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Abstract

Extract-Transform-Load (ETL) programs process data from sources into data warehouses (DWs).

Due to the rapid growth of data volumes, there is an increasing demand for systems that can scale

on demand. Recently, much attention has been given to MapReduce which is a framework for highly

parallel handling of massive data sets in cloud environments. The MapReduce-based Hive has been

proposed as an RDBMS-like system for DWs and provides good and scalable analytical features. It is,

however, still challenging to do proper dimensional ETL processing with (relational) Hive; for example,

the concept of slowly changing dimensions (SCDs) is not supported (and due to lacking support for

UPDATEs, SCDs are both complex and hard to handle manually). To remedy this, we here present

the cloud-enabled ETL framework CloudETL. CloudETL uses Hadoop to parallelize the ETL execution

and to process data into Hive. The user defines the ETL process by means of high-level constructs

and transformations and does not have to worry about the technical details of MapReduce. CloudETL

provides built-in support for different dimensional concepts, including star schemas and SCDs. In the

paper, we present how CloudETL works. We present different performance optimizations including a

purpose-specific data placement policy to co-locate data. Further, we present an extensive performance

study and compare with other cloud-enabled systems. The results show that CloudETL scales very well

and significantly outperforms the dimensional ETL capabilities of Hive both with respect to performance

and programmer productivity. For example, Hive uses 3.9 times as long to load an SCD in an experiment

and needs 112 statements while CloudETL only needs 4.

1 Introduction

In data warehousing, data from different source systems is processed into a central DW by an Extract–

Transform–Load (ETL) process in a periodic manner. Traditionally, the DW is implemented in a relational

database where the data is stored in fact tables and dimension tables which form a star schema [15]. Many

enterprises collect and analyze hundreds of gigabytes data each day and there is an increasing need for a

new data warehousing architecture that can achieve better scalability and efficiency. With the emergence of

cloud computing technologies, such as MapReduce [5], many enterprises have shifted away from deploying

their analytical systems on high-end proprietary machines and instead moved towards clusters of cheaper

commodity machines [1]. The system Hive [25] uses the Hadoop [10] MapReduce implementation and can

be used for scalable data warehousing. Hive stores data in the Hadoop Distributed File System (HDFS),

and presents the data by logical tables. The data in the tables is queried by user-written (SQL-like) HiveQL

scripts which are translated into MapReduce jobs to process the data. However, Hive only has limited

dimensional ETL capabilities and it is not straightforward to use in an ETL process. It is more like a DBMS

and less like an ETL tool. For example, Hive lacks support for high-level ETL-specific constructs including

those for looking up a dimension member or, if not found, updating the dimension table. There is also

no specialized support for the commonly used SCDs [15]. Writing HiveQL scripts for such processing

is cumbersome and requires a lot of programming efforts [17]. In addition, Hive also lacks support for

UPDATEs which makes handling of SCDs even more complicated when time-valued attributes are used to

track the changes of dimension values.

In this paper, we present CloudETL which is a scalable dimensional ETL framework for Hive. CloudETL

supports the aforementioned ETL constructs. CloudETL sits on top of Hive and aims at making it easier

and faster to create scalable and efficient ETL processes that load data into Hive DWs. CloudETL allows

ETL programmers to easily translate a high-level ETL design into actual MapReduce jobs on Hadoop by

only using high-level constructs in a Java program and without handling MapReduce details. We provide a

library of commonly used ETL constructs as building blocks. All the complexity associated with parallel

programming is transparent to the user, and the programmer only needs to think about how to apply the

constructs to a given DW schema leading to high programmer productivity.
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The contributions of this paper are listed in the following: First, we present a novel and scalable dimen-

sional ETL framework which provides direct support for high-level ETL constructs, including handling of

star schemas and SCDs. Second, we present a method for processing SCDs enabling update capabilities in

a cloud environment. Third, we present how to process big dimensions efficiently through purpose-specific

co-location of files on the distributed file system, and we present in-map updates to optimize dimension

processing. Fourth, we present lookup indices and multi-way lookups for processing fact data efficiently in

parallel. Fifth, we provide an extensible set of high-level transformations to simplify the implementation

of a parallel, dimensional ETL program for a MapReduce environment. Finally, we provide an extensive

experimental evaluation of the proposed techniques.

The rest of the paper is structured as follows. In Section 2, we give an overview of CloudETL and its

components and introduce a running example. In Section 3, we detail dimension processing including the

parallelization for multiple dimension tables, co-location of data, and the updates for SCDs. In Section 4,

we present the approach for processing facts. In Section 5, we describe the implementation of CloudETL. In

Section 6, we study the performance CloudETL and compare with other systems. In Section 7, we present

the related work. Finally, in Section 8, we summarize the paper and discuss the future research directions.

2 System Overview

CloudETL employs Hadoop as the ETL execution platform and Hive as the warehouse system (see Fig-

ure 1). CloudETL has a number of components, including the application programming interfaces (APIs)

used by ETL programs, ETL transformers performing data transformations, and a job manager used to

control the execution of the jobs to submit to Hadoop.

Figure 1: CloudETL Architecture

The ETL workflow in CloudETL consists of two sequential steps: dimension processing and fact pro-

cessing. The source data is assumed to be present in HDFS (including but not limited to Hive files) when the

MapReduce (MR) jobs are started (see the left of Figure 1). CloudETL allows processing of data into mul-

tiple tables within a job. The source data is processed into dimension values or facts by the user-specified

transformations which are executed by mappers and reducers. A transformer integrates a number of trans-

formations used for processing data, such as data type convertions, lookups (for getting dimension key

values), and others. The CloudETL job manager submits the jobs to the Hadoop JobTracker in sequential

order. The jobs for dimension processing are to be run before the jobs for fact processing (see the middle of

Figure 1) as processing facts requires looking up referenced primary key values from the dimension tables.

Hive employs HDFS for physical data storage but presents the data in the HDFS files as logical tables.

Therefore, when Hive is used, we can easily write data directly into files which then can be used by Hive.

The right-most part of Figure 1 shows a star schema in Hive which consists of four (or more) files in HDFS.

Running Example In the following, we use a running example to show how CloudETL processes data

into dimension tables and fact tables. This example is inspired by our work in a previous project [21].

This example considers a DW with data about tests of web pages. The star schema shown in Figure 2

consists of a fact table testresultsfact with the single measure errors telling how many errors

were detected on a given version of a web page on a given date. There are three dimension tables, testdim,
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pagedim, and datedim, which represent tests, web pages, and dates, respectively. Note that pagedim is

a “type-2” SCD [15] which tracks changes by having multiple versions of its dimension values. To track the

different versions, there is a version attribute which represents the version number and validfrom and

validto attributes which hold dates representing when a given version was valid. Note that validto

typically is NULL (i.e., unknown) for a new version and must be updated later on when another version

appears. pagedim is also a data-intensive dimension table which contains many more rows than the other

two dimension tables. We use this example, instead of a more common example such as TPC-H [26],

because it has an SCD and a data-intensive dimension. The chosen example thus allows us to illustrate and

test our system more comprehensively.

Figure 2: Star schema

3 Dimension Processing

3.1 Challenges and Designs

In conventional ETL processing, many transformation capabilities rely on the underlying DW DBMS to,

e.g., automatically generate sequential key values, perform SCD updates, and insert rows into dimension

tables and fact tables. However, support for all these is not available in Hive and Hadoop, and in particular,

Hive and other MapReduce-based programs for data analysis do not support the UPDATE operation known

from SQL. In addition, a number of limitations make the ETL on Hadoop more challenging. For example,

the nodes running the MR jobs share no global state, which makes certain tasks (such as handling different

dimension value versions correctly) more difficult for an ETL process, and Hadoop does not hold schema

information for the data to process, which makes data cleansing difficult.

We address these limitations with the following design which is explained further in the following sec-

tions: First, a line read from the data source is made into a record which migrates from mappers to reducers.

A record contains schema information about the line, i.e., the names of attributes and the data types. For ex-

ample, a record with pagedim data has the schema 〈url string, size int, moddate date〉.
Example attribute values are

〈www.dom.com/p0.htm, 10, 2012-02-01〉. Second, to correctly maintain an SCD, we union the

incremental data (i.e., the new data to add to the DW such as new test results of new pages) with the existing

dimension data that has already been processed into a dimension table, and replace the attribute values for

both when necessary. Third, we assign each new row a unique, sequential key value.

3.2 Execution Flow

Figure 3 shows the execution flow for dimension processing. For simplicity, we only show the ith reducer

which processes a part of the intermediate data output by all mappers. The dimension source data in HDFS is

split (by Hadoop) and assigned to the map tasks. The records from a file split are processed by user-specified

transformations in the mappers. Note that a mapper can process a source with data that will go to different
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dimensions. In the shuffling, the data is sent to different reducers. The reducer output (corresponding to a

dimension table) is written to the HDFS.

Figure 3: Execution flow of dimension processing

We now describe how to process changes by using the pagedim dimension as an example. All di-

mensions are considered to be SCDs, but if there are no changes in the source data, the dimensions will

of course not be updated. The main problem of processing SCDs is how to update the special SCD type-2

attribute values (with validity dates and version numbers) in a MapReduce environment. For type-2 SCDs,

the validity dates and version numbers are updated by following the original change order in the source data.

For example, the end date of a given version is set to the start date of its successor. For type-1 SCDs, the

attribute values of a dimension member are overwritten by new values. When doing incremental loading,

we also need to update the versions that have already been loaded into Hive. The idea here is to collect

different versions of dimension values from both the incremental data and the existing dimension data, and

to perform the updates in reducers. Therefore, the execution flow is as follows: First, we do the transfor-

mations on the incremental data in mappers, then hash partitioning on the business keys (a dimension must

have a key that distinguishes its members) of the map output. For example, we partition the map output for

pagedim based on the values of the business key url. Therefore, the rows with identical key values are

shuffled to the same reducer. To acquire the original change order, we sort the intermediate data by the mod-

ification date. For example, moddate of the pagedim source data tells when a given page was changed.

If the source data does not include a date, we assume that the line numbers show the changing order (line

numbers should be explicitly given in input data if the input is made up of several files). Alternatively, the

user can choose that another attribute should be used to get the change order.

In any case, we include the sorting attribute(s) in the key of the map output since Hadoop only supports

sorting on keys, but not on values. We include both the business key and the SCD date (or another sorting

attribute) in the key of the map output (this is an application of the value-to-key MapReduce design pattern

[16]). In addition, we make a task support processing of multiple dimension tables by tagging the key-value

pairs with the name of the dimension table to which the data will be written. Therefore, the map output

has the format (〈 the name of a dimension table, business key, SCD date/line no. 〉, 〈 the rest of dimension

values〉) where the key is composite of three attributes.

To make the above more concrete, we in Figure 4 show the input and output of map and reduce when

processing pagedim. We assume that a single dimension value has already been loaded into Hive, and now

we perform incremental loading with two new values. As shown in Figure 4, the map input consists of both

incremental data and existing dimension data. We discuss an optimization in Section 3.5. A record from

the incremental data has the attributes url, size, and moddatewhich indicate the web page address, the

size (may change when the page is modified) and the modification date of a page, respectively. The existing

dimension record contains the three additional SCD attributes version, validfrom, and validto. In

the mapper, we transform the raw incremental data into dimension values by adding the three additional

SCD attributes and the surrogate key id. Then, the mapper emits the records in the described output

format. For the existing dimension record, no transformation is needed, but the record is re-structured in

line with the map output format. This results in the shown map output. When the map output is shuffled to

the reducers, the key-value pairs are grouped by the composite key values and sorted by the validity SCD
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Figure 4: MapReduce input and output when processing the type-2 SCD pagedim.

date in ascending order (see the reduce input in Figure 4). In the reducer, unique numbers are assigned

to the key attribute, i.e., id, of the two new dimension values and the values of the SCD attributes are

updated, i.e., validto of a version is updated to the starting valid date of the following version (see

validfrom and validto of the different versions for url=www.dom.com/p0.htm). The version

number is also updated accordingly. The three records are finally written to HDFS; null in the validto

attribute represents that a dimension record is valid till now (see the reduce output in Figure 4).

3.3 Algorithm Design

Listing 1 shows pseudocode for the mapper. In the code, Γ is a sequence of transformations to apply as de-

fined by the user. A transformation can thus be followed by other transformations. The first transformation

defines the schematic information of the data source such as the names of attributes, the data types, and the

attributes for sorting of versions (such as a date).

Listing 1 Mapper

1: class Mapper

2: method INITIALIZE( )

3: Γ← GETTRANSFORMATIONS()

4: method MAP(offset o, Record r)

5: for all t ∈ Γ do

6: r ← t.PROCESSRECORD(r) ⊲ Returns ⊥ if r is filtered out.

7: if r = ⊥ then return ⊲ Do nothing

8: else

9: key ← CREATECOMPOSITEKEY(r,d)

10: value← CREATEVALUE(r, d)

11: EMIT(key, value)

12: �

Listing 2 shows the reducer code (in Section 3.5, we present a specialized map-only method for big

dimensions). The input is automatically grouped by the composite key values and sorted (by the validity

date or line no.) before it is fed to the REDUCE method. The REDUCE method reads all the dimension data

with a particular composite key value. Further, CloudETL uses its own partitioning function such that all

data with a given business key is processed by the same reducer.

For type-2 SCDs (lines 4–13), we keep the dimension values temporarily in a buffer (lines 5–10), assign

a sequential number to the key of a new dimension record (line 9), and update the SCD attribute values

(line 11), including the validity dates and the version number. The method MAKEDIMENSIONRECORD

extracts the dimension’s business key from the composite key given to the mapper and combines it with

the remaining values. Finally, we write the reduce output with the name of the dimension table as the key,
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and the dimension data as the value (line 12). The reduce output format is customized so that the value is

written into the directory named by the output key value. For type-1 SCDs (lines 14–21), we overwrite the

old values. That is, we only keep the latest version with a given business key value. An important point

here is that if r0 has a primary key value set (here denoted r0[id]), the data in r0 comes from the existing

table and the primary key value should be reused (line 18). If the primary key value is not set in r0, we are

handling an entirely new member and should get a new primary key value.

Listing 2 Reducer

1: class Reducer

2: method REDUCE(CompositeKey key, values[0...n])
3: name← GETNAMEOFDIMENSIONTABLE(key)

4: if DIMTYPE(name) = type2SCD then

5: L← new LIST()

6: for i← 0, n do

7: r ← MAKEDIMENSIONRECORD(key,values[i])
8: if r[id] = ⊥ then ⊲ id is the dimension key

9: r[id]← GETDIMENSIONID(name)

10: L.ADD(r)

11: UPDATESCDATTRIBUTEVALUES(L)
12: for all r ∈ L do

13: EMIT(name, r)

14: else ⊲ Type-1: key value from the 1st record and the rest from the last

15: r0 ← MAKEDIMENSIONRECORD(key,values[0])
16: rn ← MAKEDIMENSIONRECORD(key,values[n])
17: if r0[id] 6= ⊥ then

18: rn[id]← r0[id]
19: else

20: rn[id]← GETDIMENSIONID(name)

21: EMIT(name, rn)

22: �

3.4 Pre-update in Mappers

In Hadoop, it is relatively time-consuming to write map output to disk and transfer the intermediate data

from mappers to reducers. For type-1 SCDs, we thus do pre-updates in mappers to improve the efficiency

by shrinking the size of the intermediate data shuffled to the reducers. This is done by only transferring the

resulting dimension member (which may have been updated several times) from the mapper to the reducer.

On the reduce side, we then do post-updates to update the dimension to represent the dimension member

correctly.

Listing 3 shows how pre-updates for type-1 SCDs are handled. For simplicity, we no longer show the

ETL transformation operations in this algorithm. In the map initialization (line 3), we create a hash map M

to cache the mappings of a business key value to the corresponding dimension values. Since the state of M

is preserved during the multiple calls to the MAP method, we can use M until the entire map task finishes

when it has processed its split (in Hadoop, the default split size is 64MB). In the mapper, the dimension

attribute values are always updated to the latest version’s if there are any changes (lines 6–10). Here, we

should preserve the key value (i.e., the value of id) if the member is already represented, but update the

other attribute values (lines 9 and 10). The construction and emission of the composite key-value pairs are

deferred to the CLOSE method which is called when the mapper has finished processing a file split.

With the pre-updates, we can decrease the size of the intermediate data transferred over the network,

which is particularly useful for data with frequent changes. Of course, we can also do the updates in a

combiner. However, doing pre-updates in a combiner would typically be more expensive since we have

to transfer the intermediate data from the mapper to the combiner, which involves object creation and
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Listing 3 Pre-update in mappers for type-1 SCDs

1: class Mapper

2: method INITIALIZE( )

3: M ← new HASHMAP()

4: method MAP(offset o, Record r)

5: [Perform transformations...]

6: k ← GETBUSINESSKEY(r)
7: prev ←M [k]
8: if prev 6= ∅and (prev[scddate] < r[scddate]) then

9: r[id]← prev[id] ⊲ Preserve id of the existing dimension

10: M [k]← r ⊲ Update the old attribute values

11: method CLOSE( )

12: for all m ∈M do

13: key← CREATECOMPOSITEKEY(m)
14: value← CREATEVALUE(m)
15: EMIT(key, value)

16: �

destruction, and object serialization and deserialization if the in-memory buffer is not big enough to hold

the intermediate data.

3.5 Processing of Big Dimensions

Typically, the size of dimension data is relatively small compared to the fact data and can be efficiently

processed by the method we discussed above. This is the case for datedim and testdim of the running

example. However, some dimensions – such as pagedim – are very big and have much more data than

typical dimensions. In this case, shuffling a large amount of data from mappers to reducers is not efficient.

We now present a method that processes data for a big dimension in a map-only job. The method makes

use of data locality in HDFS and is inspired by the general ideas of CoHadoop [9], but is in CloudETL

automated and made purpose-specific for dimensional data processing. We illustrate it by the example in

Figure 5. Consider an incremental load of the pagedim dimension and assume that the previous load

resulted in three dimension data files, D1, D2, and D3, each of which is the output of a task. The files

reside in the three data nodes node1, node2, and node3, respectively (see the left of Figure 5). For the

incremental load, we assume the incremental data is partitioned on the business key values using the same

partitioning function as in the previous load. Suppose that the partitioning has resulted in two partitioned

files, S1 and S3. The hash values of the business keys in D1 and S1 are congruent modulo the number

of partitions and the same holds for D3 and S3. When S1 and S3 are created in HDFS, data co-location

is applied to them, i.e., S1 is placed together with D1 and D3 is placed together with S3 (see the right of

Figure 5). Then, a map-only job is run to process the co-located data on each node locally. In this example,

note that no incremental data is co-located with D2. The existing dimension data in D2 is not read or

updated during the incremental load.

Figure 5: Co-location of files in HDFS

Figure 6 shows how the blocks of the co-located files are handled. For simplicity, we show the blocks

when the replication factor is set to 1. As shown, all blocks of co-located files are placed on the same data

node. For example, the blocks of D1 (d11, d12, and d13) and the blocks of S1 (s11 and s12) are on node1.
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Figure 6: Data blocks of co-location (repl. factor = 1)

Figure 7: Type-2 SCD updates in mapper for D1 and S1

If the replication factor is different from 1, the block replicas of the co-located files are also co-located on

other nodes.

Since Hadoop 0.21.0, users can use their own block placement policy by setting the configuration prop-

erty “dfs.block.replicator.classname”. This does not require re-compiling Hadoop or HDFS. The block

placement policy used by CloudETL is shown in Listing 4. In CloudETL, we (unlike CoHadoop) co-locate

the files based on their names, i.e., the files whose names match the same regular expression are co-located.

The regular expressions are defined in the name node configuration file, core-site.xml. For example,

if we define the regular expression (.*\.page1), the data blocks of the existing dimension data files and

the partitioned incremental files with the name extension .page1 are placed together. When the name

node starts up, a hash dictionary, M , is created to hold mappings from a data node to information about

the blocks on the node, i.e., the total number of blocks of the files whose names match a regular expression

(lines 2–12). When an HDFS client writes a block, it first asks the name node to choose target data nodes

for the block and its replicas. The name node checks if the name of the file matches the regular expression.

If the name matches, the name node chooses the targets based on the statistics in M . If M is empty, the

client is writing the first block of co-located data and the name node chooses the targets by the default

policy and updates M (lines 28–31). If M is non-empty, the name node chooses the targets based on the

existing co-located data blocks in HDFS. The name node selects a data node for each replica to store. As

in CoHadoop, the data nodes with the highest number of blocks and with enough space are selected (this is

done by sorting M by its values, adding the nodes into a queue Q, and checking the nodes in an descending

order, see line 17–22). When all the nodes in Q have been checked, but fewer data nodes than needed have

been selected, the name node chooses the remaining nodes randomly. Each of the chosen nodes is tested to

see if it meets the selection criteria and has sufficient space (lines 23–27). If the file name does not match

the regular expression, the file should not be co-located with anything and the name node uses the default

policy of HDFS to choose the targets (lines 33).

CloudETL also offers a program for partitioning data that is not already partitioned. It runs a MapRe-

duce job to partition the data into a number of files in HDFS based on a user-specified business key. Data
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Listing 4 Choosing targets in the block placement policy

1: class BlockPlacementPolicy

2: method INITIALIZE( )

3: M ← new HASHMAP()

4: regex← GETFILENAMEREGEXFROMCONFIG()

5: n← GETREPLICANUMFROMCONFIG()

6: F ← GETFILESFROMNAMESYSTEM(regex) ⊲ Get matching file names

7: for all f ∈ F do

8: B ← GETBLOCKSFROMBLOCKMANAGER(f )

9: for all b ∈ B do

10: D ←GETDATANODES(b)

11: for all d ∈ D do

12: M [d]←M [d] + 1

13: method CHOOSETARGETS(String filename)

14: D←new COLLECTION()

15: if regex.MATCHES(filename) then

16: if SIZE(M ) > 0 then

17: Q← GETDATANODES(M ) ⊲ Sorted desc. by number of blocks.

18: while SIZE(Q) > 0 and SIZE(D) < n do

19: d←Q.POP()

20: if ISGOODTARGET(d) then

21: D.ADD(d)

22: M [d]← M [d] + 1

23: while SIZE(D) < n do

24: d← CHOOSERANDOM()

25: if ISGOODTARGET(d) then

26: D.ADD(d)

27: M [d]← M [d] + 1

28: else

29: D ← CHOOSETARGETSBYDEFAULTPOLICY(filename)

30: for all d ∈ D do

31: M [d]←M [d] + 1

32: else

33: D← CHOOSETARGETSBYDEFAULTPOLICY(filename)

34: return D

35: �

with the same business key value is written into the same file and sorted by SCD attribute values. For exam-

ple, before loading pagedim, we can partition the incremental source data on url and sort it on moddate

if it is not already partitioned.

As a partitioned file and its co-located existing dimension data file both are sorted, we can simply run a

map-only job to merge the data from the two co-located files (the blocks of a resulting file will also be stored

together). Figure 7 illustrates the processing of pagedim on node1which contains the co-located files D1

and S1. The lines from S1 (in the blocks s11 and s12) are first processed by user-specified transformations.

We then merge them with the lines from the existing dimension data file D1 (in the blocks d11, d12 and d13).

The SCD updates are performed during the merging, and the final dimension values are written to HDFS.

As explained above, it can, however, happen that the incremental data does not get totally co-located with

the existing dimension data, e.g., if a data node lacks free space. In that case, a reduce-side update should

be used.

4 Fact Processing

Fact processing is the second step in the ETL flow in CloudETL. It involves reading and transforming1

source data and then retrieving surrogate key values from the referenced dimension tables. We call this

1The current prototype does transformations only in the mappers, but this could be extended to also allow aggregating transfor-

mations in the reducers.
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Figure 8: Lookup indices for the pagedim dimension

operation lookup. Hive, however, does not support fast lookups from its tables. In addition, the size of the

fact data is typically very large, several orders of magnitude larger than the size of the dimension data. It is,

thus, very important to support efficient fact processing. Therefore we use multi-way lookups to retrieve the

dimension key values through so-called lookup indices and exploit a map-only job to process the fact data.

4.1 Lookup Indices

A lookup index (which is generated as a side activity during dimension processing) contains the minimal

information needed for doing lookups, including the business key values, the dimension key values, and the

SCD dates for type-2 SCDs. The data of lookup indices is read into main memory in the map initialization.

The structures of lookup indices for type-2 and type-1 SCDs are shown in Figure 8. As a type-2 SCD index

needs to keep track of the changes of the dimension, the index maps a business key value to all the versions

that share that business key value. The result is thus a list of key-value pairs with the format 〈 SCD effective

date, dimension key〉 in descending order such that the newest version is the first item to be retrieved by a

lookup operation. Given the business key www.dom.com/p0.htm and the date 20110301, we can thus

find the surrogate key value of the correct dimension member version by first using the hash dictionary and

then getting the first element from the resulting list. For type-1 SCDs, only the first step is needed (see the

lower part in Figure 8).

In dimension processing, a lookup index file is generated for the incremental data for each dimension

table. It is stored as a Hadoop sequence file and maps from business-key values to dimension-key values.

The lookup index is distributed and kept in each node permanently (for handling of big dimensions, see

Section 4.3).

4.2 Multi-way Lookups

We now describe how the lookup indices are used during the fact processing (see Listing 5).

We run a map-only job to process the fact data. We thus avoid the sorting and shuffling as well as the

reduce step and get better efficiency. In the map initialization, the lookup indices relevant to the fact data

are read into main memory (lines 2–7). The mapper first does all data transformations (line 9). This is

similar to the dimension processing. Then, the mapper does multi-way lookups to get dimension key values

from the lookup indices (lines 10–11). Finally, the mapper writes the map output with the name of the fact

table as the key, and the record (a processed fact) as the value (line 12). The record is directly written to

the directory in HDFS (named by the key of map output) using a customized record writer. Note that all

mappers can work in parallel on different parts of the fact data since the lookup indices are distributed.

We now give more details about the lookup operator in the algorithm (lines 13–22). If it is a lookup in

a type-2 SCD, we first get all the versions from the SCD index by the business key, bk (line 17). Recall

that different versions are sorted by the SCD effective dates in descending order. We get the correct version

by comparing the effective date of a version and the SCD date sd (lines 18–20). For the lookup index of a

type-1 SCD table, the dimension key value is returned directly through a hash lookup operation (line 22).
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Listing 5 Map for fact processing and lookup

1: class Mapper

2: method INITIALIZE( )

3: f ← GETCURRENTFACTTABLE()

4: D ← GETTHEREFERENCEDDIMENSIONS(f )

5: for all d ∈ D do

6: if LKI[d] = ∅ then

7: LKI[d]← Read the lookup index of d from local file system

8: method MAP(offset o, Record r)

9: r ← TRANSFORM(r)
10: for all d ∈ D do

11: r[d.key]← LOOKUP(d, r)

12: EMIT(f, r)

13: method LOOKUP(Dimension d, Record r)

14: bk ← r[d.businesskey]
15: if d.type = type2SCD then

16: sd← r[d.scdDate]
17: V ←LKI[d][bk] ⊲ Get versions by the business key bk

18: for all v ∈ V do

19: if sd > v.date then

20: return v.id

21: else

22: return LKI[d][bk]

23: �

Figure 9: Fact processing with partitioned lookup index

4.3 Lookup on a Big Dimension Table

Typically, the lookup indices are small and can be fully cached in main memory. However, when a dimen-

sion table is very big, and its lookup index is too big to be fully cached in the main memory, we propose the

following two approaches for retrieving dimension key values. The first is a hybrid solution where a Hive

join and multi-way lookups are used. The source fact data is first joined in Hive with the big dimension

table to retrieve the dimension key values and then the lookup indices are used for the small dimension ta-

bles in CloudETL. The other solution, called the partitioned lookup-index solution, uses multi-way lookups

for both big and small dimension tables which requires using a partitioned lookup index. The partitioned

lookup index is generated for the big dimension table. Recall that we assume that the source data for a big

dimension table is partitioned on the business key values. A partition of the data is processed into dimension

values saved in a data file in HDFS. At the same time, a lookup index is also generated for each partition.

We call this a partitioned lookup index. The partitioned lookup indexes are stored in files that are co-located

with the corresponding data files. When the fact source data is also partitioned with the same partitioning

function as for the big dimension data (this is, e.g., possible in case the source data comes from another

MapReduce job or from a database), we can exploit the co-location of partitioned lookup index files and

data files and run a map-only job to do the multi-way lookups. We illustrate this in Figure 9. Suppose the job

runs n mappers, each of which processes a partition of fact source data. Each mapper reads a partition of the

lookup index for pagedim, and the (full) lookup indices for datedim and testdim (small dimension

tables) into memory, and then does multi-way lookups.

11



5 Implementation

5.1 Input and Output

The output of CloudETL is organized as hierarchical directories and data files in HDFS. Hive employs

HDFS to store data. A folder and the files in it can be recognized as a logical table without changing the

file format. When a table is created, a folder with the same name is created in HDFS. CloudETL can insert

data into a table by simply adding files to its folder.

We now describe the input. As discussed in Section 3, processing SCDs requires updating both existing

and incremental data and the input consists of both the incremental data and the existing dimension data.

The existing data files of a dimension table are in a folder in the HDFS. When a dimension-processing job

starts, the existing data files are first moved into a temporary directory. Moving files between folders only

needs to update the meta-data in the name node. The job then processes the data in the temporary folder

and the incremental files. When the job has finished, the new output is written and the temporary folder and

its files are removed. If the job does not finish successfully, CloudETL does a rollback simply by moving

the files back to their original folder.

In fact processing, no update is done on existing fact data. The incremental fact data files are just added

to the directory of the fact table.

5.2 An ETL Program Example

We now show how to use CloudETL to easily implement a parallel dimensional ETL program. The code

in Figure 10 shows how to process the pagedim SCD. The implementation consists of four steps: 1)

define the data source, 2) setup the transformations, 3) define the target table, and 4) add the sequence of

transformations to the job manager and start. When the data source is defined, the schema information,

the business key, and the date attribute to use in SCD processing are specified (lines 1–5). CloudETL

provides some commonly used transformations (and the user can easily implement others) and lines 10–12

show transformations for excluding a field, adding the dimension key, and renaming a field, respectively.

Lines 16–21 define the target, a type-2 SCD table parameterized by the name of a table, the names of

attributes and their data types, and SCD attributes. CloudETL also offers other dimension and fact classes.

Here, only one statement is needed to define a target while the complexity of processing SCDs is transparent

to users. Finally, the transformer is added to the job manager which submits jobs to the Hadoop JobTracker

(line 24).

Figure 10: The ETL code for the SCD pagedim
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This is much more difficult to do in Hive. As Hive does not support the UPDATEs needed for SCDs,

we have to resort to a cumbersome and labour-intensive workaround including joins and heavy overwriting

of tables to achieve the update effect. The HiveQL code is available in the appendix. CloudETL has much

better programmer efficiency and only needs 4 statements (780 characters, a statement ended by “;”), while

Hive uses 112 statements (4192 characters, including the statements for HiveQL and UDFs). The CloudETL

code is thus an order of magnitude less complex.

The code in Figure 11 shows how to do the fact processing. Only 4 statements with 907 characters are

needed. In Hive, we need 12 statements with 938 characters for the fact processing.

Figure 11: The ETL code for fact processing

6 Experiments

In this section, we empirically evaluate the performance of CloudETL by studying 1) the performance of

processing different DW schemas, including a star schema and schemas with an SCD and a big dimension

table, and 2) the effect of the various optimization techniques applied to CloudETL, including the pre-

updates in the mapper and co-location of data. We compare CloudETL with our previous work ETL-

MR [17] which is a parallel ETL programming framework using MapReduce. ETLMR is selected because

CloudETL is implemented with the same goal as ETLMR and both make use of MapReduce to parallelize

ETL execution. ETLMR is, however, designed for use with an RDBMS-based warehouse system. We also

compare with Hive and the co-partitioning of Hadoop++ [8].

Cluster setup: Our experiments are performed using a local cluster of nine machines: eight machines

are used as the DataNodes and TaskTrackers, each of them has two dual-core Intel Q9400 processors

(2.66GHz) and 3GB RAM. One machine is used as the NameNode and JobTracker and it has two quad-core

Intel Xeon E5606 (2.13GHz) processors and 20GB RAM. The disks of the worker nodes are 320GB SATA

hard drives (7200rpm, 16MB cache, and 3.0Gb/s). Fedora 16 with the 64-bit Linux 3.1.4 kernel is used as

the operating system. All machines are connected via an Ethernet switch with 1Gbit/s bandwidth.

We use Hadoop 0.21.0 and Hive 0.8.0. Based on the number of cores, we configure Hadoop to run up

to four map tasks or four reduce tasks concurrently on each node. Thus, at any point in time, at most 32

map tasks or 32 reduce tasks run concurrently. The following configuration parameters are used: the sort

buffer size is 512MB, JVMs are reused, speculative execution is turned off, the HDFS block size is 512MB,

and the replication factor is 3. Hive uses the same Hadoop settings. For ETLMR, we use Disco 0.4 [7] as

MapReduce platform (as required by ETLMR), set up the GlusterFS distributed file system (the DFS that

comes with Disco) in the cluster, and use PostgreSQL 8.3 as the DW DBMS.
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Figure 12: Star schema, no SCD
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Figure 13: Init. load type-2 SCD
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Figure 14: Incr. load type-2 SCD
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Figure 15: Proc. type-2 SCD
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Figure 16: Speedup of dim. load
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Figure 17: Proc. type-1 SCD
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Figure 18: Proc. facts, small dims, SCD
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Figure 19: Proc. facts,small dims,no SCD
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Figure 20: Proc. facts, big dims, SCD

40 80 120 160 200 240 280 320
Dataset size, GB

0

60

120

180

240

300

360

420

Ti
m
e 
(m

in
.)

ETLMR
Hive
CloudETL (part. lookup index)
CloudETL (hybrid)

Figure 21: Proc. facts, big dims, no SCD
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Figure 22: Speedup of fact processing

Data sets: We use generated data sets for the running example and consider the star schema in Figure 2.

In the experiments, the pagedim and datedim dimensions get data from the same source data set which

we scale from 40GB to 320GB. Every 10GB of source data result in 1.85GB pagedim dimension data

(113,025,455 rows) and 1.01MB datedim dimension data (41,181 rows). The testdim dimension has

its own source data set with a fixed size of 32KB (1,000 rows). The fact source data set is also scaled from

40GB to 320GB. Every 10GB of source data result in 1.45GB fact data (201,233,130 rows) in the DW. The

reason that the size of the loaded data is smaller is that the source data contains more redundant data like

complete URLs for each test.
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6.1 Dimension Data Processing

Simple star schema: In the first experiments, we process data into the dimension tables of a star schema

without any SCD updates. To make Hive support dimension processing, we implement a number generator

similar to CloudETL’s to generate the dimension key values and use a user-defined function (UDF) to get

the numbers. We use all 32 tasks to process the data and scale the data from 40GB to 320GB. We measure

the time from the start to the end of each run.

Figure 12 shows the results. CloudETL processes the three dimension tables within one job and does

data transformations in mappers. The data for a dimension table is collected and written to HDFS in a

reducer. Hive, however, has to process the statements for different dimension tables in different jobs. The

total time used by Hive is up to 28% higher than the time used by CloudETL (the time for testdim is

not shown in Figure 12 since it is negligible). During the tests, we observe that Hive can employ map-only

jobs to process pagedim and testdim, but has to use both map and reduce to process datedim since

datedim requires the DISTINCT operator to find duplicate records. ETLMR uses its so-called offline

dimension scheme in which the data is first processed and stored locally on each node, then collected and

loaded into the DW by the DBMS bulk loader (PostgreSQL’s COPY is used in this experiment). As shown,

ETLMR is efficient to process relatively small-sized data sets, e.g., 40GB, but the time grows fast when the

data is scaled up and ETLMR uses about 81% more time than CloudETL for 320GB.

Processing a type-2 SCD: We now study the performance when processing the big dimension table

pagedim which is a type-2 SCD (see Figure 13 and Figure 14). We test both initial load (“init.”) and

incremental load (“incr.”) in this experiment. In an initial load, pagedim is cleared before a job starts. In an

incremental load, 320GB source data is already loaded into pagedim before the job starts. For CloudETL,

the initial and incremental loads are both tested using data with and without co-location. Figure 13 and

Figure 14 show the results of the initial and incremental loads, respectively. The results show that data co-

location improves the performance significantly and between 60% and 73% more time is used when there

is no co-location. This is because the co-located data can be processed by a map-only job which saves time.

CloudETL outperforms ETLMR. When the data is scaled to 320GB, ETLMR uses up to 3.8 times as long

for the load. The processing time used by ETLMR grows faster which is mainly due to the database-side

operation called post-fixing [17] used to set SCD attribute values correctly. CloudETL also outperforms

Hive significantly. For example, when tested using 320GB data, Hive uses up to 3.9 times as long for the

initial load while for the incremental load, it uses up to 3.5 times as long. This is because the workaround

to achieve the update effect for the SCD handling requires several sequential jobs (4 jobs for the initial load

and 5 jobs for the incremental load as shown in the appendix).

Compared with Hadoop++: We now compare with Hadoop++ for incremental load of pagedim.

Hadoop++ co-partitions two data sets by adding a “Trojan” join and index through MapReduce jobs. The

lines (from the two data sets) with identical join key values are put into the same data split and the same data

node. We change our program to read the co-partitioned data splits, and to run a map-only job. Figure 15

shows the test results. The results include the times for prepartitioning the data sets and indicate that

Hadoop++ uses about 2.2 times as long as CloudETL to partition the same data set. Processing the co-

partitioned data also takes longer, 8%–14% more time. We found that the Hadoop++ co-partitioning is

much more tedious and has jobs for the following tasks: converting textual data to binary, co-partitioning,

and creating the index. In addition, for an incremental load, Hadoop++ has to rebuild the index from scratch

which is increasingly expensive when the data amounts grow. The co-location of CloudETL, however,

makes use of a customized block placement policy to co-locate the data. It is very light-weight and more

suitable for incremental load.

Processing a type-1 SCD: We now process pagedim as a type-1 SCD and do the following three tests:

T1) do the type-1 updates in the reducers; T2) first do “pre-updates” in the mappers, then do “post-updates”

in the reducers; and T3) first partition the source data, co-locate the partitioned files, and then do map-only
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updates. The results are shown in Figure 17. The map-only updates (T3) are the fastest followed by pre- and

post-updates (T2) which use between 16% and 42% more time. Updates in the reducers (T1) use between

28% and 60% more time. The ETLMR offline dimension scheme supports type-1 SCDs by processing data

on MapReduce and then loading the processed data into the DW (see also the discussion of Figure 12). It

uses more time to process the scaled data, e.g., the time for 320GB is 16%, 42% and 90% more than that of

T1, T2 and T3, respectively. Hive requires 4 jobs to process the type-1 SCD and takes 3.5 times longer than

CloudETL.

Speedup: We now study the speedup by varying the number of cores from 4 to 32. We do the speedup

tests using 320GB pagedim data with and without co-location, respectively, i.e., the tests are done when

only map is used, and when map and reduce both are used. Figure 16 shows the speedup lines of both tests.

The results indicate that the speedup with data co-location is 27 times for 32 cores and is close to linear, and

better than without co-location. In other words, loading co-located data can achieve better speedup since a

map-only job is run for the data. The slight sub-linearity is mainly due to the communication cost as well

as task setup overheads on Hadoop.

6.2 Fact Data Processing

We now study the performance of fact processing. Fact processing includes doing data transformations

and looking up dimension key values. We load fact data into testresultsfact in this experiment

and use both small and big dimension tables by varying the size of pagedim. With the small dimension

table, the lookup indices are used and cached in main memory for multi-way lookups. The lookup index

sizes are 32KB (testdim), 624KB (datedim), 94MB pagedim (as a traditional dimension, i.e., not an

SCD) and 131MB pagedim (as a type-2 SCD). They are generated from 2GB dimension source data. For

ETLMR, we use its offline dimension scheme when pagedim is used as a non-SCD. This is the ETLMR

scheme with the best performance [17]. When pagedim is used as an SCD, the online dimension scheme is

used for comparison. This scheme retrieves dimension key values from the underlying RDBMS. For Hive,

we join the fact data with each of the dimension tables to retrieve dimension key values. Figures 18 and

19 present the results from using the small dimension tables with and without SCD support, respectively.

The comparison of the results in two figures shows that CloudETL (without SCD support) has the highest

performance while the processing with an SCD uses about 5%–16% more time than without an SCD.

CloudETL outperforms both ETLMR and Hive when using small dimension tables since a map-only job

is run and in-memory multi-way lookups are used. In contrast, Hive requires four sequential jobs (an

additional job is used for projection after getting the dimension key values) and uses up to 72% more time.

ETLMR with SCD support takes about 2.1 times longer than CloudETL (see Figure 18) due to the increasing

cost of looking up dimension key values from the DW. ETLMR without SCD support also runs a map-only

job, and its performance is slightly better when processing the relatively small-sized data (see Figure 19),

e.g., 40GB, but the time grows faster when the data is scaled.

We now study the performance with big dimension tables. The dimension values in the big table

pagedim is generated from 40GB source data. We use the following two approaches for the lookups.

The first is the hybrid solution where a Hive join is used to retrieve the key values from the big dimen-

sion table and then multi-way lookups are used to retrieve the key values from the small dimension tables

(the lookup index sizes are 4.5MB for datedim and 32KB for testdim). The other is the partitioned

lookup-index solution. We assume that the fact source data has already been partitioned. Each mapper

caches only one partition of the big lookup index in addition to the two small lookup indices. A partition

of the fact data is processed by the mapper which caches the lookup index partition that is relevant to the

fact partition. A map-only job is run to do multi-way lookups. Figure 20 and 21 show the results with and

without SCD support, respectively. As shown, CloudETL again outperforms both Hive and ETLMR. When

the hybrid solution is used, CloudETL is more efficient than when the partitioned big lookup index is used.
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The partitioned lookup-index solution requires between 11% and 18% more time. Hive and ETLMR do not

scale as well and, e.g, when there is an SCD, they require 35% and 85% more time, respectively, to process

40GB source data while they require 71% and 211% more time, respectively, for 320GB.

We now study the speedup when scaling up of the number of the nodes. Figure 22 shows the speedup

when processing up to 320GB fact source data using small dimension tables and big dimension tables (using

the hybrid solution). As shown, CloudETL achieves nearly linear speedup in both cases. For 32 cores, the

speedup is 27.5 times for big dimension tables and 29 times for small dimension tables. A reason for the

difference is that the hybrid solution requires an additional Hive job for the big dimension.

In summary, CloudETL is the fastest solution in all the experiments. For a simple star schema, Hive

uses up to 28% more time while ETLMR uses 81% more time. When a type-2 SCD is processed, Hive

uses up to 3.9 times as long as CloudETL. Hadoop++ has a performance which is closer to CloudETL’s, but

CloudETL remains faster. The experiments have also shown that the co-location used by CloudETL has a

positive performance impact and that CloudETL’s scalability is close to linear.

7 Related Work

To tackle large-scale data, parallelization is the key technology to improve the scalability. The MapReduce

paradigm [5] has become the de facto technology for large-scale data-intensive processing due to its ease of

programming, scalability, fault-tolerance, etc. Multi-threading is another parallelization technology which

has been used for a long time. Our recent work [22] shows multi-threading is relatively easy for ETL de-

velopers to apply. It is, however, only effective on Symmetric Processor Systems (SMP) and does not scale

out on many clustered machines. Thus, it can only achieve limited scalability. The recent parallelization

systems Clustera [6] and Dryad [11] support general cluster-level computations to data management with

parallel SQL queries. They are, however, still only available as academic prototypes and remain far less

studied than MapReduce. Like MapReduce, they are not ETL-specific.

Stonebraker et al. compare MapReduce with two parallel DBMSs (a row-store and a column-store) and

the results show that the parallel DBMSs are significantly faster than MapReduce [20, 19]. They analyze

the architectures of the two system types, and argue that MapReduce is not good at query-intensive anal-

ysis as it does not have a declarative query language, schema, or index support. Olston et al. complain

that MapReduce is too low-level, rigid, hard to maintain and reuse [18]. In recent years, HadoopDB [1],

Aster, Greenplum, Cloudera, and Vertica all have developed hybrid products or prototypes by using two

class systems which use both MapReduce and DBMSs. Other systems built only on top of MapReduce

while providing high-level interfaces also appear, including Pig [18], Hive [25], and Clydesdale [14]. These

systems provide MapReduce scalability but with DBMS-like usability. They are generic for large-scale data

analysis and processing, but not specific to dimensional ETL where a DW must be loaded. For example,

they do not support SCD updates or simple commands for looking up key values dimension members and

inserting them if not found. In contrast, CloudETL provides built-in support for processing different dimen-

sional DW schemas including SCDs such that the programmer productivity is much higher. Our previous

work ETLMR [17] extends the ETL programming framework pygrametl [23] to be used with MapReduce.

ETLMR, however, is built for processing data into an RDBMS-based DW and some features rely on the

underlying DW RDBMS, such as generating and looking up dimension key values. CloudETL, on the

other hand, provides built-in support of the functionality needed to process dimensions and facts. ETLMR

uses the RDBMS-side operation “post-fixing” to repair inconsistent data caused by parallelization, while

CloudETL solves this issue by exploiting global key value generation and SCD updates on Hadoop. The

recent project Cascading [4] is able to assemble distributed processes and plan them to run in a Hadoop

cluster. The workflow of Cascading is somewhat similar to the transformers of CloudETL. However, Cas-

cading does not consider DW-specific data processing such as key generation, lookups, and processing star

schemas and SCDs.
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The co-location of data in CloudETL is similar to the co-location in CoHadoop [9]. CoHadoop is, how-

ever, a general extension to Hadoop that requires applications to explicitly co-locate files by using a common

identifier (a “locator”) when a file is created. Instead of changing Hive to do that, we in CloudETL exploit

how files are named and define co-location by means of a regular expression. Further, this is fully imple-

mented by using HDFS’s standard block placement mechanism such that CloudETL requires no changes of

the Hadoop/HDFS code. HadoopDB [1] and Hadoop++ [8] do also co-locate data. HadoopDB does so by

using RDBMS instances instead of HDFS. Hadoop++ considers the entire data set when doing co-location

which is impractical when incremental data is added.

Pig and Hive provide several join strategies in terms of the features of the joined data sets. HadoopDB [1]

is a hybrid solution that uses both Hadoop and DBMS instances. It pushes joins to the DBMSs on each node.

The join algorithms for MapReduce are compared and extensively studied in [12, 3]. The join implementa-

tions above process a join operation within one MapReduce job, which causes a non-trivial cost. To address

this issue, [2, 13] propose multi-way joins which shuffle the joining of data to reducers in a one-to-many

fashion and do the joins on the reduce side. This, however, becomes expensive if there are many tables to

join. In contrast, CloudETL does “multi-way lookups” (similar to the multi-way joins) in map side when

processing fact data and only a minimal amount of data is saved in the lookup index files and used for joins.

This is much more efficient for our particular purpose.

8 Conclusion and Future Work

With the ever-growing amount of data, it becomes increasingly challenging for data warehousing technolo-

gies to process the data in a timely manner. This paper presented the scalable dimensional ETL framework

CloudETL. Unlike traditional ETL systems, CloudETL exploits Hadoop as the ETL execution platform and

Hive as the warehouse system. CloudETL provides built-in support of high-level ETL-specific constructs

for common, dimensional DW schemas including star schemas and SCDs. The constructs facilitate easy

implementation of parallel ETL programs and improve programmer productivity very significantly. In par-

ticular, it is much easier to handle SCDs since CloudETL can perform the necessary updates (i.e., overwrites

for type-1 SCDs and updates of validity dates and version numbers for type-2 SCDs). When CloudETL is

not used, this requires extensive programming and overwriting of tables.

In the paper, we presented an approach for efficient processing of updates of SCDs in a distributed

environment. We proposed a method for processing type-1 SCDs which does pre-updates in mappers and

post-updates in reducers. We also presented a block placement policy for co-locating the files in HDFS to

place data to load such that a map-only job can do the load. In fact processing, we proposed to use distributed

lookup indices for multi-way lookups to achieve efficient retrieval of dimension key values. We conducted

extensive experiments to evaluate CloudETL and compared with ETLMR and Hive. The results showed

that CloudETL achieves better performance than ETLMR when processing different dimension schemas

and outperforms the dimensional ETL capabilities of Hive: It offers significantly better performance than

Hive and it requires an order of magnitude less code to implement parallel ETL programs for the schemas.

In an experiment, Hive used 3.9 times as long as CloudETL and required 112 statements while CloudETl

required only 4. We also compared CloudETL with Hadoop++ and found that CloudETL was faster.

There is a number of future research directions for this work. First, we plan to make CloudETL support

more ETL transformations. Second, it would be interesting to consider more efficient backends, such as

Spark [24], for fast ETL processing. Last, it would be good to create a graphical user interface (GUI) where

users can “draw” an ETL flow by using visual transformation operators and still get a highly parallel ETL

program.
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Appendix

A Process Type-2 SCDs Using HiveQL

A.1 Initial Load

-- 1. Create the type-2 SCD table:

CREATE TABLE IF NOT EXISTS pagescddim(pageid INT, url STRING, serverversion STRING, size INT,

validfrom STRING, validto STRING, version INT) ROW FORMAT DELIMITED FIELDS TERMINATED BY ’\t’

LINES TERMINATED BY ’\n’ STORED AS TEXTFILE;

-- 2. Create the data source table and load the source data:

CREATE TABLE pages(localfile STRING, url STRING, serverversion STRING, size INT, downloaddate

STRING, moddate STRING) ROW FORMAT DELIMITED FIELDS TERMINATED BY ’\t’ STORED AS TEXTFILE;

LOAD DATA LOCAL INPATH ’/q/disk_0/xiliu/dataset/pages40GB.csv’ OVERWRITE INTO TABLE pages;

-- 3. Create UDFs, add the UDFs jars to the classpath of Hive, and create the temporary

-- functions for the UDFs:

// Create the UDFs for reading dimension key values from the global sequential number generator.

package dk.aau.cs.hive.udf;

import java.io.IOException;

import java.io.UnsupportedEncodingException;

import java.net.InetSocketAddress;

import java.nio.ByteBuffer;

import java.nio.channels.SocketChannel;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.hive.ql.exec.UDF;

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.Text;

public final class SeqUDF extends UDF {

enum ServerCmd {BYE, READ_NEXT_SEQ}

String seqName = null;

byte[] nameInBytes;

IntWritable curSeq = new IntWritable();

IntWritable endSeq = new IntWritable();

SocketChannel channel;

ByteBuffer buffer = ByteBuffer.allocate(512);

Configuration conf;

static final String hostname = "localhost";

static final int port = 9250;

final IntWritable delta = new IntWritable(10000);

public IntWritable evaluate(final Text name) {

if (name.toString().equalsIgnoreCase("close")){

this.cleanup();

return new IntWritable(-1);

}

try {

if (seqName == null) {

this.seqName = name.toString();

this.nameInBytes = SeqUDF.getBytesUtf8(this.seqName);

this.setup();

}

return new IntWritable(this.nextSeq());

} catch (Exception e) {

e.printStackTrace();

}

return new IntWritable(-1);
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}

private void setup() {

try {

this.channel = SocketChannel.open(new InetSocketAddress(hostname, port));

this.curSeq.set(this.readNextFromServer());

this.endSeq.set(curSeq.get() + delta.get());

} catch (IOException e) {

e.printStackTrace();

}

}

private int readNextFromServer() throws IOException {

buffer.clear();

buffer.putInt(ServerCmd.READ_NEXT_SEQ.ordinal())

.putInt(nameInBytes.length).put(nameInBytes).flip();

channel.write(buffer);

buffer.clear();

channel.read(buffer);

return buffer.getInt(0);

}

private int nextSeq() throws IOException {

if (curSeq.get() >= endSeq.get()) {

this.curSeq.set(readNextFromServer());

this.endSeq.set(curSeq.get() + delta.get());

}

int ret = curSeq.get();

curSeq.set(ret+1);

return ret;

}

private void cleanup() {

try {

buffer.clear();

buffer.putInt(ServerCmd.BYE.ordinal()).flip();

channel.write(buffer);

channel.close();

} catch (IOException e) {

e.printStackTrace();

}

}

public static byte[] getBytesUtf8(String string) throws UnsupportedEncodingException {

if (string == null) {

return null;

}

return string.getBytes("UTF-8");

}

}

// Create the UDF for generating version IDs for SCDs

package dk.aau.cs.hive.udf;

import org.apache.hadoop.hive.ql.exec.UDF;

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.Text;

public final class VersionIDUDF extends UDF {

IntWritable curID = new IntWritable();

Text bkey = new Text();

public IntWritable evaluate(final Text bkey) {

if (bkey.toString().equalsIgnoreCase(this.bkey.toString())) {

int curVersionID = curID.get();

IntWritable ret = new IntWritable(curVersionID);

curID.set(curVersionID + 1);
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return ret;

} else {

IntWritable ret = new IntWritable(1);

curID.set(2);

this.bkey.set(bkey);

return ret;

}

}

}

-- Add the UDF jar package to the classpath of Hive

ADD jar file:///hive/hiveudfs.jar;

-- Create the temporary functions in Hive for UDFs

CREATE TEMPORARY FUNCTION nextseq AS ’dk.aau.cs.hive.udf.SeqUDF’;

CREATE TEMPORARY FUNCTION versionid AS ’dk.aau.cs.hive.udf.VersionIDUDF’;

-- 4. Load data from the source into the type-2 pagescddim table.

-- This requires several intermediate steps.

CREATE TABLE pagestmp1 (pageid INT, url STRING, serverversion STRING, size INT,

validFROM STRING, validto STRING, version INT) ROW FORMAT DELIMITED FIELDS

TERMINATED BY ’\t’ STORED AS TEXTFILE ;

CREATE TABLE pagestmp2 (pageid INT, url STRING, serverversion STRING, size INT,

validfrom STRING, validto STRING, version INT) ROW FORMAT DELIMITED FIELDS

TERMINATED BY ’\t’ STORED AS TEXTFILE ;

-- Sort by SCD date for each group

INSERT OVERWRITE TABLE pagestmp1 AS SELECT nextseq(’pagedim_id’) AS pageid, url,

serverversion, size, moddate AS validfrom, NULL AS validto, NULL AS version

FROM pages ORDER BY url, moddate ASC;

-- Add the version number

INSERT OVERWRITE TABLE pagestmp2 AS SELECT pageid, url, serverversion, size,

validfrom, validto, versionid(url) AS version FROM pagestmp1;

DROP TABLE pagestmp1;

-- Update the validto attribute values, 1 Job

INSERT OVERWRITE TABLE pagescddim SELECT a.pageid, a.url, a.serverversion, a.size,

a.validfrom, b.validfrom AS validto, a.version FROM pagestmp2 a LEFT OUTER JOIN

pagestmp2 b ON (a.version=b.version-1 AND a.url=b.url);

DROP TABLE pagestmp2;

A.2 Incremental Load

CREATE TABLE pagestmp3 (pageid INT, url STRING, serverversion STRING, size INT,

validfrom STRING, validto STRING, version INT) ROW FORMAT DELIMITED FIELDS

TERMINATED BY ’\t’ STORED AS TEXTFILE ;

INSERT OVERWRITE TABLE pagestmp3 SELECT * FROM (SELECT pageid, url, serverversion, size,

validfrom, validto, version FROM pagescddim UNION ALL SELECT pageid, url, serverversion,

size, validfrom, validto, version FROM pagestmp2) a ORDER BY a.url, a.validfrom ASC;

CREATE TABLE pagestmp4 AS SELECT pageid, url, serverversion, size, validfrom, validto,

versionid(url) AS version FROM pagestmp3;

DROP TABLE pagestmp3;

INSERT OVERWRITE TABLE pagescddim SELECT a.pageid, a.url, a.serverversion, a.size,

a.validfrom, b.validfrom as validto, a.version FROM pagestmp4 a LEFT OUTER JOIN

pagestmp4 b ON (a.version=b.version-1 AND a.url=b.url);

DROP TABLE pagestmp4;
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B Process Facts Using HiveQL

-- 1. Create fact table:

CREATE TABLE IF NOT EXISTS testresultsfact(pageid INT, testid int, dateid int, error int)

ROW FORMAT DELIMITED FIELDS TERMINATED BY ’\t’ LINES

TERMINATED BY ’\n’ STORED AS TEXTFILE;

-- 2. Create the data source table and load the source data:

CREATE TABLE testresults(localfile STRING, url STRING, serverversion STRING, test STRING,

size INT, downloaddate STRING, moddate STRING, error INT) ROW FORMAT DELIMITED

FIELDS TERMINATED BY ’\t’ STORED AS TEXTFILE ;

LOAD DATA LOCAL INPATH ’/q/disk_0/xiliu/dataset/testresults.csv’

OVERWRITE INTO TABLE testresults;

-- 3. Filter the uncessary attribute values and look up dimension key values:

CREATE TABLE testresults_tmp1 AS SELECT b.pageid, downloaddate, serverversion,

test, error FROM testresults a LEFT OUTER JOIN pagedim b

ON (a.url=b.url AND moddate>=validfrom AND moddate<validto);

CREATE TABLE testresults_tmp2 AS SELECT a.pageid, b.testid, a.serverversion, a.downloaddate,

a.error FROM testresults_tmp1 a LEFT OUTER JOIN testdim b ON (a.test = b.testname);

DROP TABLE testresults_tmp1;

CREATE TABLE testresults_tmp3 AS SELECT a.pageid, b.testid, a.dateid, a.error

FROM testresults_tmp2 a LEFT OUTER JOIN datedim b ON (a.downloaddate = b.date);

DROP TABLE testresults_tmp2;

CREATE TABLE testresults_tmp4 AS SELECT * FROM (SELECT * FROM testresults_tmp3

UNION ALL SELECT pageid, testid, dateid, error FROM testresultsfact);

DROP TABLE testresults_tmp3;

INSERT OVERWRITE TABLE testresultsfact AS SELECT * from testresults_tmp4;

DROP TABLE testresults_tmp4;
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