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Abstract

In recent years, indoor spatial data management has started to attract attention partly due to the
increasing use of receptor devices (e.g., RFID readers, and wireless sensor networks) in both outdoor
and indoor spaces. Applications that employ these devices are expected to span uniformly and supply
seamless functionality in both outdoor and indoor spaces. What makes this impossible is the current
absence of a unified account of these two types of spaces both in terms of modeling and reasoning
about the models. This paper reviews and extends a recent unified model of outdoor and indoor spaces
and receptor deployments in these spaces. The extended model enables modelers to capture various
information pieces from the physical world. On top of the extended model, this paper hones the route
observability concept, derives its powerful, bounded information-theoretic function, and demonstrates
its usefulness in enhancing the reading environment. Additionally, this paper establishes a conclusive re-
lation between a route observability and the uncertainty in tracking moving objects. The extended model
enables incorporating receptor data through a probabilistic trajectory-to-route translator. This translator
first facilitates the tracking of moving objects enabling the search for them to be optimized, and sec-
ond permits performing high-level reasoning about points of potential traffic (over)load in outdoor and
indoor spaces, so-called bottleneck points. A functional analysis illustrates the behavior of the route
observability function. An experimental evaluation follows to corroborate the competitive accuracy of
the translator, the high quality of the inference, and the sensibleness of the reasoning, when applied to
synthetic data, and to uncleansed, real-world data obtained from tracking RFID-tagged flight baggage.

Keywords: Outdoor space, indoor space, OI-space, modeling, reasoning, RFID, moving objects, spatio-
temporal databases, uncertainty, dynamic Bayesian network, sampling.

1 Introduction

Ubiquitous receptor devices are increasingly deployed in outdoor and indoor spaces (OI-spaces [25]) to
enable new classes of applications that enhance human ambient awareness about the physical world. A
myriad of examples exist, of which are supply chain and product life cycle management, and asset and
personnel tracking. In order to support these emerging applications, so-called receptor-based systems [9] are
being built with a focus on managing and analyzing the data collected by receptors. A common assumption
made in spatial data management systems is that spaces under consideration are outdoor spaces (O-spaces).
As a matter of fact, a considerable portion of human lives is spent indoors – what increases the size and
complexity of indoor spaces (I-spaces). Nonetheless, indoor spatial data management systems are less
developed than their outdoor counterparts that have GIS at their core. The unification of these two types of
spaces, both in terms of modeling and reasoning about the models, is lacked so far.

A variety of applications, facilitated by receptor-based systems, need to span seamlessly both O- and
I- spaces. One application is tracking, i.e., determining the location of moving objects in OI-spaces. An-
other application is deciding the amount of OI-spaces that is covered by receptors. A third application is
determining the locations of heavy traffic in OI-spaces. Supporting these applications and others (at various
levels in OI-spaces) motivates this study which makes the following contributions:

• The study reviews and extends a recent unified model of OI-spaces and receptor deployments in these
spaces [8].

• Based on the extension, the study investigates the route1 observability concept with the aim of opti-
mizing an RFID readers deployment and enhancing the reading environment.

• The study then advances a probabilistic translator of receptor data that offers a complete and more
informative insight into the locations of moving objects in OI-spaces.

1A particular way moving objects follow (or are carried over) in an OI-space.
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• Furthermore, the study uses the translated data in order to perform high-level reasoning about points
of potential traffic load in OI-spaces, so-called bottleneck points (BPs).

• Last, the study extensively evaluates the proposals made via functional analysis and experimentation
with a real-world RFID dataset.

The remainder of this paper is organized as follows. Section 2 reviews the authors’ recent unified model
of OI-spaces and receptor deployments in these spaces [8]. Section 3 extends this model via supplementing
it with various properties from the physical OI-space environment. Using the coverage weight property
introduced in Section 3, and building on some solid information-theoretic foundations, the paper hones the
route observability concept in Section 4, derives its bounded function from the ground up, and establishes its
lower and upper bound. Additionally, the paper offers a conclusive characterization of the relation between
a route observability and the uncertainty in tracking moving objects in OI-spaces. The notion of a BP is
realized in Section 5. Static reasoning about this notion (independently of timestamped RFID data streams)
is performed in the same section on top of the OI-space model reviewed in Section 2. Probabilistic incorpo-
ration of RFID data is carried out in Section 6 using the probabilistic trajectory-to-route translator that has
the extended model in its core. This incorporation paves the way for an over-time upgrade, performed in
Section 7, of the static model-based reasoning done in Section 5. Section 8 follows with a comprehensive
functional analysis and experimental evaluation that analyze the route observability function, the proba-
bilistic trajectory-to-route translator, and the dynamic BP estimate algorithms under a variety of settings.
Related work is reviewed in brief in Section 9, and the paper concludes in Section 10. The proofs are given
in Appendix A, and Table 1 offers a summary of the notation used throughout the paper.

Table 1: Summary of notation

Symbol Description

l, li|lj A semantic location (a location for short) and a connection point
(li, lj), r A binary sub-route (a sub-route for short) and an RFID reader
Wl,Wc The sets of locations and connection points
Wo,Wm The sets of moving objects and sub-routes
Wr The set of RFID readers in a deployment
Doi-space ,Drfid The OI-space and RFID deployment pseudographs
c The edge label mapping in Doi-space

cl, cm, cr The vertex label mapping, the edge label mapping, and the coverage weight mapping in Drfid

R = (l1 . . . lk), obs(R) A route in Drfid and its observability
obj A moving object
TR(obj ,T ) The trajectory of obj over T
appear-ds The data structure of appearance records
inter-ds The data structure of intermediate records
prob-ds The data structure of probabilistic records
infer-ds The data structure of inferred records
synth-ds The data structure of synthetic records
EBP (l) The static estimate that l is a BP
ET

BP (l) The dynamic estimate that l is a BP over T
BPMQT A BP monitoring query over T

2 Model Review

An authors’ recent work [8] proposes a unified model of OI-spaces and receptor deployments in these
spaces. The work focuses on partially constrained outdoor and indoor motion common in receptor-based
systems. The model is shown to be expressive, flexible, and invariant to the segmentation of a space plan,
and the receptor deployment policy. The viability of this model is demonstrated via applying it to the
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real-world baggage handling plan in Aalborg Airport. This plan comprises two sub-plans; the I-space and
O-space plans in Aalborg Airport hall and apron2 respectively. The former plan is shown in Figure 1.

Figure 1: The example I-space plan in Aalborg Airport hall

To create the OI-space pseudograph model of the baggage handling example, the sets of locations
(Wl), connection points (Wc), moving objects (Wo), and sub-routes (Wm) are identified. To give examples
in Figure 1, the check-in desks (CD) and check-in conveyor (CC) are locations and (CD|CC) is their
connection point. Moving objects are bags to which RFID tags are attached. An example bag route is
CD → CC → MC → SMC → TTS (repeatedly in general) → CH. Two sub-routes along this route are
(CD,CC) and (TTS,TTS). Next, the locations are converted into vertices and sub-routes into edges (an
edge direction matches the motion direction and the order of the sub-route). Furthermore, the edges are
labeled using sets taken from the power set of the connection points. For instance in Figure 1, the locations
CD and CC are converted into vertices, and the sub-route (CD,CC) is converted into an edge connecting
between these two vertices. The edge (CD,CC) is directed from CD to CC and labeled (CD|CC). The
same identification, conversion, and labeling steps are carried out for Aalborg Airport apron which yields
Doi-space = (Wl,Wm, c) shown in Figure 2, where c is the edge label mapping. In this figure, CGS and
GS1-GS4 are the apron geometric segments, BL1-BL3 are the belt loaders, and AP1-AP3 are the airplanes.

Figure 2: The example OI-space pseudograph

2An open part of an airport in which airplanes are parked, fueled, boarded by passengers, and loaded with baggage.
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In the same work [8], Aalborg Airport RFID deployment (Figure 1) is modeled. An algorithm is applied
in order to transform Doi-space = (Wl,Wm, c) (Figure 2) into Drfid = (Wl,Wm, cl, cm) (Figure 3), where
cl and cm are the vertex and edge label mappings respectively. To give examples on vertex and edge labeling
in Figure 3, the reader r1 is positioned inside MC away from any connection point. Therefore r1 ∈ cl(MC).
On the other hand, r2 and r3 are adjacently positioned at SMC|TTS, and r2 reads before r3 when moving
from SMC to TTS across SMC|TTS. Thus, (r2, r3) ∈ cm(SMC,TTS).

Figure 3: The example RFID readers deployment pseudograph extended with the conveyor throughput
property TH (measured in bags/hour)

3 Model Extension

This work extends Drfid (Figure 3) into a property pseudograph [19] by allowing the vertices and edges to
have various properties (key/value pairs) from the physical hall and apron environments. The advantage
of this extension is threefold. First, a property pseudograph gives the freedom to modelers in expressing
their awareness of various information pieces from the physical world. Intuitively, the more the information
gathered about the physical world, the wider the scope of the questions that can be asked about it. Second,
a property pseudograph contains most of the pieces used in graph modeling, which makes it a malleable
structure that can be easily transformed into other common graph structures. Third, a property pseudograph
is the typical data model used in graph databases. Therefore, the extension to this type of graph enables
benefiting from the proven efficiency of graph databases in processing dense and interrelated datasets and
quickly traversing along the edges between vertices [19].

Various properties can be obtained from the hall (Figure 1) and apron environments and subsequently
added to the vertices and edges ofDrfid (Figure 3). A few example properties are conveyor type (with values
chain and curve conveyors, etc), conveyor throughput (measured in bags/hour), speed limit on the apron
geometric segments (measured in m/s), in addition to connection point type (with values actual or virtual).
An important property to the route observability application (Section 4) is the coverage weight of RFID
readers among locations. This vertex property can be captured in a mapping cr : Wl → (Wr → [0, 1]),
which is effectively a mapping to a mapping in the sense that it maps any location l ∈ Wl to a set of
assignments each of which specifies the coverage weight of a reader r ∈ Wr whose reading zone is joint
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(overlapping/nested) with the area of l. Strictly speaking:

cr :Wl → w;w :Wr → [0, 1]

cr(l) = {r → w(r) = ZONE(r)∩AREA(l)
AREA(l) : ZONE (r) ∩AREA(l) ̸= ∅}

It is also convenient to use the simplifying notation:

cr(l) =
∑

w(r)∈cr(l)

w(r) (1)

The coverage weights of the locations seen in Figure 3 are approximated based on the RFID deployment
(Figure 1) and listed in Table 2. For instance, cr(SMC) = {r2 → .8, r3 → .2} means that roughly 80%
of r2 and 20% of r3 reading zones overlap with AREA(SMC). The notation of the RFID pseudograph
becomes Drfid = (Wl,Wm, cl, cm, cr), augmented by cr; the new coverage weight mapping.

Table 2: The coverage weights of the locations in Figure 3

l cr(l) = {r → w(r)} l cr(l) = {r → w(r)}

CD,CC,GS4,AP1,OB,RB,AP2,AP3 ∅ GS1 {r6 → .1}
MC {r1 → 1} GS2 {r7 → .1}
SMC {r2 → .8, r3 → .2} GS3 {r8 → .1}
TTS {r2 → .2, r3 → .8} BL1 {r6 → .9}
OC {r4 → .95, r5 → .95} BL2 {r7 → .9}
CH {r4 → .95, r5 → .95} BL3 {r8 → .9}
CGS {r4 → .05, r5 → .05}

4 Route Observability

A route observability is a measure of the extent to which a given route is covered by RFID readers. The
study of a route observability is motivated as follows. Some physical approaches to RFID deployment in
OI-spaces attempt to correct RFID anomalies by enhancing the reading environment. This can be attained
through either installing additional readers or (more economically) adjusting the positioning of already-
installed readers. In both cases, the aim is to cover a more substantial amount of an OI-space [1]. The
number of RFID readers positioned along a route does not accurately reflect this route observability. For in-
stance, route2 in Figure 4 is more observable than route1. The reason is that 100% of r5 reading zone over-
laps with AREA(gateway2) compared to the 50% of r4 reading zone that overlaps with AREA(gateway1).
The need for a precise route observability measure is thus overwhelming.

Figure 4: route2 is more observable than route1 albeit both routes are covered by one reader.

The route definition can be made more formal by saying that a route R = (l1 . . . lk) in Drfid is an
alternating sequence of locations and sub-routes from Drfid that starts in l1 and ends in lk. The sets of
locations and sub-routes in R are denoted as V(R) and A(R) respectively. Hence, one may write R =
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(V(R),A(R)). The starting point in deriving an observability measure is to consider a single location
observability and then generalize it into routes with arbitrary number of locations. The observability of a
location l can be denoted as follows:

Γ : [0, 1]→ [0,∞)

To measure the observability in a meaningful way, the function Γ should satisfy the following properties:

P1. Nonnegativity: ∀w(r) ∈ cr(l) : Γ(w(r)) ≥ 0.

P2. Increasing monotonicity: ∀w(r1), w(r2) ∈ cr(l) : w(r1) ≤ w(r2)⇒ Γ(w(r1)) ≤ Γ(w(r2)).

P3. Normalization: If the whole coverage of a reader r is contained within the location l, then the observ-
ability should be 1, that is ∀w(r) ∈ cr(l) : w(r) = 1⇒ Γ(w(r)) = 1.

Intuitively, a location observability should be expressed by an increasing function of the coverage
weights: the higher these weights, the higher the observability. This justifies including P2, and makes
P1 convenient to have. The property P3 is a requirement for the measurement unit and it can be modified
accordingly. One class of functions that satisfy P1-P3 is defined for each w(r) ∈ [0, 1] by the formula:

Γ(w(r)) = a logb(w(r) + 1)

where a is an arbitrary constant and b is a nonnegative constant different from 1. Adding 1 to w(r) satisfies
P1. Since the logarithmic function is increasing, satisfying P2 entails a nonnegative a. P3 can be formally
expressed by the equation:

a logb(1 + 1) = 1

This equation can be satisfied by choosing a = 1 and b = 2 making bits the measurement unit of a
location observability. The function becomes: (Here and hereafter, all logarithms are to the base 2).

Γ(w(r)) = log(w(r) + 1)

One more desirable property is the finite additivity which can be expressed as follows:

P4. Finite additivity: For every finite sequence of pairwise disjoint routes, the observability of a union of
these routes equals the sum of the individual observabilities.

This property enables measuring the observability of routes with arbitrary number of locations. Further-
more, it enables the concatenation of routes. In order to satisfy P4, one takes the expected value function of
Γ(w(r)), and then sums for all l ∈ V(R), which yields the novel route observability function:

obs(R) =
∑

l∈V(R)

∑
w(r)∈cr(l)

w(r) log(w(r) + 1) (2)

The obs function has solid bounds that are sought in Theorem 1. These bounds are important in that
they delimit the optimization that can be introduced into an RFID readers deployment.

Theorem 1 Given an RFID readers deployment pseudograph Drfid = (Wl,Wm, cl, cm, cr), the observ-
ability of any route R in Drfid has the bounds:

0 ≤ obs(R) ≤
∑

l∈V(R)

log
(
cr(l) + |cr(l)|

)
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Table 3: Some baggage routes in Figure 3, their observabilities, and bounds

R (CD . . .AP1) (RB . . .AP2) (OB . . .AP3)
baggage type normal-size security-checked odd-size

obs(R) 5.1468 5.1468 2.6848
bounds(R) [0, 8.2673] [0, 8.2673] [0, 4.0974]

Revisiting Drfid in Figure 3 and the coverage weights in Table 2, some baggage routes, their observ-
abilities, and bounds are listed in Table 3. Notice in this table that the observabilities of the chosen routes
are less than their maximum, attainable values. This suggests a possibility to adjust Aalborg Airport RFID
deployment in order to better the reading environment and thereby reduce or even eliminate the occurrence
of RFID anomalies. A modeler can experiment with different scenarios of RFID readers positioning, and
monitor the change in the observabilities until optimum values (those closer to the upper bound) are ob-
tained. Three such scenarios are chosen and analyzed in Section 8.1. As a matter of fact, the adequacy
of the observabilities obtained using the obs function is dependent on the purpose of building the RFID-
based system. For instance, higher route observabilities (and less uncertainty in tracking moving objects)
are more crucial to have in safety- and business-critical RFID-based systems. Indeed, the relation between
a route observability and the uncertainty in tracking moving objects3 along this route can be characterized
and proved as follows.

Lemma 1 The higher a route observability, the less the uncertainty in tracking moving objects along this
route.

5 Static Model-Based Reasoning

Since the OI-space model is graph-based (Figure 2), one can rely on the fundamentals of graph theory to
perform high-level reasoning that gives a better insight into the physical world. The model-based reason-
ing, described in this section, deals with the concepts of a BP in a static, time-independent fashion, i.e.,
independently of timestamped RFID data streams. This reasoning is hence important at planning stages that
precede the actual RFID deployment.

A BP is a location in an OI-space where there is potentially a lot of traffic. Given an OI-space pseu-
dograph (Figure 2), one can postulate a static estimate about BPs by borrowing the concept of a vertex
pseudodegree. A vertex pseudodegree is the number of all directed edges (including loops) whose head or
tail is this vertex. The pseudodegree of a vertex v is denoted as d(v). A very basic result in graph theory
tells that the sum of pseudodegrees in a directed pseudograph D = (V,A) is twice the number of edges in
D. Strictly speaking: ∑

v∈V(D)

d(v) = 2|A(D)|

In the case of Doi-space = (Wl,Wm, c), the formula becomes:∑
l∈Wl

d(l) = 2|Wm| (3)

Definition 1 characterizes the static estimate about BPs.
3A quantity that emerges due to partial observability in an RFID-based system, nondeterminism in interpreting raw RFID data

streams, or a combination of the two.
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Definition 1 (Static BP Estimate) Given an OI-space pseudograph Doi-space = (Wl,Wm, c), the static
support degree that l ∈ Wl is a BP is estimated by the ratio of l’s pseudodegree to twice the number of
edges in Doi-space . Formally speaking:

∀l ∈ Wl : EBP (l) =
d(l)

2|Wm|

The nature of EBP is explored in Lemma 2.

Lemma 2 Given an OI-space pseudograph Doi-space = (Wl, Wm, c), EBP is consistent as a probability
distribution on a random variable whose alphabet isWl.

Revisiting Doi-space (Figure 2), the locations, their pseudodegrees, and the static estimates that they
are BPs are listed in Table 4. It is important to notice that the sorter loop is counted twice when deciding
d(TTS). Thus, CGS has the highest static support degree of being a BP in the hall and apron of Aalborg
Airport, followed equally by GS2 and GS3, then by GS1, and after it by GS4 and TTS with equal static
support. The relatively high likelihood (4/60) of suffocation by baggage in TTS suggests a need for careful
deployment of RFID readers in this location.

Table 4: The locations, their pseudodegrees, and static BP estimates in Doi-space (Figure 2)

l CD CC MC SMC TTS CH RB
d 1 2 3 2 4 2 1
EBP 1/60 2/60 3/60 2/60 4/60 2/60 1/60

l OB OC CGS GS1 GS2 GS3 GS4
d 1 2 10 5 7 7 4
EBP 1/60 2/60 10/60 5/60 7/60 7/60 4/60

l BL1 BL2 BL3 AP1 AP2 AP3
d 2 2 2 1 1 1
EBP 2/60 2/60 2/60 1/60 1/60 1/60

6 Probabilistic Incorporation of RFID Data

A probabilistic account of RFID data is crucial to compensate for the missing information that is inherent
in this data. This section deals with the probabilistic incorporation of RFID data streams. The incorporation
attained in this section offers complete and more informative knowledge about the locations of moving
objects in OI-spaces. This knowledge facilitates the tracking of these objects and enables the search for
them to be optimized (this will be explained later in this section). Preliminaries are offered in section 6.1
and the novel probabilistic translator follows in section 6.2.

6.1 Preliminaries

A raw RFID reading can be denoted as a triple of the form rd ≡ ⟨obj-id, reader-id, time⟩ which indicates
that the tag affixed to obj-id was detected by reader-id at timestamp time. An RFID data stream produced
by all the readers in a deployment is then a stream of triples S ≡ ⟨rd1, rd2, . . . ⟩. Minding the efficiency
of query processing, one does not want to store and persistently manipulate raw RFID readings at the
timestamp level. Instead one would like to store the first and last detection of a tag by a reader, i.e., the
appearance of a moving object in a reader’s reading zone over a closed time period. Thus, the level of raw
RFID readings is lifted by employing a pre-processing module (the details of which can be found elsewhere
[10]) that condenses these readings into so-called appearance records. Each appearance record has the form
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ar ≡ ⟨ar-id, obj-id, reader-id, s-time, e-time⟩ where s-time and e-time are the start and end time of an
appearance. These appearance records are stored in the data structure appear-ds. A definition of a moving
object trajectory can be given at this stage.

Definition 2 (Moving Object Trajectory) A trajectory [2] of a moving object obj inside an RFID data
stream S over a time period T is the sequence of appearance records whose detected object is obj and
detection time is in T .

TR(obj ,T ) = ar1 , ar2 , . . . , arn : ari .obj -id = obj ∧ [ari .s-time, ari .e-time] ⊆ T

For instance, the trajectory of bag1 in Figure 3 during [t1, t37] is TR(bag1 , [t1 , t37 ]) = ar1 , ar2 , . . . , ar7 .
Table 5 lists the corresponding appearance records.

Table 5: The trajectory of bag1 during [t1, t37]

ar-id obj-id reader-id s-time e-time

ar1 bag1 r1 t1 t2
ar2 bag1 r2 t5 t6
ar3 bag1 r3 t7 t8
ar4 bag1 r2 t11 t12
ar5 bag1 r3 t13 t14
ar6 bag1 r4 t19 t29
ar7 bag1 r7 t32 t37

6.2 Probabilistic Trajectory-to-Route Translator

Given a trajectory TR(obj ,T ) of a moving object obj over a time period T (Table 5), one wants to infer the
route that this object followed (or was carried over) between locations over the same period. This is achieved
through the probabilistic trajectory-to-route translator in Algorithm 1 which comprises three stages:
Stage 1. Translation based on Drfid : Based on the vertex and edge labels in Drfid , this stage translates the
appearance records in TR(obj ,T ) into intermediate records in the inter-ds. Notice that the loop in line 3
terminates at the completion of one insertion, since it is not expected that a reader is positioned inside more
than one location, neither is it expected to be simultaneously positioned inside a location and at a connection
point. On the contrary, the loop in line 7 does not terminate at the completion of one insertion, since it is
possible for more than one sub-route to have shared elements in their labels (Figure 3).
Stage 2. Transformation: This stage condenses the intermediate records in the inter-ds into a smaller
number of probabilistic records that are pushed into the prob-ds. The transformation is done using a simple
SQL query (this query effect will be shown later in an example).
Stage 3. Inferring the information gaps: The gaps in RFID data streams are unavoidable due to RFID
anomalies as well as the economical and practical intractability of covering a whole OI-space with RFID
readers. Stage 3 aims at inferring the information gaps in the prob-ds by borrowing from the prior knowl-
edge available about the RFID-based system. The inference is based on the dynamic Bayesian network
(DBN) in Figure 5a [20, 12]. In this DBN, the location Lt and reader Rt are two random variables whose
alphabets areWl andWr respectively. Lt denotes an obj ’s location, whereas Rt denotes a reader detecting
obj ’s tag. In probabilistic reasoning texts, Lt and Rt are referred to as the state and evidence variables
respectively. Additionally, Rt is observable while Lt is not. The DBN world in Figure 5a is viewed as a
series of time slices each of which contains Lt and Rt. The interval between these slices depends on the
problem considered, and it is parameterized as inv in the input to Algorithm 1. Three kinds of information
specify the DBN in Figure 5a:
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Algorithm 1 Probabilistic Trajectory-to-Route Translator

Input: Drfid = (Wl,Wm, cl, cm, cr), TR(obj ,T ), a dynamic Bayesian network (DBN), the interval
between time slices inv (a positive integer), and the data structures of intermediate, probabilistic, and
inferred records:

• inter-ds ≡ ⟨ar-id, obj-id, loc, s-time, e-time⟩
• prob-ds ≡ ⟨obj-id, prob-loc, s-time, e-time⟩
• infer-ds ≡ ⟨obj-id, infer-loc, s-time, e-time⟩

where loc is a location, prob-loc and infer-loc are probability distributions on a random variable whose
alphabet isWl.
Output: Records in the inter-ds, prob-ds, and infer-ds.

1: inter-ds← ∅; prob-ds← ∅; infer-ds← ∅;
2: for each ari ∈ TR(obj ,T ) do

// Stage 1. Translation based on Drfid .
3: for each l ∈ Wl do
4: if ari .reader -id ∈ cl (l) then
5: insert ⟨ari , ari .obj -id , l , ari .s-time, ari .e-time⟩ into inter-ds
6: break
7: for each m = (li, lj) ∈ Wm : li, lj ∈ Wl do
8: if (ari .reader -id ∈ cm(m) or (ari .reader -id , ari+1 .reader -id) ∈ cm(m)) then
9: insert ⟨ari , ari .obj -id , li , ari .s-time, ari .e-time⟩ and

⟨ari , ari .obj -id , lj , ari .s-time, ari .e-time⟩ into inter-ds
// Stage 2. Transformation.

10: Transform inter-ds into prob-ds.
// Stage 3. Inferring the information gaps.

11: for each p-reci ∈ prob-ds do
12: inject p-reci .prob-loc and p-reci+1 .prob-loc as evidence into DBN
13: update DBN beliefs using EPIS-BN
14: bel1 ← first-DBN -belief
15: beln ← last-DBN -belief
16: insert ⟨p-reci .obj -id , bel1 , p-reci .s-time, p-reci .e-time⟩ and

⟨p-reci+1 .obj -id , beln, p-reci+1 .s-time, p-reci+1 .e-time⟩ into infer-ds
17: start ← p-reci .e-time + inv
18: end ← p-reci+1 .s-time − 1
19: if start <= end then
20: evolve infer-loc from DBN
21: insert ⟨p-reci .obj -id , infer-loc, start , end⟩ into infer-ds
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1. The transition model P (Lt+1|Lt): It describes the likelihood of obj ’s location at the next slice given
its location at the current slice.

2. The sensor model P (Rt|Lt): It describes the likelihood of detecting obj ’s tag given its location at the
current slice.

3. The prior model P (L0): It describes the likelihood of obj ’s location at slice 0.

From this specification, a complete DBN with an unbounded number of slices can be constructed as
needed by copying the first slice. The unrolled DBN over five slices is shown in Figure 5b. Observer in
Figure 5b that the current state depends only on the previous state and not on any earlier states. This is due
to the first-order Markov process assumption which is commonly made when reasoning over time. Another
important assumption that is made in Figure 5b is that the changes in the DBN world are caused by a process
whose laws are static over time. With this assumption in place, only one P (Lt+1|Lt) and P (Rt|Lt) has to
be specified albeit the unrolled DBN may have infinitely many slices.

(a) DBN (b) Unrolled DBN

Figure 5: Figure (a) shows the DBN used for inferring the information gaps; and Figure (b) shows the
unrolled DBN over five time slices.

The distributions P (L0) and P (Lt+1|Lt) can be specified based on Drfid in Figure 3 as follows. Re-
garding P (L0), uniform probabilities are ascribed to entry locations and zero probabilities are ascribed to
the rest. For instance in Figure 3, CD, RB, and OB are given a probability 1/3 each, while the rest of
the locations are given a probability 0. Turning to P (Lt+1|Lt), it is generically sufficient to consider the
location at slice t and the two locations that follow it along a route in Figure 3. If any of these three locations
has a loop, then 50% probability is ascribed to it while the remainder 50% is uniformly distributed to the
rest two locations. If none of these locations has a loop, then uniform probabilities are ascribed to all of
them. For instance in Figure 3, if the location at t is SMC, then the location at t + 1 is SMC, TTS, or
CH with probabilities .25, .5, and .25 respectively. The distribution P (Rt|Lt), on the other hand, can be
specified based on the coverage weights in Table 2. For instance, if the location at t is SMC, then r2 or r3
detects obj ’s tag at t with probabilities .8 and .2 respectively.

The pieces of evidence available in the prob-ds (outcome of stage 2) are injected into the DBN’s Lt

nodes in line 12 of Algorithm 1. The purpose of evidence injection is to incorporate the prior knowledge
about moving objects available in the prob-ds. Incorporation of prior knowledge has the desirable impact
of amplifying the inference quality. Following the evidence injection, the DBN beliefs can be updated.
DBN Belief updating is computationally complex that several algorithms were developed to cope with this
complexity. These algorithms fall into two categories; exact and approximate belief updating. Algorithms
for exact belief updating (e.g., variable elimination [20, 12], polytree [17] and clustering [11]) were shown
to have exponential space and time complexities in the number of state variables when applied to a DBN.
Therefore we must fall back on approximate algorithms. The most widely used algorithm in the database
literature [18, 24, 26] for approximate belief updating is sequential importance sampling (also known as
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particle filtering) [4]. The approximate algorithm used in line 13 of Algorithm 1 is the Estimated Poste-
rior Importance Sampling algorithm for Bayesian Networks (EPIS-BN) [28]. EPIS-BN uses loopy belief
propagation to compute an estimate of the posterior probability over all DBN nodes and then refines this
estimate via importance sampling. EPIS-BN is quite likely the best approximate algorithm available to
date. In addition to being faster, it produces results that are an order of magnitude more precise than other
algorithms. The beliefs that evolve from applying EPIS-BN are used to populate the infer-ds in lines 14-21
of Algorithm 1.

Before exemplifying the operation of Algorithm 1, it is good to stress that a DBN is quite likely the best
Bayesian filtering method for location estimation [3]. A DBN, for instance, surpasses a Hidden Markov
Model (HMM) in its ability to model domains with many state variables. A DBN also outperforms a Kalman
filter [21] in which very strong Gaussian assumptions are made. These assumptions limit the applicability
of a Kalman filter to location estimation using accurate RFID readers (readers that do not produce many
RFID anomalies in the reported data).

Applying stage 1 of Algorithm 1 to the trajectory of bag1 in Table 5, yields the intermediate records
in Table 6. Stage 2 transforms the content of Table 6 into the probabilistic records in Table 7. As an
example that demonstrates the effect of the SQL query applied in stage 2, note that TTS appears three
times in records 3-5 in Table 6, therefore TTS probability is .75 in record 2 of Table 7. Next, stage 3
has to be applied in order to infer the information gaps [t3, t4], [t9, t10], [t15, t18], and [t30, t31] in Table 7.
Parameterizing stage 3 with inv = 1 and proceeding with the computations yield the inferred records in
Table 8. These records correspond to the inferred route of bag1 . The temporal evolution of the probabilities
in this route is conveniently plotted in Figure 6.

Table 6: The intermediate records of bag1 during [t1, t37]

ar-id obj-id loc s-time e-time

ar1 bag1 MC t1 t2
ar2 bag1 SMC t5 t6
ar2 bag1 TTS t5 t6
ar2 bag1 TTS t5 t6
ar2 bag1 TTS t5 t6
ar3 bag1 SMC t7 t8
ar3 bag1 TTS t7 t8
ar3 bag1 TTS t7 t8
ar3 bag1 TTS t7 t8
ar4 bag1 SMC t11 t12
ar4 bag1 TTS t11 t12
ar4 bag1 TTS t11 t12
ar4 bag1 TTS t11 t12
ar5 bag1 SMC t13 t14
ar5 bag1 TTS t13 t14
ar5 bag1 TTS t13 t14
ar5 bag1 TTS t13 t14
ar6 bag1 CH t19 t29
ar6 bag1 CGS t19 t29
ar6 bag1 OC t19 t29
ar6 bag1 CGS t19 t29
ar7 bag1 GS2 t32 t37
ar7 bag1 BL2 t32 t37

Contemplating the content of Table 8 in comparison to Table 5 enables one to realize that the knowledge
obtained from the translator is both (1) complete and (2) more informative about the locations of baggage in
transit. To clarify (1), note that Table 8 communicates full observability of bag1 during [t1, t37], whereas the
observability delivered is only partial in Table 5 during the same period (note the information gaps [t3, t4],
[t9, t10], [t15, t18], and [t30, t31]). To give an example on (2), ar5 in Table 5 tells that bag1 passed under r3
during [t13, t14]. Due to the adjacent positioning of r2 and r3 (Figure 1), this information piece is deficient
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Table 7: The probabilistic records of bag1 during [t1, t37]

obj-id prob-loc s-time e-time

bag1 [MC : 1] t1 t2
bag1 [SMC : .25,TTS : .75] t5 t6
bag1 [SMC : .25,TTS : .75] t7 t8
bag1 [SMC : .25,TTS : .75] t11 t12
bag1 [SMC : .25,TTS : .75] t13 t14
bag1 [CH : .25,OC : .25,CGS : .5] t19 t29
bag1 [GS2 : .5,BL2 : .5] t32 t37

Table 8: The inferred route of bag1 during [t1, t37]

obj-id infer-loc s-time e-time

bag1 [MC : 1] t1 t2
bag1 [MC : .39,SMC : .40,TTS : .21] t3 t4
bag1 [SMC : .30,TTS : .70] t5 t6
bag1 [SMC : .14,TTS : .86] t7 t8
bag1 [SMC : .07,TTS : .93] t9 t10
bag1 [SMC : .02,TTS : .98] t11 t12
bag1 [SMC : .01,TTS : .99] t13 t14
bag1 [SMC : .01,TTS : .57,CH : .28,CGS : .14] t15 t18
bag1 [CH : .29,CGS : .71] t19 t29
bag1 [CH : .04,CGS : .18,GS1 : .18,GS2 : .13,GS3 : .14,GS4 : .10,BL2 : .23] t30 t31
bag1 [GS2 : .46,BL2 : .54] t32 t37
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Figure 6: The temporal evolution of the probabilities in the inferred route of bag1 given in Table 8.

and possibly inaccurate. Contrary to this, the seventh row in Table 8 tells that bag1 is highly likely to be at
TTS and less likely to be at SMC during [t13, t14]. All in all, the translator better facilitates the tracking of
baggage in Aalborg Airport and enables the search for lost baggage to be optimized.

7 Dynamic Model-Based Reasoning

The dynamic nature of moving objects in RFID-based systems that evolves over time makes it useful to
model time explicitly. The static reasoning (conducted in Section 5) is meant for pre-RFID-deployment
phases and hence does not consider the growth of moving objects trajectories over time. Having incorpo-
rated RFID data and inferred the routes of moving objects in Section 6, dynamic, time-dependent reasoning
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about BPs can be done in this section.

Definition 3 (Dynamic BP Estimate) Given an RFID readers deployment pseudographDrfid = (Wl,Wm, cl
, cm, cr), the infer-ds, and a monitoring period T of a location l ∈ Wl, the dynamic support degree over T
that l is a BP is estimated by the joint probability distribution on all the random variables of the inferred
records in the infer-ds whose detection time is joint (overlapping/nested) with T . Formally speaking:

∀l ∈ Wl : E
T
BP (l) = Pr(obj1 at l, . . . , objn at l) : obji ∈ Wo

Definition 4 (Dynamic BP Monitoring Query) A dynamic BP monitoring query (BPMQ) takes as input
an RFID readers deployment pseudograph Drfid = (Wl,Wm, cl, cm, cr), the infer-ds, and a monitoring
period T . It then reports ET

BP (l) for all l ∈ Wl. To put in symbols:

BPMQT = {ET
BP (l) : l ∈ Wl}

It is known that inference using joint distributions has prohibitive time complexity [20]. This complexity
can be coped with in two ways. First, the specification of a monitoring period T limits the inference to only
a subset I -REC (T ) of the infer-ds:

I -REC (T ) = {i -rec ∈ infer-ds : [i -rec.s-time, i -rec.e-time] ∩ T ̸= ∅}

Second, the absolute independence assertion, imposed on random variables, radically reduces the amount
of information necessary to encode the joint distribution by enabling the factoring of this distribution into
separate, smaller distributions.

An algorithm for answering a BPMQ is given in Algorithm 2. The probability tweaking parameter η,
in the input to this algorithm, is fed as a percentage, and it specifies the quotient by which all ET

BP are
(de)concentrated in accordance with the detection time. The normalization function ψ normalizes ET

BP

generated by the algorithm by dividing each ET
BP (l) by the sum of all ET

BP . This normalization transforms
ET

BP and ensures its consistency as a probability distribution on a random variable whose alphabet isWl.
Capturing the dynamic estimates in a probability distribution facilitates comparing them with the static
estimates that were also represented as a probability distribution in Section 5.

Suppose that the inferred route of bag2 during [t3, t28] is as given in Table 9. Imagine further that bag1
(whose inferred route is given in Table 8) and bag2 are the only bags that are handled during [t1, t37] ∪
[t3, t28] = [t1, t37]. If one would like to answer BPMQ [t1,t7], one follows Algorithm 2 steps extracting
I -REC ([t1 , t7 ]) from the infer-ds to get the records in Table 10, and then proceeding with the calculations
given η = 10% to obtain:

E
[t1,t7]
BP (MC) = 4× .39× .32× .92 × 1.15 = .6512

E
[t1,t7]
BP (SMC) = 4× .40× .30× .14× .45× .92 × 1.15 = .0394

E
[t1,t7]
BP (TTS) = 4× .21× .70× .86× .23× .92 × 1.15 = .1517

E
[t1,t7]
BP (rest of locations) = 0

A final normalization of E[t1,t7]
BP yields respectively the values:

⟨.7731, .0468, .1801, 0⟩

In this example, MC has the highest dynamic support degree of being a BP in the hall and apron of
Aalborg Airport, followed by TTS, and then by SMC. The dynamic support for the rest of the locations is
zero, due to the complete absence of inferred records in these locations as seen in Table 10.
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Algorithm 2 Answering a BPMQ

Input: Drfid = (Wl,Wm, cl, cm, cr), the infer-ds, a monitoring period T , a probability tweaking
parameter η, and a normalization function ψ to [0, 1].
Output: ψ(ET

BP ).
1: extract I -REC (T ) from the infer-ds
2: increase = 1.0 + η/100.0
3: decrease = 1.0− η/100.0
4: for each l ∈ Wl do
5: ET

BP (l) = |{i -rec ∈ I -REC (T ) : l ∈ i -rec}|
6: for each i -rec ∈ I -REC (T ) do
7: t = i -rec.e-time − i -rec.s-time
8: if i -rec.pr(obj at l) > 0 then
9: ET

BP (l) = ET
BP (l)× i -rec.pr(obj at l)

10: repeat t times
11: ET

BP (l) = ET
BP (l)× increase

12: else
13: repeat t times
14: ET

BP (l) = ET
BP (l)× decrease

15: return ψ(ET
BP )

Table 9: The inferred route of bag2 during [t3, t28]

obj-id infer-loc s-time e-time

bag2 [MC : 1] t3 t4
bag2 [MC : .32, SMC : .45,TTS : .23] t5 t7
bag2 [SMC : .06;TTS : .94] t8 t10
bag2 [CH : .31,CGS : .69] t11 t25
bag2 [GS1 : .41; BL1 : .59] t26 t28

Table 10: I -REC ([t1 , t7 ]) extracted from the infer-ds

obj-id infer-loc s-time e-time

bag1 [MC : 1] t1 t2
bag1 [MC : .39, SMC : .40,TTS : .21] t3 t4
bag1 [SMC : .30,TTS : .70] t5 t6
bag1 [SMC : .14,TTS : .86] t7 t8
bag2 [MC : 1] t3 t4
bag2 [MC : .32, SMC : .45,TTS : .23] t5 t7

8 Functional Analysis and Experimental Evaluation

This section offers an analysis of the obs function (Formula 2) in addition to two groups of experiments
that evaluate the accuracy and performance of algorithms 1 and 2. The experiments are conducted on
actual, uncleansed data that is gathered from Aalborg Airport RFID deployment over the period between
2011-08-10 and 2012-09-17. The actual deployment in the hall differs from the one shown in Figure 1
in that a single reader is deployed at (SMC|TTS). Readers deployment in the apron is only planned,
therefore RFID readings from the apron are currently unavailable, and the outdoor locations and readers
are accordingly excluded from Drfid (Figure 3). The pre-processing module (mentioned in Section 6.1)
reduces the number of raw RFID readings from around 3.3 million down to 845, 000 that are stored in
the appear-ds. The overall number of RFID-tagged bags for which these readings are reported is around
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270, 000. All experiments are implemented in Java SE version 1.7.0 10 and MATLAB version 7.14. The
DBMS used is Oracle 11g Release 2 version 11.2.0.2.0. The desktop machine, on which the experiments are
conducted, has an Intel(R) Core(TM) i7-2600 processor with clock speed 3.40 GHz and 8.00 GB memory,
supporting a 64-bit installation of Microsoft Windows 7 Enterprise version 6.1.7601.

8.1 Analysis of the obs Function

In order to analyze and discern the behavior of the obs function, the baggage route (MC . . .BL1) ≡ MC→
SMC → TTS → CH → CGS → GS1 → BL1 is chosen (Figure 3) due to the considerable number of
readers positioned along it when compared to other routes. The readers positioning and number of locations
along this route are varied following three scenarios. In the first scenario (Figure 7a), readers positioning is
varied along a line parallel to (MC . . .BL1). The initial coverage weights (before the variation starts) are
listed in Table 11. This scenario is meant to understand the impact of varying the distribution of coverage
weights along a route on this route’s observability. In the second scenario (Figure 7b), readers positioning
is varied along a line at a right angle to (MC . . .BL1). The initial coverage weights (before the variation
starts) are listed in Table 12. This scenario is meant to understand the impact of decreasing the coverage
weights along a route on this route’s observability. In the third and final scenario, the number of locations
along (MC . . .BL1) is increased as shown in Table 13. Together with this increase, the readers positioning
along (MC . . .BL1) is varied at a right angle to this route (in a similar fashion to Figure 7b). This scenario
is meant to understand the impact of increasing a route length and simultaneously decreasing the coverage
weights on this route’s observability. In all the aforementioned scenarios, the variation in readers positioning
changes (increases/decreases) the coverage weights of the locations along (MC . . .BL1) by 5% at a time.

(a) Parallel variation (b) Right-angle variation

Figure 7: Figure (a) shows the variation in readers positioning along a line parallel to the route
(MC . . .BL1); and Figure (b) shows the variation along a line at a right angle to the same route. Dashed
arrows depict the variation, and solid ones depict the route.

Table 11: The initial coverage weights of the locations along (MC . . .BL1) in Figure 7a

l cr(l) = {r → w(r)} l cr(l) = {r → w(r)}

MC {r1 → 1} CGS {r4 → 0, r5 → 0}
SMC {r2 → 1, r3 → 0} GS1 {r6 → 1}
TTS {r2 → 0, r3 → 1} BL1 {r6 → 0}
CH {r4 → 1, r5 → 1}

16



Table 12: The initial coverage weights of the locations along (MC . . .BL1) in Figure 7b

l cr(l) = {r → w(r)} l cr(l) = {r → w(r)}

MC {r1 → 1} CGS {r4 → .5, r5 → .5}
SMC {r2 → 1, r3 → 0} GS1 {r6 → .5}
TTS {r2 → 0, r3 → 1} BL1 {r6 → .5}
CH {r4 → .5, r5 → .5}

Table 13: Increasing the number of locations along (MC . . .BL1)

(MC . . .BL1)

MC
MC→ SMC
MC→ SMC → TTS
MC→ SMC → TTS → CH
MC→ SMC → TTS → CH→ CGS
MC→ SMC → TTS → CH→ CGS →GS1
MC→ SMC → TTS → CH→ CGS →GS1→ BL1
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Figure 8: Figures (a), (b), and (c) respectively show the effect of the first, second, and third variation
scenarios on obs(MC . . .BL1)

The impact of the first, second, and third variation scenarios on obs(MC . . .BL1) is respectively de-
picted in Figures 8a, 8b, and 8c. Figure 8a tells that obs(MC . . .BL1) is maximized when the coverage
weights along (MC . . .BL1) are unevenly distributed (i.e., when the reading zones of readers positioned at
connection points non-uniformly cover adjacent locations). The short term uneven positioning can be used
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to refer to this kind of readers positioning in an RFID deployment. The interpretation of the opposite term
even positioning follows in a similar fashion. Even positioning yields the undesirable impact of minimiz-
ing obs(MC . . .BL1). Notice again in Figure 8a that obs(MC . . .BL1) attains its maximum value (6 bits)
under the following uneven positioning:

cr(SMC) = {r2 → 1, r3 → 0}, cr(TTS) = {r2 → 0, r3 → 1}
cr(CH) = {r4 → 1, r5 → 1}, cr(CGS) = {r4 → 0, r5 → 0}

cr(GS1) = {r6 → 1}, cr(BL1) = {r6 → 0}

and the following uneven positioning:

cr(SMC) = {r2 → 0, r3 → 1}, cr(TTS) = {r2 → 1, r3 → 0}
cr(CH) = {r4 → 0, r5 → 0}, cr(CGS) = {r4 → 1, r5 → 1}

cr(GS1) = {r6 → 0}, cr(BL1) = {r6 → 1}

Observe in the values listed above that the full reading zones of r2 and r3 are utilized to cover the areas
of SMC and TTS, thus leading to maximization of obs(MC . . .BL1). On the other hand, obs(MC . . .BL1)
attains its minimum value (3.9248 bits) in Figure 8a under the following even positioning:

cr(SMC) = cr(TTS) = {r2 → .5, r3 → .5}
cr(CH) = cr(CGS) = {r4 → .5, r5 → .5}

cr(GS1) = cr(BL1) = {r6 → .5}

Observe in the values listed above that half the reading zones of r2 and r3 is utilized to cover the areas of
SMC and TTS, thus leading to minimization of obs(MC . . .BL1). Figure 8b exhibits that obs(MC . . .BL1)
decreases with the decrease in the coverage weights along (MC . . .BL1) (i.e., with the decrease in the over-
lap between readers reading zones and the areas of locations). This observation is inline with the obs
function definition given in Formula 2. Last, the fluctuation in Figure 8c (between the last four obs values
3.9186, 3.5526, 3.7944, and 3.3725) tells that extending (MC . . .BL1) (by adding locations observed by
readers) does not necessarily increase obs(MC . . .BL1) if the readers along (MC . . .BL1) are improperly
positioned. Put equivalently, the number of readers and their positioning are equally important to achieve a
desirable route observability (recall from Section 4 that the number of readers positioned along a route does
not accurately reflect this route observability).

8.2 Evaluation of Algorithm 1

Accuracy: In order to evaluate the accuracy of the translation done by Algorithm 1, one needs to decide
how far the translated distribution of baggage is from the real one (from the ground truth). This distance is
measured via Jensen-Shannon (JS ) divergence measure [15], which is defined by the formula:

JS (p1, p2) =
∑
x∈X

p1(x) · log
p1(x)

p1(x)+p2(x)
2

where p1 and p2 are two probability distribution functions on a discrete random variable X whose alphabet
is X . JS enjoys a number of salient properties that the commonly-used Kullback-Leibler (KL) divergence
lacks [26]. Of these properties are the finiteness and boundness (0 ≤ JS ≤ 1). The reader is referred to
[6] for a detailed comparison between these two divergence measures. Another work [7] replaces KL with
JS to offer a seminal refinement of an information flow metric. Returning to the accuracy evaluation, the
translated distribution of each bag can be easily identified by looking at the infer-ds. The real distribution
on the other hand has to be constructed recalling the intuition that reality occurs with certainty, i.e., with a
probability of 1. Minding the fairness of this evaluation, synthetic RFID readings are generated for all the
270, 000 bags for which actual data is available. Naturally, the synthetic data is generated under the virtual
assumptions of optimal coverage and read rates of RFID readers, and optimal baggage handling in Aalborg
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Airport hall. This implies that RFID anomalies are not expected. Moreover, it means that baggage delivered
at the check-in desks is properly handled until it is loaded into the designated airplanes. The synthetic data
is stored in the synth-ds whose records have the same form as those of the infer-ds. One can then proceed
to identify the real distribution of each bag (in the synth-ds) and compute JS divergence between it and
the corresponding translated distribution (in the infer-ds). Thus, there is one JS divergence value per bag,
i.e., 270, 000 JS values in total. Due to this large number of JS values, the known range [0, 1] of JS is
partitioned into 10 smaller ranges, the length of each is 0.1. Then the distribution of the 270, 000 bags across
these ranges is reported in Figure 9a. As seen in this figure, the translated distribution is generally no further
than [0, 0.4] (99.14% of the bags) from reality, which substantiates the competitive translator accuracy.
Inference Quality: Another aspect of evaluating Algorithm 1 is to judge the quality of the inference carried
out in stage 3. For this, one needs to compare between two distances; the distance between the DBN-based
infer-ds and real synth-ds distributions, and the distance between the naive prob-ds and real synth-ds dis-
tributions. Figure 9a demonstrates the former of these two distances. The latter distance can be similarly
determined using JS divergence; it is plotted in Figure 9b. Figure 9a tells that for the DBN-based distribu-
tion, only 0.86% of the bags falls outside the range [0, 0.4], as opposed to 7.42% for the naive distribution.
Thus, the DBN-based inference of Algorithm 1 improves by around 8.6 times over the naive translation that
does not utilize a DBN.
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(a) JS for the DBN-based infer-ds
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(b) JS for the naive prob-ds

Figure 9: Figure (a) [Figure (b)] shows JS between the the DBN-based infer-ds [the naive prob-ds
distribution] and real synth-ds distributions.

Performance: In order to evaluate the performance of Algorithm 1, the number of appearance records is
varied in the input, and then the time needed by the algorithm to populate the infer-ds is plotted in Figure
10. Clearly, the execution time increases with the increase of the processed records.

8.3 Evaluation of Algorithm 2

First, the translator (Section 6.2) is utilized on the full content of the appear-ds in order to populate the
infer-ds, input to Algorithm 2. Then the input parameters to this algorithm are varied as shown in Table 14
(the number of inferred records corresponding to each setting appears within parentheses).
Effect of varying the day: Figures 11a, 11b, and 11c show ET

BP for 30 minutes in the morning, afternoon,
and evening of the three days listed in Table 14. Notice in these figures that MC, SMC, and TTS have high
dynamic support degrees of being BPs in Aalborg Airport hall in most of the day periods. Occasionally,
CGS witnesses high dynamic support of being a BP. Looking closely tells that the results obtained answer 9
BPMQs posed in different day periods, and targeting baggage handling quality at Aalborg Airport. Thus, it
is noteworthy that the dynamic estimation done constitutes a good model that not only highlights points of
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Figure 10: The performance evaluation of Algorithm 1

Table 14: The input parameters to Algorithm 2

Parameter Values

Day 2012-02-01 (375), 2012-04-15 (164), 2012-06-01 (602)
T in minutes 10 (74), 20 (151), 30 (223), 40 (317)
η 1% (223), 2% (223), 3% (223), 4% (223)

potential suffocation by baggage, but also ranks the standard of each responsibility area in Aalborg Airport.
Figure 11d shows that the execution time decreases, for all days, in the order morning, afternoon, and
evening, which reflects a corresponding decrease in Aalborg Airport hall traffic. Recall that the execution
time is dependent on the number of processed inferred records.
Effect of varying T : Results for varying T for one day, according to the values in Table 14, are shown
in Figure 12a. The variation of ET

BP in this figure does not follow a noticeable pattern. One can however
reason about the histograms by saying that expanding T does not necessarily lead to an increase in the
dynamic support for a specific location at the expense of others. Instead, this expansion may introduce
support for locations that were not BPs prior to the expansion. Figure 12b tells that the execution time
increases proportionally to T , primarily due to the corresponding increase in the number of inferred records
that Algorithm 2 processes.
Effect of varying η: The impact of varying η (as prescribed in Table 14) on ET

BP and the execution time is
shown depicted in Figures 13a and 13b respectively. The slight fluctuation seen in these figures is attributed
to the time the Java Virtual Machine needs, and the manner it handles the multiplication and rounding of
floating-point numbers.
Performance: It is also interesting to study the execution time of Algorithm 2 when varying the number of
inferred records in the input. This is shown in Figure 14.

9 Related Work

Although it falls into several categories, related work has by far focused on the modeling of indoor spaces.
An integrated indoor model [5] covers different information dimensions of indoor models including the-
matic, geometric, and routing-related information. It is based on classifying indoor objects and structures
while taking geometry, appearance, and semantics into account. A lattice-based location model for indoor
navigation [13] is capable of preserving semantic relationships and distances, e.g., the nearest neighbor
relationship among indoor entities. A grid graph-based model for indoor environments [14] combines the
structural properties of these environments with the continuous metric properties that might be of interest to
some applications. Another work [22] employs this grid model for evacuation planning. A distance-aware
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Figure 11: Figures (a), (b), and (c) show the effect of varying the day with T = 30 minutes, and η = 0.1%;
and Figure (d) shows the execution time for the former.
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Figure 12: Figure (a) shows the effect of varying T with day = 2012-02-01, and η = 0.1%; and Figure (b)
shows the execution time for the former.

indoor space model [16] accompanies a set of indoor distance computation algorithms and an indexing
framework in order to enable the processing of indoor queries over indoor objects. This work distinguishes
itself from those aforementioned by capturing both O- and I-spaces in a unified model.

A model of built environments [23] uses bigraphs in order to understand the relationships between
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Figure 13: Figure (a) shows the effect of varying η with day = 2012-02-01, and T = 30 minutes; and
Figure (b) shows the execution time for the former.
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Figure 14: The performance evaluation of Algorithm 2

entities in these environments. The authors’ development of inference tools on top of their bigraphs is
however ongoing. In contrast, this paper offers a self-contained set of modeling and reasoning techniques
for O- and I-spaces. The development of a navigation ontology for outdoor and indoor environments [27]
is in progress. This ontology is based on so-called shared microworlds between these two environments.
These microworlds are learnt through the Affordance Theory, which enables the identification of functions
that entities in outdoor and indoor spaces have or have not in common. This paper’s model differs from [27]
as follows. First, this paper’s model is designed for reasoning about moving objects rather than navigation
which is the theme of [27]. Second, this paper’s model accommodates receptor deployments which are not
considered in [27].

10 Conclusions

This paper reviews and extends a recent unified model of OI-spaces and receptor deployments in these
spaces [8]. It shows that the proposed extension enables modelers to express their awareness of various
information pieces from the physical world. Based on the extended model, the paper studies the route ob-
servability concept, derives its bounded function, and demonstrates its potential for enhancing the reading
environment. Furthermore, the paper clearly relates a route observability to the uncertainty in tracking mov-
ing objects. The paper defines the notion of a BP. It then performs static reasoning about this notion using
the extended model and borrowing from the fundamentals of graph theory. The paper describes a trajectory-
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to-route translator that utilizes the extended model. This translator performs probabilistic incorporation of
RFID data that compensates for missing information in this data, and enables the search for moving ob-
jects in OI-spaces to be optimized. The translated RFID data permits reasoning about BPs in a dynamic,
time-dependent fashion. The functional analysis and experimental evaluation (conducted on synthetic and
uncleansed, real-world data) validate the proposals made in this paper. In particular, they recognize the
behavior of the route observability function, they substantiate the competitive accuracy of the translator and
the high quality of the inference, and they demonstrate the sensibleness of the reasoning made about BPs.
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[5] B. Hagedorn, M. Trapp, T. Glander, and J. Döllner. Towards an indoor level-of-detail model for route
visualization. In MDM, 2009.

[6] S. H. Hussein. A precise information flow measure from imprecise probabilities. In SERE, 2012.

[7] S. H. Hussein. Refining a quantitative information flow metric. In NTMS, 2012.

[8] S. H. Hussein, H. Lu, and T. B. Pedersen. Towards a unified model of outdoor and indoor spaces. In
ACM SIGSPATIAL GIS, 2012.

[9] S. Jeffery, G. Alonso, M. Franklin, W. Hong, and J. Widom. A pipelined framework for online cleaning
of sensor data streams. In ICDE, 2006.

[10] C. S. Jensen, H. Lu, and B. Yang. Graph model based indoor tracking. In MDM, 2009.

[11] F. V. Jensen, K. G. Olesen, and S. K. Andersen. An algebra of bayesian belief universes for knowledge-
based systems. Networks, 20(5):637–659, 1990.

[12] D. Koller and N. Friedman. Probabilistic graphical models : principles and techniques. MIT Press,
2009.

[13] D. Li and D. L. Lee. A lattice-based semantic location model for indoor navigation. In MDM, 2008.

[14] X. Li, C. Claramunt, and C. Ray. A grid graph-based model for the analysis of 2d indoor spaces.
Computers, Environment and Urban Systems, 34(6), 2010.

23



[15] J. Lin. Divergence measures based on the shannon entropy. Information Theory, IEEE Transactions
on, 37(1), 1991.

[16] H. Lu, X. Cao, and C. S. Jensen. A foundation for efficient indoor distance-aware query processing.
In ICDE, 2012.

[17] J. Pearl. Fusion, propagation, and structuring in belief networks. Artif. Intell., 29(3):241–288, 1986.
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A Proofs

A.1 Proof of Theorem 1

The absolute lower bound obs(R) ≥ 0 is a result of w(r) falling in the range [0, 1]. As for the dynamic
upper bound, it is noted that for a convex function f and a random variable X , Jensen’s inequality gives:

Ef(X) ≤ f(EX)
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The function w(r) log(w(r) + 1) is convex (i.e., it lies below any chord), therefore:

obs(R) =
∑

l∈V(R)

∑
w(r)∈cr(l)

w(r) log(w(r) + 1) (Formula 2)

≤
∑

l∈V(R)

log
∑

w(r)∈cr(l)
w(r)(w(r) + 1)

≤
∑

l∈V(R)

log
∑

w(r)∈cr(l)
(w(r) + 1) (w(r) ∈ [0, 1])

=
∑

l∈V(R)

log

( ∑
w(r)∈cr(l)

w(r) +
∑

w(r)∈cr(l)
1

)

=
∑

l∈V(R)

log

( ∑
w(r)∈cr(l)

w(r) + |cr(l)|

)
=

∑
l∈V(R)

log
(
cr(l) + |cr(l)|

)
(Formula 1)

This gives the bounds of obs(R):

0 ≤ obs(R) ≤
∑

l∈V(R)

log
(
cr(l) + |cr(l)|

)
and proves the theorem.

A.2 Proof of Lemma 1

Suppose that one is commissioned to track an object obj moving along an arbitrary route R in a chosen
OI-space monitored by an RFID-based system. The appearance of obj at an arbitrary location along R can
be thought of as an event x that occurs with a probability p(x). The information conveyed by this event
(self-information) is defined as follows:

SI (x) = − log(x)

Intuitively, the higher obs(R), the higher p(x), and so the lower SI (x). In information theory texts, SI (x)
also summarizes the uncertainty about the occurrence of x. Therefore, the higher obs(R), the lower the
uncertainty about the occurrence of x.

A.3 Proof of Lemma 2

Proving the consistency of EBP as a probability distribution is carried out in two steps. In the first step,
EBP is shown to have proper bounds as follows.∑

l∈Wl

d(l) = 2|Wm| (Formula 3)∑
l∈Wl

d(l)
2|Wm| = 1 (Division properties, Wm is nonempty)

0 ≤ d(l)
2|Wm| ≤ 1 : ∀l ∈ Wl (Inequality properties)

EBP (l) ∈ [0, 1] : ∀l ∈ Wl (Definition 1)

In the second step, it is ensured that no intermediate value of EBP falls outside the range [0, 1] by showing
that EBP is a monotonically increasing function, i.e., it is shown that:

∀l1, l2 ∈ Wl : d(l1) ≤ d(l2)⇒ EBP (l1) ≤ EBP (l2)
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as follows:
d(l1) ≤ d(l2) (Assumption)
d(l1)
2|Wm| ≤

d(l)
2|Wm| (Division properties, Wm is nonempty)

EBP (l1) ≤ EBP (l2) (Definition 1)

Thus, EBP is invariably consistent as a probability distribution.
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