondim, serverdim),\

(domaindim, topdomaindim)]

Declare the facts:
testresultsfact = BulkFactTable(name=’testresults’,keyrefs=[’pageid’, ’testid’, ’dateid’],\

measures=[’errors’], bulkloader=UDF_pgcopy,bulksize=5000000)

Define the settings of dimensions, including data source schema, UDFs,
dimension load order, and the referenced dimensions of fact:
dims ={pagedim: {’srcfields’:(’url’,’serverversion’,’domain’,’size’,’lastmoddate’),\

’rowhandlers’:(UDF_extractdomain, UDF_extractserver)}, datedim: {’srcfields’:(’downloaddate’,),\
’rowhandlers’:(UDF_explodedate,) }, testdim:{’srcfields’:(’test’,),’rowhandlers’:(,)},}

Define the processing order of snowflaked dimesions:
loadorder = [(’topdomaindim’, ’serverdim’),(’domaindim’, ’serverversiondim’),\

(’pagedim’, ’datedim’, ’testdim’)]

Define the settings of facts:
facts = {testresultsfact:{’refdims’:(pagedim, datedim, testdim),’rowhandlers’:(,)},}

Define the input data:
inputdata = [’dfs://localhost/TestResults0.csv’, ’dfs://localhost/TestResults1.csv’]

The main ETLMR program: paralleletl.py
Start the ETLMR program:
ETLMR.load(’localhost’,inputdata,required_modules=[(’config’,’config.py’),],nr_maps=4,nr_reduces=4)

A.2 HIVE
-- Copy the data sources from local file system to HDFS:
hadoop fs -copyFromLocal /tmp/DownloadLog.csv /user/test;
hadoop fs -copyFromLocal /tmp/TestResults.csv /user/test;

-- Create staging tables for the data sources:
CREATE EXTERNAL TABLE downloadlog(localfile STRING, url STRING, serverversion STRING,
size INT, downloaddate STRING,lastmoddate STRING) ROW FORMAT DELIMITED FIELDS
TERMINATED BY ’\t’ STORED AS TEXTFILE LOCATION ’/user/test/downloadlog’;

CREATE EXTERNAL TABLE testresults(localfile STRING, test STRING, errors INT) ROW FORMAT
DELIMITED FIELDS TERMINATED BY ’\t’ STORED AS TEXTFILE LOCATION ’/user/test/testresults’;

-- Load the data into the staging tables:
LOAD DATA INPATH /user/test/input/DownloadLog.csv INTO TABLE downloadlog;
LOAD DATA INPATH /user/test/input/TestResults.csv INTO TABLE testresults;

22

-- Create all the dimension tables and fact tables:
CREATE EXTERNAL TABLE datedim(dateid INT, downloaddate STRING, day STRING,
month STRING, year STRING, week STRING, weekyear STRING) ROW FORMAT DELIMITED
FIELDS TERMINATED BY ’\t’ STORED AS TEXTFILE LOCATION ’/user/test/datedim’;

CREATE EXTERNAL TABLE testdim(testid INT, testname STRING) ROW FORMAT DELIMITED
FIELDS TERMINATED BY ’\t’ STORED AS TEXTFILE LOCATION ’/user/test/testdim’;

CREATE EXTERNAL TABLE topdomaindim(topdomainid INT, topdomain STRING) ROW FORMAT
DELIMITED FIELDS TERMINATED BY ’\t’ STORED AS TEXTFILE LOCATION ’/user/test/topdomaindim’;

CREATE EXTERNAL TABLE domaindim(domainid INT, domain STRING) ROW FORMAT DELIMITED
FIELDS TERMINATED BY ’\t’ STORED AS TEXTFILE LOCATION ’/user/test/domaindim’;

CREATE EXTERNAL TABLE serverdim(serverid INT, server STRING) ROW FORMAT DELIMITED
FIELDS TERMINATED BY ’\t’ STORED AS TEXTFILE LOCATION ’/user/test/serverdim’;

CREATE EXTERNAL TABLE serverversiondim(serverversionid INT, serverversion STRING,
serverid INT) ROW FORMAT DELIMITED FIELDS TERMINATED BY ’\t’ STORED AS TEXTFILE
LOCATION ’/user/test/serverversiondim’;

CREATE EXTERNAL TABLE pagedim(pageid INT, url STRING, size INT, validfrom STRING,
validto STRING, version INT, domainid INT,serverversionid INT)
ROW FORMAT DELIMITED FIELDS TERMINATED BY ’\t’ STORED AS TEXTFILE LOCATION ’/user/test/pagedim’;

CREATE EXTERNAL TABLE testresultsfact(pageid INT, testid INT, dateid INT, error INT)
ROW FORMAT DELIMITED FIELDS TERMINATED BY ’\t’ STORED AS TEXTFILE
LOCATION ’/user/test/testresultsfact’;

-- Load data into the non-snowflaked dimension tables, testdim and datedim:
INSERT OVERWRITE TABLE datedim SELECT UDF_getglobalid() AS dateid, downloaddate,
UDF_extractday(downloaddate), UDF_extractmonth(downloaddate), UDF_extractyear(downloaddate),
UDF_extractweek(downloaddate), UDF_extractweekyear(downloaddate) from downloadlog;

INSERT OVERWRITE TABLE testdim SELECT UDF_getglobalid() AS testid, A.testname FROM
(SELECT DISTINCT test as testname FROM testresults) A;

-- Load data into the snowflaked dimension tables from leaves to the root:
INSERT OVERWRITE TABLE topdomaindim SELECT UDF_getglobalid() AS topdomainid, A.topdomain FROM
(SELECT DISTINCT UDF_extracttopdomain(url) FROM downloadlog) A;

INSERT OVERWRITE TABLE domaindim SELECT UDF_getglobalid() AS domainid, A.domain, B.topdomainid FROM
(SELECT DISTINCT UDF_extractdomain(url) as domain, UDF_extracttopdomain(url) as topdomain
FROM downloadlog) A JOIN topdomaindim B ON (A.topdomain=B.topdomain);

INSERT OVERWRITE TABLE serverdim SELECT UDF_getglobalid() AS serverid, A.server FROM
(SELECT DISTINCT UDF_extractserver(serverversion) AS server FROM downloadlog) A;

INSERT OVERWRITE TABLE serverversiondim SELECT UDF_getglobalid() AS serverversionid, A. serverversion,
B.serverid FROM (SELECT DISTINCT serverversion, UDF_extractserver(serverversion) as server
FROM downloadlog) A JOIN serverdim B ON (A.server=B.server);

INSERT OVERWRITE TABLE pagedim SELECT UDF_getglobalid() AS pageid, A.url, A.size, A.lastmoddate,
B.domainid, C.serverversionid FROM (SELECT url, size, lastmoddate, UDF_extractdomain(uri) AS domain,
serverversion FROM downloadlog) A JOIN domaindim B ON (A.domain=B.domain) JOIN serverversiondim C
JOIN (A.serverversion=C.serverversion);

CREATE EXTERNAL TABLE pagedim_tmp(pageid INT, url STRING, size INT, lastmoddate STRING, domainid INT,
serverversionid INT) ROW FORMAT DELIMITED FIELDS TERMINATED BY ’\t’
STORED AS TEXTFILE LOCATION ’/user/test/pagedim_tmp’;

-- Load data into the fact table, testresultstact:
INSERT OVERWRITE TABLE testresultsfact SELECT C.pageid, E.testid, D.dateid, B.errors
FROM downloadlog A JOIN testresults B ON (A.localfile=B.localfile)
JOIN pagedim C ON (A.url=C.url) JOIN datedim D ON (A.downloaddate=D.downloaddate)
JOIN testdim E ON (B.test=E.testname);

23

A.3 PIG
-- Copy the data from local file system to HDFS:
hadoop fs -copyFromLocal /tmp/DownloadLog.csv /user/test;
hadoop fs -copyFromLocal /tmp/TestResults.csv /user/test;

-- Load the data into in PIG:
downloadlog = LOAD ’DownloadLog.csv’ USING PigStorage(’\t’)
as (localfile, url, serverversion,size,downloaddate,lastmoddate);
testresults = LOAD ’TestResults.csv’ USING PigStorage(’\t’) as (localfile, test, errors);

-- Load the dimension table, testdim:
testers = FOREACH testresults GENERATE test as testname;
distincttestname = DISTINCT testers;
testdim = FOREACH distincttestname GENERATE UDF_getglobalid() as testid, testname;
STORE testdim INTO ’/tmp/testdim’ USING PigStorage();

-- Load the dimension table, datedim:
downloadates = FOREACH downloadlog GENERATE downloaddate;
distinctdownloadates = DISTINCT downloadates;

datedim = FOREACH distinctdownloadates GENERATE UDF_getglobalid() AS dateid, downloaddate,
UDF_extractday(downloaddate) AS day, UDF_extractmonth(downloaddate) AS month,
UDF_extractyear(downloaddate) AS year, UDF_extractweek(downloaddate) AS week,
UDF_extractweekyear(downloaddate) as weekyear;

STORE datedim INTO ’/tmp/datedim’ USING PigStorage();

-- Load the sknowflaked dimension tables:
urls = FOREACH downloadlog GENERATE url;

serverversions = FOREACH downloadlog GENERATE serverversion;

domains = FOREACH downloadlog GENERATE UDF_extractdomain(url) as domain;

distinctdomains = DISTINCT domains;

topdomains = FOREACH distinctdomains GENERATE UDF_extracttopdomain(domain) as topdomain;

distincttopdomains = DISTINCT topdomains;

topdomaindim = FOREACH distincttopdomains GENERATE UDF_getglobalid() ad topdomainid, topdomain;
STORE topdomaindim INTO ’/tmp/topdomaindim’ USING PigStorage();

ndomains = FOREACH distinctdomains GENERATE domain as domain,
UDF_extracttopdomain(domain) AS topdomain;

ndomainjoin = JOIN ndomains BY topdomain, topdomaindim BY topdomain;

domaindim = FOREACH ndomainjoin GENERATE UDF_getglobalid() as domainid, domain, topdomainid;
STORE domaindim INTO ’/tmp/domaindim’ USING PigStorage();

distinctserverversions = DISTINCT serverversions;

nserverversions = FOREACH distinctserverversions GENERATE serverversion AS serverversion,
UDF_extractserver(serverversion) AS server;

servers = FOREACH nserverversions GENERATE server as server;
distinctservers = DISTINCT servers;

serverdim = FOREACH distinctservers GENERATE UDF_getglobalid() as serverid, server;
STORE serverdim INTO ’/tmp/serverdim’ USING PigStorage();

nserverversionjoin = JOIN nserverversions BY server, serverdim BY server;

serverversiondim = FOREACH nserverversionjoin GENERATE UDF_getglobalid() as serverversionid,
serverversion, serverid;

24

STORE serverversiondim INTO ’/tmp/serverversiondim’ USING PigStorage();

joindomservversion = JOIN (JOIN downloadlog BY UDF_extractdomain(url),
domaindim by domain) BY serverversion, serverversiondim BY serverversion;

pagedim = FOREACH joindomservversion GENERATE UDF_getglobalid() as pageid,
url, size, lastmoddate, serverversionid, domainid;

STORE pagedim INTO ’/tmp/pagedim’ USING PigStorage();

-- Load the fact tables:
testresults = JOIN downloadlog BY localfile, testresults BY localfile;

joinpagedim = JOIN testresults BY url, pagedim BY url;

joindatedim = JOIN joinpagedim BY downloaddate, datedim BY downloaddate;

jointestdim = JOIN joindatedim BY test, testdim BY testname;

testresultsfact = FOREACH jointestdim GENERATE dateid, pageid, testid, errors;

STORE testresultsfact INTO ’/tmp/testresultsfact’ USING PigStorage();

25

