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Abstract

Extract-Transform-Load (ETL) flows periodically populatata warehouses (DWs) with data from
different source systems. An increasing challenge for E®lvdlis processing huge volumes of data
quickly. MapReduce is establishing itself as the de-fataadard for large-scale data-intensive process-
ing. However, MapReduce lacks support for high-level ETkdfic constructs, resulting in low ETL
programmer productivity. This report presents a scalabtedsional ETL framework=TLMR based
on MapReduce. ETLMR has built-in native support for operation DW-specific constructs such as
star schemas, snowflake schemas and slowly changing diomsn@CDs). This enables ETL devel-
opers to construct scalable MapReduce-based ETL flows eith few code lines. To achieve good
performance and load balancing, a number of dimension attdpfacessing schemes are presented,
including techniques for efficiently processing differéypies of dimensions. The report describes the
integration of ETLMR with a MapReduce framework and evatgdts performance on large realistic
data sets. The experimental results show that ETLMR achiegey good scalability and compares
favourably with other MapReduce data warehousing tools.

1 Introduction

In data warehousing, ETL flows are responsible for collecting data flifferent data sources, transforma-
tion, and cleansing to comply with user-defined business rules and neguite. Traditional ETL technolo-
gies face new challenges as the growth of information explodes nowaslgydt becomes common for an
enterprise to collect hundreds of gigabytes of data for processingraaigsis each day. The vast amount of
data makes ETL extremely time-consuming, but the time window assigned fagsiog data typically re-
mains short. Moreover, to adapt rapidly changing business environnusets have an increasing demand
of getting data as soon as possible. The use of parallelization is the keyideeabketter performance and
scalability for those challenges. In recent years, a novel “cloud ctngiuechnology,MapReducg9],
has been widely used for parallel computing in data-intensive areas. pRbthuce program is written as
mapandreducefunctions, which process key/value pairs and are executed in marlieparstances.

We see that MapReduce can be a good foundation for the ETL paralletizatidceTL, the data pro-
cessing exhibits theomposablgroperty such that the processing of dimensions and facts can be split into
smaller computation units and the partial results from these computation unite caerbed to constitute
the final results in a DW. This complies well with the MapReduce paradigm ineéémapandreduce

ETL flows are inherently complex, which is due to the plethora of ETL-speafdfiivities such as trans-
formation, cleansing, filtering, aggregating and loading. Programming tfyhjgarallel and distributed
systems is also challenging. To implement an ETL program to function in a distinvironment is
thus very costly, time-consuming, and error-prone. MapReduce, asthiee hand, provides programming
flexibility, cost-effective scalability and capacity on commaodity machines andgRéduce framework can
provide inter-process communication, fault-tolerance, load balancintpakdcheduling to a parallel ETL
program out of the box. Further, MapReduce is a very popular frameand is establishing itself as the
de-facto standard for large-scale data-intensive processing. Utdsriteresting to see how MapReduce can
be applied to the field of ETL programming.

MapReduce is, however, a generic programming model. It lacks suppbigh-level DW/ETL specific
constructs such as the dimensional constructs of star schemas, secsett@mnas, and SCDs. This results
in low ETL programmer productivity. To implement a parallel ETL program oapReduce is thus still
not easy because of the inherent complexity of ETL-specific activitiels as the processing for different
schemas and SCDs.

In this report, we present a parallel dimensional ETL framework basddapReduce, namegeTLMR
which directly supports high-level ETL-specific dimensional construgth @as star schemas, snowflake
schemas, and SCDs. We believe this to be the first report to specificallgssdBTL fordimensional



schemas on MapReduce. The report makes several contributionsvé&kgde the functionality of MapRe-
duce to the ETL parallelization and provide a scalable, fault-tolerable,emydightweight ETL framework
which hides the complexity of MapReduce. We present a number of notkbdwewhich are used to pro-
cess the dimensions of a star schema, snowflaked dimensions, SCDstaitefessive dimensions. In
addition, we introduce the offline dimension scheme which scales better thanlihe dimension scheme
when handling massive workloads. The evaluations show that ETLMR\ashvery good scalability and
compares favourably with other MapReduce data warehousing tools.

The running example: To show the use of ETLMR, we use a running example throughout thistrepo
This example is inspired by a project which applies different tests to webspagach test is applied to
each page and the test outputs the number of errors detected. Thewéistaee written into a number of
tab-separated files, which serve as the data sources. The data isspobte be stored in a DW with the
star schema shown in Figure 1. This schema comprises a fact table andithezesion tables. Note that
pagedimis a slowly changing dimension. Later, we will consider a partly snowflaked fiormalized)
schema.

The remainder of this report is structured as follows: Section 2 givegfarbriew of the MapReduce
programming model. Section 3 gives an overview of ETLMR. Sections 4 gmé$ent dimension pro-
cessing and fact processing, respectively. Section 7 introduces thenietation of ETLMR in the Disco
MapReduce framework, and presents the experimental evaluation. rs@ctuiews related work. Finally,
Section 9 concludes the report and provides ideas for future work.

2 MapReduce Programming Model

The programming model of MapReduce [9] expresses parallel compgatitantwo primitives:mapand
reduce taking a list of input key/value pairs, and producing a list of output ledyé pairs.

Map: (k1, vl1) -> [list(k2, v2)

Reduce: (k2, list(v2)) -> list(v3)

Map, defined by users, takes an ingit, v1) pair and produces a list of intermediate key/valk®, v2)
pairs. MapReduce then groups all intermediate values with the same intermegiate and passes them
on. Reducealso defined by users, then takes the pair of kwand the list of values fok2, and merges,
e.g., aggregates, together these values to form a possibly smaller list e$Aiat(v3).

Besides therap andr educe interfaces, there are 5 other standard programming interfaces offered
by most MapReduce frameworks, including interfaces for input readiag partitioning, combining map
output, sorting, and output writing. Users can tailor or extend these inesrfaccording to their require-
ments. A MapReduce framework achieves parallel computations by exgtiidnmplemented interfaces
on clustered computers, each processing a chunk of the data sets.

3 ETLMR Overview

In this section, we give an overview of ETLMR on a MapReduce framkyard describe the details of the
data processing phases.

To show the use of ETLMR, we use a running example throughout thistréfdus example is inspired
by the work we did in the European Internet Accessibility Observator@Elproject [16], which auto-
mates the testing of the accessibility of web pages. A test is applied to eaclhpdgfee test outputs the
number of errors detected. The test results are written into a number eépatvated files, which serve
as the data sources. The data is processed to be stored in a DW with thehetansshown in Figure 1.
This schema comprises a fact table and three dimension tables. Nomafeatimis a slowly changing
dimension. Later, we will consider a partly snowflaked (i.e., normalizedyraeh
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Figure 1: Star schema of the running example
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Figure 2: ETL Data flow on MapReduce framework

Figure 2 illustrates the data flow using ETLMR on MapReduce. In ETLMRdiimension processing is
done at first in a MapReduce job, then the fact processing is donetimearidapReduce job. A MapReduce
job spawns a number of parallel map/reduce tagksprocessing dimension or fact data. Each task consists
of several steps, including reading data from a distributed file systers)xecuting the map function,
partitioning, combining the map output, executing the reduce function and wrésgts. In dimension
processing, the input data for a dimension table can be processed dérgulifprocessing methods, e.g.,
the data can be processed by a single task or by all tasks. In facspingethe data for a fact table is
partitioned into a number of equal-sized data files which then are prodeggedallel tasks. This includes
looking up dimension keys and bulk loading the processed fact data intosthd Be processing of fact
data in the reducers can be omitted (shown by dotted ellipses in Figure 2)gignegation of the fact data
is done before it is loaded.

Before a MapReduce job starts, the data sets from heterogeneowgesigstems are partitioned into
multiple approximately equal sized pieces, which are distributed to map/redskee tnd subsequently
processed into dimensions or facts. ETLMR employs the following two partitipmathods. 1Round-
robin partitioning This method distributes rows among the tasks such that row numizeassigned to
task numbe(n modnr_map) wherenr_map is the number of tasks. It ensures that the input data sets are
evenly divided among the tasks. This method is suitable when a dimension'shaata be processed by

'map/reduce task denotes map tasks and reduce tasks running $gparate



all tasks. 2)Hash by field partitioning This method designates one or more attributes as the partitioning
attributes. The tuples with the same hash values on the partitioning attributessigmgea to the same task.

If there arenr_map tasks, a tuple with hash valdeish is assigned to task numbgiash modnr_map).

This method is suitable when all tuples with identical values in the hash attributekide processed by a
single task.

ETLMR provides map readers implementing the above two partitioning methodaddition, most
MapReduce frameworks provide different kind of readers for sele@and allow users to customize their
own readers.

In the dimension processing, the input data sets for dimensions are ggdcasiong all map/reduce
tasks, using configurable processing methods. The most fundametitetefis to configure one dimension
pertask, e.g., given 3 dimensions and 3 tasks, each task processatatbetsd of a single dimension. Unlike
this method where only a limited number of tasks can be used, another dpgoadet all tasks process a
given dimension such that each task processes parts of the dimensitsn&etk. If there are dependencies
between dimensions, such as snowflaked (or normalized) dimensiocfalgpecessing methodseyel-
wiseor hierarchy-wiseprocessing), are configured for dealing with the processing ordeparallelization
of the dimensions. In a further optimization, dimensions can be configureel $tobed distributedly over
the nodes, and loaded into the DW on demand.

In the fact processing, each map/reduce task processes an edqgedlglata set, including reading data,
looking up key values from dimension tables, transformation and loading fd€t is an aggregated fact,
reducers are configured for computing measures on all tuples usimggagign functions such asum
aver age andcount . To optimize performance, reducers can be omitted if no aggregation isgequ
(dotted ellipses shown in Figure 2). Further, dimensions can be read fusrtially into main memory to
speed up the lookups of dimension keys, and bulk-loads are employedstetrthe processed data from
main memory to the DW at run-time.

Algorithm 1 details the whole process. The operations in lines 2-4 and 6-tharMapReduce steps
which are responsible for initialization, invoking jobs for processing dinogrssand facts, and returning
processing information. Line 1 and 5 are the non-MapReduce steps afgictised for preparing input data
sets and synchronizing dimensions among nodes (if no distributed file s{i3t®) is installed).

Algorithm 1 ETL process on MapReduce framework

1: Partition the input data sets;
Read the configuration parameters (Table 1) and initialize;
Read the input data and relay the data to the map functioreimép readers;
Process dimension data and load it into online/offline disi@nstores;
Synchronize the dimensions across the clustered compiftapplicable;
Prepare fact processing (connect to and cache dimensions);
Read the input data for fact processing and perform tramsftions in mappers;
Bulk-load fact data into the DW.

In ETLMR, all run-time parameters are stored in a single configuration fiiuding the settings of
data sources, partitioning methods such as the keys for partitioning, dimspfsiots, data-intensive (big)
dimensions, and the number of mappers and reducers. Table 1 summarizegtbhnfiguration parameters.
These parameters provide users with flexibility to configure the tasks to ke effmient. For example, if
a user knows that a dimension is a data-intensive dimension, (s)he cért@tuk listbigdims so that an
appropriate processing method can be chosen to achieve better peideraral load balancing.

Algorithm 1 details the ETLMR process on a MapReduce framework. Tkeatipns in lines 2-4 and
6-7 are MapReduce steps, which are responsible for initialization, inggé&bs for processing dimensions
and facts, and returning processing information. Line 1 and 5 are rapR#duce steps, which are used for



Table 1: The key configuration parameters

Parameters Description

Dim; Dimension table definition,=1,...,n

Fact; Fact table definition; = 1,...,m

Setyigdim data-intensive dimensions whose business keys are uspdrtiioning the data sets
if applicable

Dim;(ag, a1, ..., an) Define the relevant attributes, a1, ..., a,, of Dim; in data source

DimScheme Dimension scheme, online/offline (online is the default)

nr_reduce Number of reducers

nr_map Number of mappers

preparing input data sets and synchronizing dimensions among nodesl{#tnbuted file system (DFS) is
installed).

In ETLMR, all run-time parameters are stored in a single configuration fiiuding the settings of
data sources, partitioning methods such as the keys for partitioning, dimenfiots, data-intensive (big)
dimensions, and the number of mappers and reducers. Table 1 summarizegtbnfiguration parameters.
These parameters provide users with flexibility to configure the tasks to beeffmient. For example, if
a user knows that a dimension is a data-intensive dimension, (s)he cért@tue listbigdims so that an
appropriate processing method can be chosen to achieve better pexeramal load balancing.

4 Dimension Processing

In ETLMR, each dimension table has a corresponding definition in the ewafign file. For exam-
ple, we define the object for the dimension tatdstdimof the running example byestdim = Cached-
Dimension(name="testdim’, key="testid’, defaultidvalue =-1, attribute$eftname’, 'testauthor’], looku-
patts=[testname’, ]) It is declared as a cached dimension which means that its data can be telynpora
kept in memory. ETLMR also offers other dimension classes for declaiffeyeht dimension tables, in-
cluding SlowlyChangingDimensioand SnowflakedDimensigrach of which are configured by means of
a number of parameters for specifying the name of the dimension table, thesihmémy, the attributes

of dimension table, the lookup attributes (which identify a row uniquely), @hdre. Each class offers a
number of functions for dimension operations suckoagkup insert ensure etc.

ETLMR employs MapReduce’s primitivasap partition, combine andreduceto process data. This
is, however, hidden from the user who only specifies transformatigpigedpto the data and declarations
of dimension tables and fact tables. A map/reduce task reads data by itenadiriqmes from a partitioned
data set. A line is first processed map then bypartition which determines the target reducer, and then
by combinewhich groups values having the same key. The data is then written to an intatenfdd (there
is one file for each reducer). In the reduce step, a reduce reaat¥s &elist of key/values pairs from an
intermediate file and invokaeduceto process the list. In the following, we present different approaches to
process dimension data.

4.1 One Dimension One Task

In this approach, map tasks process data for all dimensions by apphenglened transformations and
by finding the relevant parts of the source data for each dimension. &thdat a given dimension is then
processed by a single reduce task. We name this methedimension one tagloDOT for short).

The data unit moving around within ETLMR is a dictionary mapping attribute namesltes. Here,
we call it arow, e.g.,row={"url’’'www.domO.tl0/p0.htm’,size’: '12553' /serverversion’:'8neServer/1.0’,



'"downloaddate’:’2011-01-31"/lastmoddate’: '2011-01-01test":'Test001’, "errors’’7’}. ETLMR reads
lines from the input files and passes them on as rows. A mapper doestjgmjen rows to prune unneces-
sary data for each dimension and makes key/value pairs to be procgssetlibers. If we defindim,; for
a dimension table and its relevant attributes, a; ..., a,,), in the data source schema, the mapper will gen-
erate the map outputkey, value) = (dim;.name, [, ,, ., (row)) wherename represents the name
of dimension table. The MapReduce partitioner partitions map output bastbe ey, i.e.dim;.name,
such that the data afim; will go to a single reducer (see Figure 3). To optimize, the values with identical
keys (i.e., dimension table name) are combined in the combiner before thegnan® she reducers such
that the network communication cost can be reduced. In a reducer, ia fiost processed by UDFs to do
data transformations, then the processed row is inserted into the dimensimn.stpthe dimension table
in the DW or in an offline dimension store (described later). When ETLMRs dlois data insertion, it has
the following reducefunctionality: If the row does not exist in the dimension table, the row is inderte
If the row exists and its values are unchanged, nothing is done. If therehanges, the row in the ta-
ble is updated accordingly. The ETLMR dimension classes provide thisidmadity in a single function,
dim;.ensure(row). For an SCD, this function adds a new version if needed, and updateslties of the
SCD attributes, e.g., the validto and version.

We have now introduced the most fundamental method for dimension pirgegsere only a limited
number of reducers can be utilized. Therefore, its drawback is that d@tisptimized for the case where
some dimensions contain large amounts of data, namely data-intensive dimensions

(key, value)
(datedim, [{...}, ...]) (key, value)

(0, [pagedim:{...}, testdim:{...}, ...])
mappero Y

: (pagedim, [{..}, ...]) ;
rows rows
mapper agedi

Figure 3: ODOT Figure 4: ODAT

rows

rows
reducero

.
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4.2 One Dimension All Tasks

We now describe another approach in which all reduce tasks proats$od all dimensions. We name it
one dimension all task®DAT for short). In some cases, the data volume of a dimension is very large,
e.g., thepagedimdimension in the running example. If we employ ODOT, the task of processitzgfadr
this dimension table will determine the overall performance (assume all tasks similar machines). We
therefore refine the ODOT in two places, the map output partition and theeddoctions. With ODAT,
ETLMR partitions the map output by round-robin partitioning such that theaexs receive equally many
rows (see Figure 4). In the reduce function, two issues are condioteoeder to process the dimension data
properly by the parallel tasks:

The first issue is how to keep the uniqueness of dimension key values dat#ior a dimension table
is processed by all tasks. We propose two approaches. The firgs emeise a global ID generator and
usepost-fixing(detailed in Section 4.4) to merge rows having the same values in the dimdoslap
attributes (but different key values) into one row. The other appréath use private ID generators and
post-fixing. Each task has its own ID generator, and after the data isddatethe dimension table, post-
fixing is employed to fix the resulting duplicated key values. This requiresrilygieness constraint on the
dimension key to be disabled before the data processing.

The second issue is how to handle concurrency problem when data tagiciplanguage (DML) SQL
such as UPDATE, DELETE, etc. is issued by several tasks. Con$ulerxample, the type-2 SCD table
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pagedimfor which INSERTs and UPDATESs are frequent (the SCD attribwegglfrom and validto are
updated). There are at least two ways to tackle this problem. The firs$ oow-based commit in which a
COMMIT is issued after every row has been inserted so that the insesteditl not be locked. However,
row-based commit is more expensive than transaction commit, thus, it is yatsefiul for a data-intensive
dimension table. Another and better solution is to delay the UPDATE to the pasg-fishich fixes all the
problematic data when all the tasks have finished.

In the following section, we propose an alternative approach for psing snowflaked dimensions
without requiring the post-fixing.

4.3 Snowflaked Dimension Processing

In a snowflake schema, dimensions are normalized meaning that thereeigm fkey references and hi-
erarchies between dimension tables. If we consider the dependenaesprdtessing dimensions, the
post-fixing step can be avoided. We therefore propose two methodaetidor snowflaked dimensions:

level-wise processingndhierarchy-wise processing

testresultsfact
testresultsfact ]
T .
| Job2| datedim pagedim testdim

€| Job2| datedim pagedim testdim = e

E’ P T % ‘ domdim ‘ i ‘serverversiondim‘
‘@1 Jobl ‘ domdim ‘ ‘Serverversiondim‘ 08" ¥

é I y a ‘ topdomdim ‘ | ‘ serverdim ‘
21 3000 ‘ topdomdim ‘ ‘ serverdim ‘ Jobl Joho

Figure 5: Level-wise processing Figure 6: Hierarchy-wise processing

Level-wise processingrhis refers to processing snowflaked dimensions in an order from thesea
towards the root (the dimension table referred by the fact table is the mdoa aimension table without
a foreign key referencing other dimension tables is a leaf). The dimenditestaith dependencies (i.e.,
with foreign key references) are processed in sequential jobsJeldd.depends odob(Q andJob2depends
onJoblin Figure 5. Each job processes independent dimension tables (withect alivd indirect foreign
key references) by parallel tasks, i.e., one dimension table is procbgsee task. Therefore, in the
level-wise processing of the running examplehO0first processetopdomaindinmandserverdimin parallel,
then Job1 processeslomaindimand serverversiondimand finally Job2 processepagedim datedimand
testdim It corresponds to the configuratidmadorder = [(topdomaindim’, 'serverdim’), ("domaindim’,
'serverversiondim’), (‘pagedim’, 'datedim’, 'testdim’)With this order, a higher level dimension table (the
referencing dimension table) is not processed until the lower level dhesdferenced dimension tables)
have been processed and thus, the referential integrity can be @&nsure

Hierarchy-wise processingThis refers to processing a snowflaked dimension in a branch-wise fiashio
(see Figure 6). The root dimensiopagedim derives two branches, each of which is defined as a sep-
arate snowflaked dimension, i.elomainsf = SnowflakedDimension([(domaindim, topdomaindinaxjp
serverversionsf = SnowflakedDimension([(serverversiondimesgim)]). They are processed by two par-
allel jobs,JobOandJobl, each of which processes in a sequential mannertegdomaindinfollowed by
domaindimin JobOandserverdimfollowed by serverversiondinm Jobl The root dimensiompagedim is
not processed until the dimensions on its connected branches havgrbeessed. It, together wittatedim
andtestdim is processed by th#nb2
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Figure 7: Before post-fixing Figure 8: After post-fixing

4.4 Post-fixing

As discussed in Section 4.2, post-fixing is a remedy to fix problematic data inTQD¥en all the tasks
of the dimension processing have finished. Four situations require dstidiyng: 1) using a global ID
generator which gives rise to duplicated values in the lookup attributessi®y private ID generators
which produce duplicated key values; 3) processing snowflaked diomsné@ndnot using level-wise or
hierarchy.wise processing) which leads to duplicated values in lookugegnattributes; and 4) processing
slowly changing dimensions which results in SCD attributes taking improperszalue

Example 1 (Post-fixing) Consider two map/reduce tasks, task 1 and task 2, that procegate dimen-
sion which we here assume to be snowflaked. Each task uses a privggaétator. The root dimension,
pagedi mis atype-2 SCD. Rows with the lookup attribute value url="www.dom?2.t12/p0drrprocessed
by both the tasks.

Figure 7 depicts the resulting data in the dimension tables where the white rer@gvocessed by task 1
and the grey rows were processed by task 2. Each row is labelled witlagilei d of the task that processed
it. The problems include duplicate IDs in each dimension table and imprapees in the SCD attributes,
val i df rom val i dt o, andver si on. The post-fixing program first fixes th@pdomai ndi msuch
that rows with the same value for the lookup attribute (ue., ) are merged into one row with a single ID.
Thus, the two rows withopdom= tI2 are merged into one row. The references mpdomai ndi mfrom
domai ndi mare also updated to reference the correct (fixed) rows. In the samgpagedi mis updated
to merge the two rows representing www.dom?2.t12. Finplagedi mis updated. Here, the post-fixing also
has to fix the values for the SCD attributes. The result is shown in Figure 8.

Algorithm 2 postfix(dim)

refdims— The referenced dimensions @ifn
for ref in refdimsdo

itr «— postfix(ref)

for ((taskid keyvalug, newkeyvalugin itr do

Updatedim setdim.key = newkeyvalueheredim.taskid=taskicanddim.key=keyvalue

ret — An empty list
Assignnewkeyvalugtodim's keys and add téskid keyvalug, newkeyvalugto ret
if dimis not the roothen

Delete the duplicate rows, which have identical valuediins lookup attributes

if dimis a type-2 SCDOhen

Fix the values on SCD attributes, e.g., dates and version
return ret

The post-fixing invokes a recursive function (see Algorithm 2) to fix trebfgmatic data in the order
from the leaf dimension tables to the root dimension table. It comprises fqus:si§ assign new IDs
to the rows with duplicate IDs; 2) update the foreign keys on the refergrmimension tables; 3) delete
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duplicated rows which have identical values in the business key attribuddsraign key attributes; and 4)
fix the values in the SCD attributes if applicable. In most cases, it is not ddede« something in each
of the steps for a dimension with problematic data. For example, if a global IBrgtm is employed,
all rows will have different IDs (such that step 1 is not needed) byt thay have duplicate values in the
lookup attributes (such that step 3 is needed). ETLMR’s implementation nsgslzedded SQLite database
for data management during the post-fixing. Thus, the task IDs are metistothe target DW, but only
internally in ETLMR.

4.5 Offline Dimension

In ODOT and ODAT, the map/reduce tasks interact with the DW[fhe’) dimensions directly through
database connections at run-time and the performance is affected yslied®W DBMS and the database
communication cost. To optimize, tlodfline dimensiorscheme is proposed, in which the tasks do not in-
teract with the DW directly, but with distributed offline dimensions residing wajly in all nodes. It
has several characteristics and advantages. First, a dimension is pedtitido multiple smaller-sized
sub-dimension, and small-sized dimensions can benefit dimelwi&nps, especially for a data-intensive
dimension such ggagedim Second, high performance storage systems can be employed to pemsist d
sion data. Dimensions are configured to be fully or partially cached in main nggmspeedup thiwokus
when processing facts. In addition, offline dimensions do not requiestdiommunication with the DW
and the overhead (from the network and the DBMS) is greatly reduc@iLMR has offline dimension
implementations for one dimension one ta€IDOT (offline)for short) andhybrid, which are described in
the following.

45.1 ODOT (offline)

Figure 9 depicts the run-time architecture when we use two map/reduce taskee¢ss data. The data for
each dimension table is saved locally in its own store in the node that prodessesthe DFS (shown in
the center of the Figure 9). The data for a dimension table is processatkl@nd only one reduce task,
which resembles to the online ODOT, and does the following: 1) Select thesvaluthe fields that are
relevant to the dimension table in mappers; 2) Partition the map output basee pantes of dimension
table; 3) Process the data for dimension tables by using user-definsfibtraation functions in the reducers
(areducer only processes the data for one dimension table); 4) Wheagleduce tasks have finished, the
data for all dimension tables are synchronized across the nodes if nasDi®alled (here, only the data
files of the offline dimension stores are synchronized).

datedim
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4.5.2 Hybrid

Hybrid combines the characteristics of ODOT and ODAT. In this approtehdimensions are divided
into two groups, the most data-intensive dimension and the other dimensioasnpgut data for the most
data-intensive dimension table is partitioned based on the business keysnéhgur | of pagedi m and
processed by all the map tasks (this is similar to ODAT), while for the other diowetables, their data is
processed in reducers, a reducer exclusively processing theodatadf dimension table (this is similar to
ODOT).

This corresponds to the following steps: 1) Choose the most data-irdedisiension and partition the
input data sets, for example, on the business key values; 2) Proces®#an data-intensive dimension and
select the required data for each of the other dimensions in the mapp&wsuijl-robin partition the map
output; 3) Process the dimensions in the reducers (each is processed tgducer); 4) When all the tasks
have finished, synchronize all the processed dimensions acrossdée ihmo DFS is installed, but keep
the partitioned data-intensive dimension in all nodes.

Example 2 (Hybrid) Consider using two parallel tasks to process the dimension tables of thmengun
example (see the upper part in Figure 10). The data for the most datasireedimension tabl@agedi m

is partitioned into a number of chunks based on the businesaikey The chunks are processed by two
mappers, each processing a chunk. This results to two offline storgmafpedi m pagedi m 0 and
pagedi m 1. However, the data for the other dimension tables is processed similarly aiftime ODOT,
which results in the other two offline dimension stodkest, edi mandt est di m respectively.

In the offline dimension scheme, the dimension data in the offline store is edpectside in the nodes
permanently and will not be loaded into the DW until this is explicitly requested.

5 Fact Processing

Fact processing is the second phase in ETLMR, which consists of loakilog dimension keys, doing ag-
gregation on measures (if applicable), and loading the processed tactiserDW. Similarly to the dimen-
sion processing, the definitions and settings of fact tables are alsoatkitidhe configuration file. ETLMR
provides theBulkFactTableclass which supports bulk loading of facts to DW. For example, the fact ¢dible
the running example is defined ésstresultsfact=BulkFactTable(name="testresultsfact’, keyrefs=["pdige
testid’, 'dateid’], measures=["errors’], bulkloader=UDFEpgcopy, bulksize=5000000] he parameters are
the fact table name, a list of the keys referencing dimension tables, a listasiunas, the bulk loader func-
tion, and the size of the bulks to load. The bulk loader is a UDF which canrifegooed to satisfy different
types of DBMSs.
Algorithm 3 shows the pseudo code for processing facts.

Algorithm 3 process_fact(row)
Require: A row from the input data and theonfig
1: facttbls«< the fact tables defined iconfig
2: for facttblin facttbls do
3: dims«< the dimensions referenced facttbl
for dimin dims do
row[dim.key]« dimlookupfow)
rowhandlers— facttbl.rowhandlers
for handlerin rowhandlersdo
handler(row)
facttblinsertfow)

© oNo 9k
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The function can be used as the map function or as the reduce functian. ajgregations (such as
sum average or coun) are required, the function is configured to be the map function and theeed
step is omitted for better performance. If aggregations are requireduticdidn is configured to be the
reduce function since the aggregations must be computed from all theTdasaapproach is flexible and
good for performance. Line 1 retrieves the fact table definitions in thégromation file and they are then
processed sequentially in line 2—8. The processing consists of two majaatimms: 1) look up the keys
from the referenced dimension tables (line 3-5), and 2) process thaafachy theowhandlers which are
user-defined transformation functions used for data type conveysialeslating measures, etc. (line 6-38).
Line 9 invokes the insert function to insert the fact data into the DW. Thegssed fact data is not inserted
into the fact table directly, but instead added into a configurably-sizedrbuhere it is kept temporarily.
When a buffer becomes full, its data is loaded into the DW by using the bulk Bach map/reduce task
has a separate buffer and bulk loader such that tasks can do bulkgoagiarallel.

6 Implementation and Optimization

ETLMR is designed to achieve plug-in like functionality to facilitate the integratidh ®ython-supporting

MapReduce frameworks. In this section, we introduce the ETL programirangework,pygrametiwhich

is used to implement ETLMR. Further, we give an overview of MapRedtemxadworks with a special
focus on Disco [2] which is our chosen MapReduce platform. The intiegrand optimization techniques
employed are also described.

6.1 pygrametl

pygr amet | was implemented in our previous work [17]. It has a number of charatitsrand function-
alities. First, it is a code-based ETL framework with very high efficiencyametbpment due to its sim-
plicity and use of Python. Second, it supports processing of dimensidihrstar schema and snowflake
schema and it, further, provides direct support of slowly changing ditnea. Regardless of the dimension
type, the ETL implementation is very concise and convenient. It uses art ¢hjexpresent a dimension.
Only a single method call such d$ nmobj . i nsert (r ow) is needed to insert new data. In this method
call, all details, such as key assignment and SQL generation, are transpauserspygr amet | sup-
ports the most commonly used operations on a dimension, sucba@sup, i nsert, ensur e. Third,
pygr anet | supports caching, batch insertion, and bulk-load. In the implementation IOFIRT most
functions offered bypygr anet | can be re-used, but some of them need to be extended or modied to
support the MapReduce operations.

6.2 MapReduce Frameworks

There are many open source and commercial MapReduce framewaiilabbe: The most popular one is
Apache Hadoop [4], which is implemented in Java and includes a distributexy$item (HDFS). Hadoop
is embraced by a variety of academic and industrial users, including Am#abao!, Facebook, and many
others [1]. Google's MapReduce implementation is extensively used ingaethpany, but is not available
for public. Apart from them, many companies and research units deveomitn MapReduce frameworks
for their particular needs, such as [14, 21, 11].

For ETLMR, we select the open source framework, Disco [2], as thpRéduce platform. Disco is
developed by Nokia using the Erlang and Python programming languagges. iBchosen for the following
reasons. First, Disco’s use of Python, facilitates rapid scripting forillig&d data processing programs,
e.g., a complicated program or algorithm can be expressed in tens of lioedefThis feature is consistent
with our aim of providing users a simple and easy means of implementing a p&@&llelSecond, Disco
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achieves a high degree of flexibility by providing many customizable MapRegiegramming interfaces.
These make the integration of ETLMR very convenient by having a "plii¢ike effect. Third, unlike the
alternatives, it provides direct support for the distributed progranitsewrin Python. Some MapReduce
frameworks, implemented in other programming languages, also claim to supgbon programs, e.g.,
Hadoop, but they require bridging middle-ware and are, thus, not impkat@mfriendly.

6.3 Integration with Disco

Disco’s architecture shares clear similarities to the Google and Hadoop édaR architectures, in which
intermediate results are stored as local files and accessed by approgatiate tasks. However, the current
Disco (version 0.2.4) does not include a built-in distributed file system (DBt#)it supports any POSIX-
compatible DFS such as GlusterFS. If no DFS is installed, the input files quired to be distributed
initially to each node so that they can be read locally [2]. The integration witbdDsthrough functional
assignment statements, or function parameters, where the parallel Edtlohswork as function objects
passed directly to the corresponding interfaces from Disco.

We present the architecture of ETLMR on Disco in Figure 11, where dlNER processes are running
in parallel on many processors of clustered computers (or nodes)arthisecture is capable of shortening
the time of data extract-transform-load by scaling up to any size of the nodke tluster. Disco has a
master/worker architecture with one master and many workers. The mastspansible for scheduling
the jobs’ components(tasks) to run on the workers, assigning partiticataddts to the workers, tracking
the status, and monitoring the health of the workers. Disco uses HTTP asrtimeunication protocol to
distribute jobs. When the master receives ETL jobs, it puts them to a queudisiributes them to the
available workers. In each node, there is a worker supervisor staytéd master which is responsible for
spawning and monitoring all tasks on that particular node. When a wakeives a task, it runs this task
exclusively in a processor of this node, processes the input datagaad the processed data to the DW.

|DFS Ej |

I
[ Master ]

-— ¥ o——
Node 1 Node 2 Node n _
[_worker supervisor__]| |[_worker supervisor ]| |[__worker supervisor
[ cpui]l cpu1 cpul]| [ cpui][ cpu2 cpun]|... |[ cpui][ cpu2 CPUn

ETLMR|[ETLMR| "|ETLMR ETLMR|[ETLMR| ""|ETLMR ETLMR|[ETLMR| "|ETLMR
“

Figure 11: Parallel ETL overview

The master-workers architecture has a highly fault-tolerant mechanisachikves reliability by dis-
tributing the input files to the nodes in the cluster. Each worker reports to teenmeriodically with the
completed tasks and their status. If a worker falls silent for longer thantervah, the master will record
this worker as dead and send out the node’s assigned tasks to the otkersy

6.4 Optimizations

The map readers that come with Disco (version 0.2.4) only support readtams on data files. The data
sets from different storage systems must, therefore, be preparediiatéilds. Each file is provided with a
unigue address for map readers, such as a URL, file path, or distriilatpdth. In many cases, however, a
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data source may be a database, or an indexed file structure, so that malmuse of its indices for efficient
filtering, i.e., rather than returning all the data, only the columns neededdoegsing, or a sub-range of
the data, are selected. If the data sets are pre-split, such as setefidéddrom heterogeneous systems, the
split parts are directly processed and combined in MapReduce. Diffieram readers are implemented in
ETLMR for reading data from different storage systems, such as ttd®Rader supporting user-defined
SQL statements and text file reader. If the data sets are not split, sucligecadebfile, Dean and Ghemwat
[8] suggest utilizing many MapReduce processes to run complete passdh@data sets, and process the
subsets of the data. Accordingly, we implement such a map reader (ggarRrb). It supports reading data
from a single data source, but does not require the data sets to be fpié being processed. In addition,
we implement the offline dimension scheme by using the Py#toel ve package [3], in which main-
memory database systems, suclbadbdb, can be configured to persist dimension data. At run-time, the
dimension data is fully or partially (bleast recently use@RU) mechanism) kept in main memory such
that thelookupoperation can be done efficiently.

Program 1 Map reader function
def map_reader(content, bkey, thispartition=this_partition()):
whil e True:
line = content.next()
if not line:

br eak
i f (hash(line[bkey])%ask. num partitions)==thispartition:
yield line

7 Experimental Evaluation

In this section, we measure the performance improvements achieved byopfesed methods. Further,
we evaluate the system scalability on various sizes of tasks and data setmapate with other business
intelligence tools using MapReduce.

7.1 Experimental Setup

All experiments are conducted on a cluster of 6 nodes connected thaagighbit switch and each having
an Intel(R) Xeon(R) CPU X3220 2.4GHz with 4 cores, 4 GB RAM, and a/SAard disk (350 GB, 3
GB/s, 16 MB Cache and 7200 RPM). All nodes are running the Linux 2.8e32el with Disco 0.2.4,
Python 2.6, and ETLMR installed. The GlusterFS DFS is set up for the cli&tetgreSQL 8.3 is used for
the DW DBMS and is installed on one of the nodes. One node serves as tter ara$the others as the
workers. Each worker runs 4 parallel map/reduce tasks, i.e., in totadrallgl tasks run. The time for bulk
loading is not measured as the way data is bulk loaded into a database is an imptemehoice which is
independent of and outside the control of the ETL framework. To inclade@ime for bulk loading would
thus clutter the results. We note that bulk loading can be parallelized ushtlges$helf functionality.

7.2 TestData

We continue to use the running example. We use a data generator to gehertdst data for each ex-
periment. In line with Jean and Ghemawat's assumption that MapReduce uspaibtes on numerous
small files rather than a single, large, merged file [8], the test data setariteoped and saved into a set
of files. These files provide the input for the dimension and fact protgghases. We generate two data
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sets bigdimandsmalldimwhich differ in the size of th@agedimension. In particular, 80 GBigdimdata
results in 10.6 GB fact data (193,961,068 rows) and 6.2p@@edimension data (13,918,502 rows) in the
DW while 80 GBsmalldimdata results in 12.2 GB (222,253,124 rows) fact data and 5¢Miedimension
data (193,460 rows) in the DW. Both data sets produce 32d§B1,000 rows) and 16 KBlatedimension
data (1,254 rows).

7.3 Scalability of Proposed Processing Methods

In this experiment, we compare the scalability and performance of the diffEFLMR processing meth-
ods. We use a fixed-sizkigdim data set (20 GB), scale the number of parallel tasks from 4 to 20,
and measure the total elapsed time from start to finish. The results for dlakewchema and a star
schema are shown in Figure 12 and Figure 13, respectively. Thegysiolv thespeedupcomputed by
T4 odot,snow flake/ Tn WNer€Ty oqot snow flake 1S the processing time fAdDOT using 4 tasks in a snowflake
schema and’, is the processing time when usingasks for the given processing method.

We see that the overall time used for the star schema is less than for theakeoadhema. This
is because the snowflake schema has dimension dependencies arthigienahich require more (level-
wise) processing. We also see that the offline hybrid scales the besichimes almost linear speedup.
The ODAT in Figure 13 behaves similarly. This is because the dimensionsaatgifi offline hybrid and
ODAT are processed by all tasks which results in good balancing atabgitg. In comparison, ODOT,
offline ODOT, level-wise, and hierarchy-wise do not scale as well a8To@hd hybrid since only a limited
number of tasks are utilized to process dimensions (a dimension is only pedcesa single task). The
offline dimension scheme variants outperform the corresponding onle® erg., offline ODOT vs. ODOT.
This is caused by 1) using a high performance storage system to savesitingon all nodes and provide
in-memory lookup; 2) The data-intensive dimensipagedim is partitioned into smaller chunks which
also benefits the lookup; 3) Unlike the online dimension scheme, the offline diareacheme does not
communicate directly with the DW and this reduces the communication cost catdidefinally, the
results show the relative efficiency for the optimized methods which are mastarfthan the baseline
ODOT.
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7.4 System Scalability

In this experiment, we evaluate the scalability of ETLMR by varying the numbiaisés and the size of the
data sets. We select the hybrid processing method, use the offline dimscis@me, and conduct the testing
on a star schema, as this method not only can process data among all tHanéikksODOT in which only

a limited number of tasks are used), but also showed the best scalability inmetieys experiment. In
the dimension processing phase, the mappers are responsible fosgimgcine data-intensive dimension
pagedimwhile the reducers are responsible for the other two dimenstatedimandtestdim each using
only a single reducer. In the fact processing phase, no reduceedsassno aggregation operations are
required.

We first do two tests to get comparison baselines by using one task (rlatask ETLMR and (plain,
non-MapReducepygramet] respectively. Here, pygrametl also employs 2-phase processinghédli-
mension processing is done before the fact processing. The testsarerdthe same machine with a single
CPU (all cores but one are disabled). The tests process 8bigalin data. We compute the speedups by
using7 /T,, whereT; represents the elapsed time for 1-task ETLMR or for pygrametlZgritie time for
ETLMR usingn tasks. Figure 14 shows that ETLMR achieves a nearly linear speedup imuthber of
tasks when compared to 1-task ETLMR (the line on the top). When compapggtametl, ETLMR has a
nearly linear speedup (the lower line) as well, but the speedup is a little |@Wisris because the baseline,
1-task ETLMR, has a greater value due to the overhead from the MagR&@mework.

To learn more about the details of the speedup, we break down the exetiotéoof the slowest task
by reference to the MapReduce steps when using the two data setslfieg)Td\s the time for dimension
processing is very small f@amalldimdata, e.g., 1.5 min for 4 tasks and less than 1 min for the others, only
its fact processing time is shown. When thigdim data is used, we can see that partitioning input data,
map, partitioning map output (dims), and combination (dims) dominate the execiiome specifically,
partitioning input data and map (see ®Part.InputandMap func.columns) achieve a nearly linear speedup
in the two phases. In the dimension processing, the map output is partitiodexbanbined for the two
dimensionsdatedimandtestdim Also here, we see a nearly linear speedup (sedPtiie and Comb.
columns). As the combined data of each is only processed by a singleerethectime spent on reducing
is proportional to the size of data. However, the time becomes very smallthimdata has been merged in
combiners (se®ed. func.column). The cost of post-fixing after dimension processing is not listedein th
table since it is not required in this case where a global key generator Isysdgo create dimension IDs
and the input data is partitioned by the business key of the f&gjedim(see section 4.4).

Table 2: Execution time distribution, 80 GB (min.)

Testing data| Phase | Task Part. Map Part. Comb. Red. Others Total
Num Input func. func.
4 47.43 178.97 8.56 24.57 1.32 0.1 260.95
dims 8 25.58 90.98 4.84 12.97 1.18 0.1 135.65
12 17.21 60.86 3.24 8.57 1.41 0.1 91.39
bigdim data 16 12.65 47.38 2.50 6.54 1.56 0.1 70.73
20 10.19 36.41 1.99 5.21 1.32 0.1 55.22
(results in 4 47.20 183.24 0.0 0.0 0.0 0.1 230.44
10.6GB 8 24.32 92.48 0.0 0.0 0.0 0.1 116.80
facts
facts)
12 16.13 65.50 0.0 0.0 0.0 0.1 81.63
16 12.12 51.40 0.0 0.0 0.0 0.1 63.52
20 9.74 40.92 0.0 0.0 0.0 0.1 50.66
4 49.85 211.20 0.0 0.0 0.0 0.1 261.15
smalldim dath facts 8 25.23 106.20 0.0 0.0 0.0 0.1 131.53
12 17.05 71.21 0.0 0.0 0.0 0.1 88.36
(results in 16 12.70 53.23 0.0 0.0 0.0 0.1 66.03
12.2GB 20 10.04 42.44 0.0 0.0 0.0 0.1 52.58
facts)
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In the fact processing, the reduce function needs no execution timerasish® reducer. The time
for all the other parts, including map and reduce initialization, map output partiggowriting and reading
intermediate files, and network traffic, is relatively small, but it does nodsearily decrease linearly when
more tasks are adde®@therscolumn). To summarize (s@@tal column), ETLMR achieves a nearly linear
speedup when the parallelism is scaled up, i.e., the execution time of 8 taskslishadf that of 4 tasks,
and the execution time of 16 tasks is nearly half that of 8 tasks.

Table 2 shows some overhead in the data readingRade inputcolumn) which uses nearly 20% of
the total time. We now compare the two approaches for reading data, nameatyitig split into several
smaller files (“pre-split”) and when it is available from a single big file (“mdi%). We usebigdimdata and
only process dimensions.

We express the performance improvement by the speddup, it/ 77, WhereTy ,-gpi: is the time
taken to read data and process dimensions on the no-split data using ébtasksode), and’, is the time
when usingn tasks. As illustrated in Figure 15, for no-split, the time taken to read data rec@ssant
with increasing number of tasks as all read the same data sets. When theptatait, the time taken
to read data and process dimensions scales much better than for no-sgliasmaller sized data set is
processed by each task. In addition, pre-splitis inherently faster fdnya of 3 — than no-split. The slight
sub-linear scaling is seen because the system management overhedtk(érge spent on communication,
adjusting, and maintaining the overall system) increases with the growing nuhtasks. However, we
can conclude that pre-split is by far the best option.
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' J . ' =X 4tasks 44— 16 tasks =X 4tasks 44— 16 tasks
15 |- @-®- Read datafpre-spiit} - *—* 8tasks A—A 20 tasks *—* Btasks A—A 20 tasks
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Figure 15: Speedup of pre-spliFigure 16: Proc. time whenrFigure 17: Proc. time when
and no split, 20 GB scaling up bigdim data scaling up smalldim data

We now proceed to another experiment where we for a given numbesiaf $ize up the data sets from
20 to 80 GB and measure the elapsed processing time. Figure 16 and Figsimevi the results for the
bigdim andsmalldimdata sets, respectively. It can be seen that ETLMR scales linearly inzéhefsthe
data sets.

7.5 Comparison with Other Data Warehousing Tools

There are some MapReduce data warehousing tools available, includim§ldj 19], Pig [12] and Pentaho
Data Integration (PDI) [5]. Hive and Pig both offer data storage on thdddp distributed file system
(HDFS) and scripting languages which have some limited ETL abilities. Thelyahemore like a DBMS
instead of a full-blown ETL tool. Due to the limited ETL features, they cannot@ss an SCD which
requires UPDATES, something Hive and Pig do not support. It is possilpeocess star and snowflake
schemas, but it is complex and verbose. To load data isbmplifiedversion of our running example (with
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no SCDs) require 23 statements in Pig and 40 statements in Hive. In ETLMR — whazntrast to Pig
and Hive is dimensional — only 14 statements are required. ETLMR can@gtpmd SCDs with theame
number of statements, while this would be virtually impossible to do in Pig and Hitie. d&tails of the
comparison are seen in Appendix A.

PDl is an ETL tool and provides Hadoop support in its 4.1 GA version. ¢élaw there are still many
limitations with this version. For example, it only allows to set a limited humber of pasm the job
executor, customized combiner and mapper-only jobs are not suppamtethe transformation components
are not fully supported in Hadoop. We only succeeded in making an EWféliothe simplest star schema,
but still with some compromises. For example, a workaround is employed to legutdbessed dimension
data into the DW as PDI'table outputcomponent repeatedly opens and closes database connections in
Hadoop such that performance suffers.

In the following, we compare how PDI and ETLMR perform when they pascthe star schema (with
pageas a normal dimension, not an SCD) of the running example. To make the gsompaeutral, the
time for loading the data into the DW or the HDFS is not measured, and the dimdaslarp cache is
enabled in PDI to achieve a similar effect of ETLMR using offline dimensidtadoop is configured to
run 4 parallel task trackers in maximum on each node, and scaled by auutieg horizontally. The task
tracker JVM option is set to be -Xmx256M while the other settings are left toefeeutt.

Table 3 shows the time spent on processing 80s@illdimdata when scaling up the number of tasks.
As shown, ETLMR is significantly faster than PDI for Hadoop in procagdi®e data. Several reasons are
found for the differences. First, compared with ETLMR, the PDI job hae more step (the reducer) in
the fact processing as its job executor does not support a mappejebnigecond, by default the data in
Hadoop is split which results in many tasks, i.e., 1192 tasks for the factTaia, longer initialization time
is observed. Further, some transformation components are obserwedwdth low efficiency in Hadoop,
e.g., the components to remove duplicate rows and to apply JavaScript.

Table 3: Time for processing star schema (no SCD), 8Gs@RBlldimdata set, (min.)

Tasks| 4 8 12 16 20
ETLMR | 246.7 124.4 83.1 63.8 46.6
PDI | 975.2 469.7 317.8 232.5 199.7

8 Related Work

We now compare ETLMR to other parallel data processing systems usingédape, and parallel DBMSs.
In addition, we study the current status of parallel ETL tools. MapReduadramework well suited for
large-scale data processing on clustered computers. However, idasititicized for being too low-level,
rigid, hard to maintain and reuse [12, 18]. In recent years, an inagaamber of parallel data processing
systems and languages built on the top of MapReduce have appearaeskakRple, besides Hive and Pig
(discussed in Section 7.5), Chaiken et al. present the SQL-like lan@@QEE [6] on top of Microsoft’s
Cosmos MapReduce and distributed file system. Friedman et al. introdudd8QReduce [10], a user-
defined function (UDF) framework for parallel computation of procatifunctions on massively-parallel
RDBMSs. These systems or languages vary in the implementations and fatitigésmprovided, but overall
they give good improvements to MapReduce, such as high-level languaggr interfaces, schemas, and
catalogs. They process data by using query languages, or UDFs @éadbiedthe query languages, and
execute them on MapReduce. However, they do not offer directrumts for processing star schemas,
snowflaked dimensions, and slowly changing dimensions. In contrasiMIRTuUNS separate ETL processes
on a MapReduce framework to achieve parallelization and ETLMR direcpats ETL constructs for
these schemas.
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Another well-known distributed computing system is the parallel DBMS whidt &ippeared two
decades ago. Today, there are many parallel DBMSs, e.g., Teradd2a,(bjectivity/DB, Vertica, etc.
The principal difference between parallel DBMSs and MapReduce igptrallel DBMSs run long pipe-
lined queries instead of small independent tasks as in MapReduce. Ei@skresearch community has
recently compared the two classes of systems. Pavlo et al. [13], andb&tkeeet al. [15] conduct
benchmarks and compare the open source MapReduce implementatiorphéttotwo parallel DBMSs
(arow-based and a column-based) in large-scale data analysis.slite tkemonstrate that parallel DBMSs
are significantly faster than Hadoop, but they diverge in the effodegéo tune the two classes of systems.
Dean et al. [8] argue that there are mistaken assumptions about MagRiaedhe comparison papers and
claim that MapReduce is highly effective and efficient for large-scaldtfolerance data analysis. They
agree that MapReduce excels at complex data analysis, while paralleSBRktel at efficient queries on
large data sets [15].

In recent years, ETL technologies have started to support paraletgsing. Informatica PowerCenter
provides a thread-based architecture to execute parallel ETL sedsifimmatica has also released Power-
Center Cloud Edition (PCE) in 2009 which, however, only runs on a spegtdtform and DBMS. Oracle
Warehouse Builder (OWB) supports pipeline processing and multiple ggeseunning in parallel. Mi-
crosoft SQL Server Integration Services (SSIS) achieves paratletizay running multiple threads, mul-
tiple tasks, or multiple instances of a SSIS package. IBM InfoSphere Rafa®ffers a process-based
parallel architecture. In the thread-based approach, the threadsrared from a single program, and run
on a single (expensive) SMP server, while in the process-basedagbprETL processes are replicated to
run on clustered MPP or NUMA servers. ETLMR differs from the abbyéeing open source and based
on MapReduce with the inherent advantages of multi-platform suppolabsiig on commodity clustered
computers, light-weight operation, fault tolerance, etc. ETLMR is alsougnin being able to scale auto-
matically to more nodes (with no changes to the ETL flow itself, only to a confiignrgarameter) while
at the same time providing automatic data synchronization across nodesoewamiplex structures like
snowflaked dimensions and SCDs. We note that the licenses of the comnadrciphckages prevent us
from presenting comparative experimental results.

9 Conclusion and Future Work

As business intelligence deals with continuously increasing amounts of data,ishan increasing need
for ever-faster ETL processing. In this report, we have preseniédR which builds on MapReduce to
parallelize ETL processes on commodity computers. ETLMR contains a nurhipewvel contributions.
It supports high-level ETL-specific dimensional constructs for pssicey both star schemas and snowflake
schemas, SCDs, and data-intensive dimensions. Due to its use of MapR&dwzn automatically scale
to more nodes (without modifications to the ETL flow) while it at the same time prevadéomatic data
synchronization across nodes (even for complex dimension structueesndwflakes and SCDs). Apart
from scalability, MapReduce also gives ETLMR a high fault-tolerancethien, ETLMR is open source,
light-weight, and easy to use with a single configuration file setting all run-timenpeters. The results of
extensive experiments show that ETLMR has good scalability and comipaioesably with other MapRe-
duce data warehousing tools.

ETLMR comprises two data processing phases, dimension and facspiogeFor dimension process-
ing, the report proposed a number of dimension management schemesoaasdspg methods in order
to achieve good performance and load balancing. The online dimensiemsdtiirectly interacts with
the target DW and employs several dimension specific methods to prodasindaidingODOT, ODAT,
andlevel-wiseand hierarchy-wiseprocessing for snowflaked dimensions. The offline dimension scheme
employs high-performance storage systems to store dimensions distributegiiclo node. The methods,
ODOT andhybrid allow better scalability and performance. In the fact processing phaeldad is used
to improve the loading performance.
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Currently, we have integrated ETLMR with the MapReduce framework, dise the future, we in-
tend to port ETLMR to Hadoop and explore a wider variety of data storpgerss. In addition, we intend
to implement dynamic partitioning which automatically adjusts the parallel executiogsponse to ad-
ditions/removals of nodes from the cluster, and automatic load balancing dhi@mically distributes
jobs across available nodes based on CPU usage, memory, capacityp aikjthrough automatic node
detection and algorithm resource allocation.
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Appendix

A Comparison with other MapReduce tools for Bl

ETL tools are used for extracting, transforming and loading data into a dathause. While this in some
cases can be done by only using DBMS software, the typical scenariatis thpecialized, stand-alone
ETL tool is used. The reason is that ETL tools allow users to do things thatifficult to do with DBMS
software such as reading different file formats, copying and writingifileéferent formats, sending email
notifications, connecting to web services, etc. The large amount of elitféTL tools available on the
market in itself proves the industry-need for stand-alone ETL tools. Ifolle@ving we compare ETLMR
to Hive [18, 19] and Pig [12] which are generic MapReduce-bastwarehouse systems for storing data
and analysis. This is thus somewhat similar to comparing ETL tools and DBM$$oibcompleteness
we include the comparisons here. Unlike Hive and Pig, ETLMR does na itown data storage (note
that the offline dimension store is only for speedup purpose), but is ant&ol suitable for processing
large scale data in parallel. Hive and Pig share large similarity, such asHaompp MapReduce, using
Hadoop distributed file system (HDFS) as their data storage, integratinguma&od line user interface,
implementing a query language, being able to do some ETL data analysis, ansl daththe following, we
compare their ETL features with ETLMR.

Table 4 summarizes the comparison. First, each system has a user intétfeegrovides an SQL-
like language HiveQL and a shell, Pig provides a scripting language Pig &atira shell, and ETLMR
provides a configuration file to declare dimensions, facts, UDFs, and athdime parameters. Unlike
Hive and Pig which require users to write data processing scripts expliEifligMR is intrinsically an
ETL tool which implements ETL process within the framework. The advantagetsusers do not have
to learn the details of each ETL step, and are able to craft a parallel EGgrgm even without much
ETL knowledge. Second, each system supports UDFs. In Hive andaRigxternal function or user
customized code for a specific task can be implemented as a UDF, and irddégtatdheir own language,
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Table 4: The comparison of ETL features

Feature ETLMR HIVE PIG

User Interface Configuration file Shell/HiveQL/Web Shell/Pig Latin
JDBC/ODBC

ETL knowledge required Low High High

User Defined Functions Yes Yes Yes

(UDF)

Filter/Aggregation/Join | Yes Yes Yes

Star Schema Yes (explicit) By handcode (implicit) | By handcode (implicit)

Snowflake Schema Yes (explicit) By handcode (implicit) | By handcode (implicit)

Slowly Changing Di-| Yes (explicit) No No

mension (SCD)

ETL details to users Transparent Fine-level Fine-level

e.g., functions for serialization/deserialization data. In ETLMR, UDFs aremaber ofrowhandles (see
Section 4 and 5) integrated intnap and reducefunctions. These UDFs are defined for data filtering,
transformation, extraction, name mapping. ETLMR also provides other Eihhitiye constructs, such
as hash join or merge join between data sources, and the aggregatiatsabygplugable function, i.e.,
used as the reduce function (see Section 5). In contrast, Hive anccigya the functionlity of ETL
constructs through a sequence of user-written statements, which argdatdated into execution plans,
and executed on Hadoop. Third, as ETLMR is a specialized tool dewkligpdast implementation of
parallel ETLs, it explicitly supports the ETLs for processing differecttesnas, including star schema,
snowflake schema and SCDs, and very large dimensions. There®impglementation of a parallel ETL
program is very concise and intuitive for these schemas, i.e., only fdestaheir referenced dimensions
androwhandlersif necessary must be declared in the configuration file. Although HivePagidboth are
able to process star and snowflake schemas technically, implementing am\ERLthe most simple star
schema, is not a trivial task as users have to dissect the ETL, write tbegsing statements for each ETL
step, implement UDFs, and do nhumerous testing to make them correct. Morasvtke HiveQL and Pig
Latin lack UPDATE and DELETE operations, they are not able to procE&sSwhich require UPDATE
operation on a dimension’s valid date or/and version. Fourth, ETLMR idtarmative to traditional ETL
tools but offer better scalability. In contrast, Hive and Pig are obviousiyptimal for the situation, where
an external DW is used.

In order to make the comparison more intuitive, we create ETL programsdoegsing the snowflaked
schema for the running example (see Figure 5) in each of the tools. Tipssoe shown in Appendix A.1,
A.2 and A.3, respectively. In each script, the UDFs are not shownipdidated by self-explaining names
(starting withUDF_). As described, the implementation of ETLMR only includes a number of deiciasa
in the configuration file, such as dimensions, fact tables, data sourtestear parameters, and a single line
to start the program. All the ETL details are transparent to users. Inastnthe scripts of Hive and Pig
include the finest-level details of the ETL. In ETLMR, as only declaratiors@quired, its script is more
concise and readable, e.g., only containing 14 statements for processsmpthflaked schema (a statement
may span several lines by™in Python). In contrast, the implementations consist of 23 and 40 statements
by using HiveQL and Pig Latin, respectively (each statement ends withify'gddition, although we have a
clear picture of the ETL processing of this schema, we still spent sdvewas to write scripts for Hive and
Pig (the time of implementing UDFs is not included), and test each step. In stritia of high efficiency
to script in ETLMR.
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Al ETLMR

# The configuration file, config.py

# Declare all the dinensions:

dat edi m = Di nensi on(nanme="date’ ,key="dateid ,attributes=['date’,’day’, month’,\
"year’, week’,’ weekyear'], | ookupatts=['date’'])

testdim= Dinmension(name="test’,key="testid ,defaultidvalue=-1,\

attributes=['testnane’], | ookupatts=['testnane’'])
pagedi m = S|l owl yChangi ngDi mensi on( nane=' page’ , key="pagei d’, | ookupatts=["url’], attributes=["url’,6\
"size', 'validfrom ,6’'validto', version', donmin', 'serverversion'], versionatt=version',\

srcdateatt="1astnoddate’ ,fromatt="validfronm ,toatt="validto' ,srcdateatt='I|astnoddate’)
t opdomai ndi m = Di mensi on(nanme='t opdonai n’, key="t opdomai ni d’' , \
attributes=[’'topdonain’], | ookupatts=[’'topdomain’'])
donmi ndi m = Di nensi on( nane="domai n’, key="domai nid', attributes=['domain’, 'topdomainid],\
| ookupatts=[’' domain’'])
serverdi m = Di mensi on(name='server’, key="serverid’',attributes=[’server’],|ookupatts=['server’'])
serverversiondi m = Di nensi on( name=" serverversion’, key="serverversionid' ,attributes=['serverversion',\
"serverid ], |l ookupatts=[’'serverversion’'],refdi ms=[serverdini)

# Define the snowfl aked referencing-ship:
pagesf = [(pagedim [serverversiondim domaindini), (serverversiondim serverdim,\
(donai ndi m topdomai ndi m ]

# Declare the facts:
testresul tsfact = Bul kFact Tabl e(nane="testresults’, keyrefs=['pageid , 'testid , 'dateid ],\
nmeasures=[’errors’], bul kl oader =UDF_pgcopy, bul ksi ze=5000000)

# Define the settings of dinensions, including data source schema, UDFs,

# di mension | oad order, and the referenced di mensions of fact:

dins ={pagedim {’'srcfields':('url’,’ serverversion',’  domain',’size',’'lastnpddate’),\
"rowhandl ers’ : (UDF_extractdomai n, UDF_extractserver)}, datedim {’srcfields’: (' downl oaddate’,),\
"rowhandl ers’ : (UDF_expl odedate,) }, testdim{’'srcfields :('test’,),’ rowhandlers’:(, )},}

# Define the processing order of snowfl aked di nesions:
| oadorder = [(’'topdomaindim, ’'serverdim), (' donmaindim, 'serverversiondim),\
(" pagedinm, 'datedim, 'testdini)]

# Define the settings of facts:
facts = {testresultsfact:{ refdins’:(pagedim datedim testdinm, rowhandlers’:(, )},}

# Define the input data:
inputdata = ['dfs://|ocal host/ Test Resul ts0.csv’', 'dfs://local host/ TestResultsl.csv’']

# The main ETLMR program paralleletl.py
# Start the ETLMR program
ETLMR. | oad(’ | ocal host’, i nput dat a, requi red_nodul es=[ (' config',’config.py’'),],nr_maps=4, nr_reduces=4)

A.2 HIVE

-- Copy the data sources fromlocal file systemto HDFS:
hadoop fs -copyFronLocal /tnp/ Downl oadLog.csv /user/test;
hadoop fs -copyFromLocal /tnp/TestResults.csv /user/test;

-- Create staging tables for the data sources:

CREATE EXTERNAL TABLE downl oadl og(l ocal file STRING url STRING serverversion STRI NG
size INT, downl oaddate STRING | ast noddate STRI NG ROW FORMAT DELIM TED FI ELDS

TERM NATED BY '\t' STORED AS TEXTFI LE LOCATI ON ' /user/test/downl oadl og’;

CREATE EXTERNAL TABLE testresults(localfile STRING test STRING errors |NT) ROWN FORMAT
DELI M TED FI ELDS TERM NATED BY '\t’' STORED AS TEXTFI LE LOCATION '/user/test/testresults’;

-- Load the data into the staging tables:
LOAD DATA | NPATH /user/test/input/ Downl oadLog. csv | NTO TABLE downl oadl og;
LOAD DATA | NPATH /user/test/input/TestResults.csv | NTO TABLE testresults;
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-- Create all the dinension tables and fact tables:

CREATE EXTERNAL TABLE datedi n(dateid I NT, downl oaddate STRI NG day STRI NG
month STRING year STRING week STRING weekyear STRING ROW FORVAT DELI M TED
FI ELDS TERM NATED BY '\t’' STORED AS TEXTFI LE LOCATION '/user/test/datedim;

CREATE EXTERNAL TABLE testdim(testid INT, testnane STRING ROW FORVAT DELI M TED
FI ELDS TERM NATED BY '\t' STORED AS TEXTFI LE LOCATI ON '/user/test/testdim ;

CREATE EXTERNAL TABLE topdomai ndi n(topdomai nid | NT, topdonmain STRING ROW FORVAT
DELI M TED FI ELDS TERM NATED BY '\t’' STORED AS TEXTFI LE LOCATI ON ' /user/test/topdomai ndi m ;

CREATE EXTERNAL TABLE domai ndi m(domai nid | NT, domain STRING ROW FORVAT DELIM TED
FI ELDS TERM NATED BY '\t' STORED AS TEXTFILE LOCATI ON '/user/test/domai ndin;

CREATE EXTERNAL TABLE serverdi nm(serverid | NT, server STRING ROW FORVAT DELIM TED
FI ELDS TERM NATED BY '\t' STORED AS TEXTFI LE LOCATI ON '/user/test/serverdin;

CREATE EXTERNAL TABLE serverversiondi n{serverversionid | NI, serverversion STRI NG
serverid I NT) ROW FORMAT DELI M TED FI ELDS TERM NATED BY '\t’' STORED AS TEXTFI LE
LOCATI ON '/ user/test/serverversiondin;

CREATE EXTERNAL TABLE pagedi m(pageid |INT, url STRING size INT, validfrom STRI NG
validto STRING version INT, donminid INT,serverversionid |NT)
ROWN FORVAT DELI M TED FI ELDS TERM NATED BY '\t' STORED AS TEXTFI LE LOCATI ON ' /user/test/pagedin ;

CREATE EXTERNAL TABLE testresultsfact(pageid INT, testid INT, dateid INT, error |INT)
ROW FORVAT DELI M TED FI ELDS TERM NATED BY '\t' STORED AS TEXTFI LE
LOCATION '/ user/test/testresul tsfact’;

-- Load data into the non-snowfl aked di nension tables, testdimand datedi m

I NSERT OVERWRI TE TABLE dat edi m SELECT UDF_get gl obal i d() AS dateid, downl oaddate,

UDF_ext r act day(downl oaddat e), UDF_extract nont h(downl oaddat e), UDF_extract year (downl oaddat e) ,
UDF_ext ract week(downl oaddat e), UDF_extract weekyear (downl oaddat e) from downl oadl og;

I NSERT OVERWRI TE TABLE testdi m SELECT UDF_getgl obalid() AS testid, A testnane FROM
(SELECT DI STINCT test as testname FROM testresults) A

-- Load data into the snowfl aked di nension tables fromleaves to the root:
| NSERT OVERWRI TE TABLE t opdomai ndi m SELECT UDF_get gl obal i d() AS topdonai nid, A topdomai n FROM
( SELECT DI STI NCT UDF_extracttopdomai n(url) FROM downl oadl og) A,

I NSERT OVERWRI TE TABLE domai ndi m SELECT UDF_get gl obal i d() AS domai ni d, A. domain, B.topdomainid FROM
(SELECT DI STI NCT UDF_extractdomain(url) as domain, UDF_extracttopdomain(url) as topdomain
FROM downl oadl og) A JO N topdonai ndim B ON (A. topdomai n=B. t opdomai n);

| NSERT OVERWRI TE TABLE serverdi m SELECT UDF_get gl obalid() AS serverid, A server FROM
(SELECT DI STI NCT UDF_extractserver(serverversion) AS server FROM downl oadl og) A;

I NSERT OVERWRI TE TABLE serverversi ondi m SELECT UDF_get gl obal i d() AS serverversionid, A serverversion,
B. serverid FROM (SELECT DI STINCT serverversion, UDF_extractserver(serverversion) as server
FROM downl oadl og) A JO N serverdim B ON (A server=B.server);

I NSERT OVERWRI TE TABLE pagedi m SELECT UDF_get gl obal i d() AS pageid, A url, A size, A |astnoddate,

B. domai ni d, C.serverversionid FROM (SELECT url, size, |astnoddate, UDF_extractdomain(uri) AS domain,
serverversi on FROM downl oadl og) A JO N domai ndim B ON (A domai n=B. donai n) JO N serverversiondimC
JO N (A serverversion=C. serverversion);

CREATE EXTERNAL TABLE pagedi mtnp(pageid INT, url STRING size INT, |astnoddate STRI NG domainid |NT,
serverversionid | NT) RONFORVAT DELI M TED FI ELDS TERM NATED BY '\t’
STORED AS TEXTFI LE LOCATI ON ' /user/test/pagedimtnp’;

-- Load data into the fact table, testresultstact:

| NSERT OVERWRI TE TABLE testresultsfact SELECT C pageid, E.testid, D.dateid, B.errors
FROM downl oadl og A JO N testresults B ON (A localfile=B.localfile)

JO N pagedim C ON (A.url=C.url) JO N datedimD ON (A downl oaddat e=D. downl oaddat e)
JO N testdimE ON (B.test=E. testnane);
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A3 PIG
-- Copy the data fromlocal file systemto HDFS:

hadoop fs -copyFronLocal /tnp/Downl oadLog. csv /user/test;
hadoop fs -copyFronmLocal /tnp/TestResults.csv /user/test;

-- Load the data into in PIG

downl oadl og = LOAD ' Downl oadLog. csv’ USI NG Pi gStorage(’'\t")

as (localfile, url, serverversion,size, downl oaddat e, | ast noddat e) ;

testresults = LOAD ' Test Results.csv’ USING PigStorage('\t’) as (localfile, test, errors);

-- Load the dinension table, testdim

testers = FOREACH testresults GENERATE test as testnaneg;

distincttestname = DI STINCT testers;

testdi m = FOREACH di stincttestnane GENERATE UDF_get gl obalid() as testid, testnane;
STORE testdimINTO '/tnp/testdim USING Pi gStorage();

-- Load the dinension table, datedim

downl oadat es = FOREACH downl oadl og GENERATE downl oaddat e;

di stinctdownl oadates = DI STI NCT downl oadat es;

dat edi m = FOREACH di sti nct downl oadat es GENERATE UDF_get gl obal i d() AS dateid, downl oaddat e,
UDF_extract day( downl oaddat e) AS day, UDF_extractnont h(downl oaddate) AS nonth,
UDF_extract year (downl oaddat e) AS year, UDF_extractweek(downl oaddate) AS week,

UDF_extract weekyear (downl oaddat e) as weekyear;

STORE datedi m I NTO '/tnp/datedi mi USING Pi gStorage();

-- Load the sknowfl aked di nensi on tables:
urls = FOREACH downl oadl og GENERATE url ;

serverversions = FOREACH downl oadl og GENERATE serverversi on;

donai ns = FOREACH downl oadl og GENERATE UDF_extract domai n(url) as domai n;

di stinctdomai ns = DI STI NCT domai ns;

t opdonmai ns = FOREACH di sti nct domai ns GENERATE UDF_extracttopdonai n(domai n) as topdonain;
di stincttopdomai ns = DI STI NCT t opdomnai ns;

t opdommi ndi m = FOREACH di sti ncttopdomai ns GENERATE UDF_get gl obal i d() ad topdonai ni d, topdonain;
STORE t opdonai ndi m I NTO * / t np/ t opdonmi ndi mi USI NG Pi gSt or age() ;

ndonai ns = FOREACH di sti nct domai ns GENERATE donmi n as donwai n,
UDF_extracttopdonai n(donai n) AS topdonai n;

ndomai njoin = JO N ndomai ns BY topdonai n, topdomai ndi m BY t opdomai n;

domai ndi m = FOREACH ndonmi nj oi n GENERATE UDF_get gl obal i d() as donmi nid, domain, topdomainid;
STORE domai ndi m | NTO '/t np/ domai ndi mi USI NG Pi gSt orage() ;

di stinctserverversions = DI STINCT serverversions;

nserverversi ons = FOREACH di sti nct serverversi ons GENERATE serverversion AS serverversion,
UDF_extract server (serverversion) AS server;

servers = FOREACH nserverversi ons CGENERATE server as server;
di stinctservers = DI STINCT servers;

serverdi m = FOREACH di stinctservers GENERATE UDF_getgl obalid() as serverid, server;
STORE serverdim | NTO ' /tnp/serverdim USING Pi gStorage();

nserverversionjoin = JO N nserverversions BY server, serverdi mBY server;

serverversiondi m = FOREACH nserverversi onj oi n GENERATE UDF_get gl obal i d() as serverversionid,
serverversion, serverid;
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STORE serverversiondim|INTO '/tnp/serverversiondim USING Pi gStorage();

j oi ndonservversion = JON (JO N downl oadl og BY UDF_extractdonmai n(url),
donmmi ndi m by domai n) BY serverversion, serverversiondi mBY serverversion;

pagedi m = FOREACH j oi ndonser vver si on GENERATE UDF_get gl obal i d() as pageid,
url, size, lastnoddate, serverversionid, donainid;

STORE pagedi m | NTO '/ t np/ pagedi mi US| NG Pi gSt or age() ;

-- Load the fact tables:
testresults = JO N downl oadl og BY localfile, testresults BY localfile;

joinpagedim= JON testresults BY url, pagedi mBY url;

joindatedim= JO N j oi npagedi m BY downl oaddat e, datedi m BY downl oaddat e;
jointestdim= JAN joindatedi m BY test, testdi mBY testnaneg;
testresultsfact = FOREACH j oi ntestdi m GENERATE datei d, pageid, testid, errors;

STORE testresultsfact INTO '/tnmp/testresul tsfact’ USING PigStorage();
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