
Trajectory Possible Nearest Neighbor Queries
over Imprecise Location Data

Xike Xie, Man Lung Yiu, Reynold Cheng, and Hua Lu

October 10, 2012

TR-33

A DB Technical Report



Title Trajectory Possible Nearest Neighbor Queries over Imprecise Location Da-
ta

Copyright c© 2012 Xike Xie, Man Lung Yi-
u, Reynold Cheng, and Hua Lu. All rights reserved.

Author(s) Xike Xie, Man Lung Yiu, Reynold Cheng, and Hua Lu

Publication History

For additional information, see the DB TECH REPORTS homepage: 〈dbtr.cs.aau.dk〉.

Any software made available via DB TECH REPORTS is provided “as is” and without any express or
implied warranties, including, without limitation, the implied warranty of merchantability and fitness for a
particular purpose.

The DB TECH REPORTS icon is made from two letters in an early version of the Rune alphabet, which
was used by the Vikings, among others. Runes have angular shapes and lack horizontal lines because the
primary storage medium was wood, although they may also be found on jewelry, tools, and weapons. Runes
were perceived as having magic, hidden powers. The first letter in the logo is “Dagaz,” the rune for day
or daylight and the phonetic equivalent of “d.” Its meanings include happiness, activity, and satisfaction.
The second letter is “Berkano,” which is associated with the birch tree. Its divinatory meanings include
health, new beginnings, growth, plenty, and clearance. It is associated with Idun, goddess of Spring, and
with fertility. It is the phonetic equivalent of “b.”



Abstract

Trajectory queries, which retrieve nearby objects for every point of a given route, can be used to
identify alerts of potential threats along a vessel route, or monitor the adjacent rescuers to a travel path.
However, the locations of these objects (e.g., threats, succours) may not be precisely obtained due to
hardware limitations of measuring devices, as well as complex natures of the surroundings. For such
data, we consider a common model, where the possible locations of an object are bounded by a closed
region, called “imprecise region”. Ignoring or coarsely wrapping imprecision can render low query
qualities, and cause undesirable consequences such as missing alerts of threats and poor response rescue
time. Also, the query is quite time-consuming, since all points on the trajectory are considered. In this
paper, we study how to efficiently evaluate trajectory queries over imprecise objects, by proposing a
novel concept, u-bisector, which is an extension of bisector specified for imprecise data. Based on the
u-bisector, we provide an efficient and versatile solution which supports different shapes of commonly-
used imprecise regions (e.g., rectangles, circles, and line segments). Extensive experiments on real
datasets show that our proposal achieves better efficiency, quality, and scalability than its competitors.
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1 Introduction

Trajectory queries retrieve nearby objects for a given route. Such queries are useful in various domains
including transportation and facility management. For example, in the air and shipping industries where
safety is the top priority, it is very important to identify potential threats along the route of a flight or
a vessel and give alerts in advance. Such threats are exemplified by volcanic ashes for flights in North
Europe [1] and icebergs for vessels in US [2]. As another example, trajectories can also represent the
pipelines for transporting oil, gas, water, etc. When a section of a pipeline is broken, it causes economic
loss and potential hazard. The authority therefore needs to call up the technicians nearest to the damage
spot in order to fix the problem [3] as soon as possible.

One fundamental challenge in such scenarios is that the measured locations of objects (e.g., clouds of
volcanic ash, icebergs, or people) are imprecise. Such imprecise locations result from: (i) limited resolution
of the measure device, (ii) infrequent measurement, and/or (iii) environmental factors.

In the transportation example, the threats (icebergs or volcanic ashes) are often detected by remote sens-
ing technologies like satellite imaging. Such technologies usually work at low sensing frequency because of
cost constraints, and thus render the measured locations stale for objects. Furthermore, icebergs (volcanic
ashes) can move depending on the ocean current (wind) speed. In the pipeline example, a technician may
have a GPS device for location tracking [3], where GPS reports locations with measurement errors subject
to terrain and climate conditions [4].

Consequently, trajectory queries have to handle such imprecise objects whose locations cannot be pre-
cisely determined. Table 1 summarizes these aforementioned two kinds of applications that involve impre-
cise objects.

Table 1: Summary of Applications
Application Route Safety Pipeline Maintenance
Trajectory route of a flight or vessel fuel or water pipeline

Objects volcanic ashes or icebergs technicians
Localization remote sensing GPS

Imprecise resolution, environment, GPS error,
data source infrequent measurement terrain, climate

(a) circle (b) rectangle (c) line-segment

Figure 1: Imprecise regions. (a) A circle can be used to describe the position uncertainty of a person or vehicle
tracked by GPS [5]. (b) A rectangle can be a person’s imprecise region when the RFID-based indoor tracking works
on the room level [6]. (c) A line segment is used, when a vehicle is moving in a road network [5].

A common way to model an imprecise object is to use so-called imprecise region [7, 8, 9, 10, 11, 12, 13],
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which is a closed region covering all possible position during a time interval. Figure 1 illustrates imprecise
regions of different shapes that are seen in GPS, RFID, and road network applications.
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Figure 2: Example Trajectory Query
In this paper, we study the problem of searching imprecise objects close to a given query trajectory.

Figure 2(a) shows a query trajectory T = {q1, q2, q3, q4} and a set of imprecise objects o1, o2, o3. The
query result (Figure 2(b)) is represented in a compact way by partitioning the query trajectory into segments
such that all locations within the same segment share the same result. In this example, o2 is the definite
nearest neighbor to segment [s2, s3]. On the other hand, o1 and o2 are possible nearest neighbors (PNNs)
to segment [s1, s2] because both of them have potential to be the closest object for any location between s1

and s2.
Determining the query results over imprecise objects is technically challenging, as the geometries of the

imprecise regions must be considered. A simple solution is to replace the imprecise region of each object
with a central point (shown as a grey dot in Figure 2(c)). Accordingly, the single closest object is associated
with the corresponding segment in the query result, as shown in Figure 2(d). For instance, the closest object
to location q2 appears to be object o1 only and object o2 is missing from the result. Recall that object o2

also has the possibility to be a closest object to location q2 as shown in Figure 2(a) and (b).
In the aforementioned application scenarios, the “center simplification” approach causes undesirable

consequences such as missing threat alerts and poor response time. In the flight/vessel example, modeling
threats as imprecise regions prioritizes the safety in all cases, whereas the ignorance of imprecise regions
can cause potential dangers. In the pipeline example, a technician seemingly close to (far from) the broken
pipeline section may be actually far from (close to) it due to the location imprecision. Calling up such a
technician would incur longer time to respond to the emergency. It is important to call up all technicians
likely to be close to the damage spot, in order to fix the problem as soon as possible.

An alternative to simplify the trajectory query is the “sampling approach”, which considers only those
positions at every fixed length on the query trajectory and computes the nearby objects for each such sample.
However, deciding the sampling rate is a dilemma in this approach. A high sampling rate incurs huge
computation costs, while a low rate can miss many answers. Referring to Figure 2(a), the query result
changes only at a few positions (s1, s2, s3, s4). It is not clear how to decide the correct sampling rate in
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Figure 3: u-bisector for imprecise regions.

order to get these answers.
Neither the center simplification approach nor the sampling approach solves the trajectory queries over

imprecise objects. In fact, our preliminary experiments show that they cannot guarantee correct and com-
plete query results. Therefore, we develop a solution that can accurately compute a trajectory query on
imprecise objects in this paper. A special case of our problem, finding the closest precise points for a given
query trajectory, was studied by Tao et al. [14]. The authors used the (perpendicular) bisectors of each pair
of consecutive points to derive the query answer. For example, in Figure 2(c), the point s′1 is the intersection
between the query trajectory and the bisector (in dashed lines) of precise points o1 and o2. Likewise, s′2 is
derived by the bisector of o2 and o3.

We extend the bisector concept to u-bisector in order to support imprecise objects. Figure 3 illustrates
the u-bisectors for circular and rectangular imprecise regions. Note that a u-bisector is not a straight line
anymore for two objects oi and oj . Instead, it becomes a pair of curves, namely bi(j) and bj(i), that partition
the domain space into three parts: (1) the left part, where points are absolutely closer to Oi than to Oj ; (2)
the right part, where points are absolutely closer to Oj than to Oi; and (3) the middle part, where points can
be closer to either Oi or Oj . We call the region enclosed by a u-bisector half as a half-space. For example,
in Figure 3(a), the left of bi(j) is a half-space, and so is the right of bj(i). We make use of half-spaces and
u-bisectors to answer a trajectory query.

In practice, it is challenging to compute the intersections between the query trajectory and u-bisectors.
As shown in Figure 3, u-bisectors can be hyperbolic curves (Figure 3(a)), or polylines (Figure 3(b)). Further-
more, these u-bisectors may intersect the query trajectory at multiple points. Our solution avoids generating
u-bisectors for all pairs of imprecise objects by employing a filter-refinement framework. In the filtering
phase, candidate objects that may be the closest to each query segment are obtained. In the refinement
phase, we develop a novel technique called tenary decomposition to derive the final answers accurately. We
show theoretically and experimentally that our solution is efficient and scalable. Moreover, our solution can
easily adapt to imprecise objects of arbitrary shapes to other shapes (e.g., circles, rectangles, line segments,
etc.) that are required in different applications.

This paper substantially extends our previous work [15] in several aspects. First, we theoretically prove
that a half-space is convex for arbitrary shaped imprecise objects (Section 4.1). Second, we extend the query
techniques from supporting circular imprecise objects to objects of arbitrary shapes (Section 4.2). Third,
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we derive an novel analysis model to estimate the selectivity for trajectory queries (Section 5). Fourth, we
conduct extensive additional experiments to evaluate the new proposals (Section 6.3).

The rest of this paper is organized as follows. Section 2 defines the trajectory query we study and
presents two query evaluation approaches. Section 3 elaborates on a simplified yet fundamental case where
a query trajectory is a single line segment. Section 4 proposes generalized techniques to support different
shaped imprecise regions of objects. Section 5 designs an analysis model for trajectory queries. Section 6
presents the experiment results. Section 7 discusses the related works and finally Section 8 concludes the
paper. The notations used throughout the paper are listed in Table 2.

Table 2: Notations and meanings.

Notation Meaning
D Domain space (a square)
| · | the area of a region
O a set of imprecise objects (O1, O2, . . . , On)

MBC(Oi) minimum bounding circle of object Oi
�i(ci, ri) circle �i with center ci and radius ri
}(p,Oi) circle centered p and internally tangent with Oi
se / [s, e] line segment with two end points s and e
bi(j) Oi and Oj’s u-bisector half, which is closer to Oi
Hi(j) half space cut by bi(j), which is closer to Oi
si`j intersection between a line segment and bi(j)
siaj intersection between a line segment and bj(i),

which is equivalent to sj`i
q a query point
⊕ Minkowski sum

T / |T | trajectory T / length of trajectory T
T(T ) trajectory tree constructed for trajectory T
Ψ(L) ternary tree constructed for line-segment L

2 Trajectory Possible Nearest Neighbor Queries

2.1 Problem Definitions

We first introduce the definition of PNNQ (studied in [5]), which is used to define the query studied in this
paper. Let q be a point, andOi an imprecise object from a setO. We use distmin(q,Oi) and distmax(q,Oj)
to denote the minimum and maximum distances between q and Oi, respectively.

Definition 1 Possible Nearest Neighbor Query (PNNQ) Given a set of imprecise objects O and a query
point q, the result of the PNNQ query is a set PNNQ(q) = {Oi ∈ O | ∀Oj ∈ O(distmax(q,Oj) ≥
distmin(q,Oi))}.

In Figure 2(a), PNNQ(q2) = {O1, O2} implies that either O1 or O2 could be the NN of the query point
q2. By extending the concept of PNNQ to all points in a query trajectory T , we define the trajectory possible
nearest neighbor query (TPNNQ) which returns PNNQ for all the points in T . In other words, the query
returns {〈q,PNNQ(q)〉}q∈T . To get a compact representation of the query result, we merge all consecutive
trajectory points that have the same PNNQ. The formal definition of TPNNQ is given below.
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Definition 2 Trajectory Possible Nearest Neighbor Query (TPNNQ): Given a set of imprecise objects O
and a query trajectory T , the answer for the TPNNQ query is a set of tuples R = {〈Ti, Ri〉 | Ti ⊆ T , Ri ⊆
O}, where PNNQ(q) = Ri(∀q ∈ Ti), and Ti is a continuous segment in T .

In other words, the TPNNQ splits T into a set of consecutive segments 〈T1, T2, ..., Tt〉 where each Ti
is a sub-trajectory of T , such that all positions in a given Ti have the same possible nearest neighbors.
Formally, ∀qi, qj ∈ Ti, PNNQ(qi) = PNNQ(qj). We call each Ti a validity interval. Accordingly, we
call the connection point of two consecutive intervals turning point. Such a turning point indicates the
change of PNNQ answers. An example for a TPNNQ over three imprecise objects {O1, O2, O3} is shown
in Figure 2(c). The trajectory query T (s0, s5) is split into 5 segments. Also, point s1 is the turning point for
segments T (s0, s1) and T (s1, s2). It is apparent that finding turning points is crucial for evaluating TPNNQ.
This is however a non-trivial task for imprecise location data. We propose an effective technique for this
task in Section 2.2, and develop algorithms on top of it to evaluate TPNNQ in Section 2.3.

There are two major differences between the results on imprecise objects and precise objects. Compar-
ing Figures 2(c) and (a): (1) the imprecise case could have more result tuples (5 compared to 3); (2) a query
point in imprecise case might return a set of PNNs instead of a single object. These observations indicate
that the previous techniques for trajectory queries over precise objects [14] do not solve TPNNQ.

2.2 Finding Turning Points with u-bisectors

Given a set of imprecise objects and a query trajectory, derive the turning points on the trajectory is the
crucial step for answering TPNNQ. To address that, we first investigate the u-bisector for imprecise objects.
In general, the u-bisector splits the domain space into several parts, such that query points on different parts
could have different PNNs. After that, the turning points are decided by finding the intersections of the
u-bisectors and the query trajectory.

Definition 3 Given two imprecise objects Oi and Oj , their u-bisector consists of two curves: bi(j) and
bj(i). The u-bisector half bi(j) is a set of points satisfying

bi(j) = {z : distmax(z,Oi) = distmin(z,Oj)}

The curve bi(j) splits the domain space into two parts: Hi(j) and Hi(j), where Hi(j) is the part
covering all points closer to Oi than to Oj and Hi(j) is the remaining part of the domain space. We call
Hi(j) a half-space, and Hi(j) as a half-space complement. An example is shown in Figure 4. Formally,
we have:

Hi(j) = {z : distmax(z,Oi) ≤ distmin(z,Oj)}
Hi(j) = {z : distmax(z,Oi) > distmin(z,Oj)}

Generally speaking, the u-bisector half bi(j) is a curve in the domain space. If a query point q ∈ Hi(j),
q must take Oi as its nearest neighbor. The u-bisector halves bi(j) and bj(i) separate the domain into three
parts, including two half-spaces Hi(j) and Hj(i), and a region V (i, j), where

V (i, j) = Hi(j) ∩Hj(i)

Notice that V (i, j) = V (j, i). IfOi andOj are degenerated into precise points, V (i, j) becomes ∅ and bi(j)
merges with bj(i) into a straight line.

If a query line segment is totally covered by V (i, j), Hi(j), or Hj(i), it does not intersect with bi(j)
or bj(i). Otherwise, the intersections split the line segment into several parts. Different parts correspond to
different PNNs answers, as those parts are located on different sides of bi(j) or Hj(i).
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Figure 4: u-bisector

Figure 5: Verification

For circular imprecise objects, it is easy to derive the closed form equations of the u-bisectors and evalu-
ate the analytical solution for the intersection points. The procedure to find such intersections is formalized
in Algorithm 1. The number of intersections is at most 2, since the equation group (line 8) has at most 2
roots.

As a matter of fact, we find that the “2-intersection” fact holds for arbitrary shaped imprecise regions.
For the sake of presentation, we use circular imprecise regions in following sections (Sections 2.3 to 3) and
present the generalization to other shapes in Section 4.

2.3 Evaluating TPNNQ

In this section, we present two approaches for evaluating TPNNQ. Section 2.3.1 discusses a nested-loop
approach, and Section 2.3.2 presents a more advanced approach that employs the filter-refinement paradigm.

2.3.1 Nested-Loop Approach

From Definition 2, the TPNNQ could be answered by deriving the turning points, which are intersections
of the query trajectory and the u-bisectors. A u-bisector is constructed by a pair of objects. Given a set
O of n objects, there can be Cn2 u-bisectors. The Nested-Loop method (Algorithm 2) checks the intersec-
tions between the query trajectory and each of the Cn2 u-bisectors. The intersections are found by calling
Algorithm 1 on line 5.

However, not all the u-bisectors intersect with the trajectory. Even if they intersect, not all of the
intersections are qualified as turning points. For example, in Figure 5, the u-bisector half bi(k) intersect
with [s, e] at s′. For an arbitrary point q ∈ [s, e], either Oi or Oj is closer to q than Ok, since [s, s′] ∈ Hi(k)
and [s′, e] ∈ Hj(k). As a result, s′ is not a qualified turning point and Ok is not PNN for p ∈ [s, e]. In
Algorithm 2, we employ a “verification” (line 6) process to exclude those unqualified intersections and their
corresponding objects.

The verification works as follows. We use the si`j to represent an intersection created by bi(j) (si`j =
bi(j) ∩ L), and siaj = bj(i) ∩ L. In other words, si`j can be regarded as PNNQ(q) answer that turns from
containing Oi to both Oi and Oj if q moves from Hi(j) to Hi(j). Therefore, Oi should definitely be si`j’s
PNN, while Oj is not. This can be verified by issuing a PNNQ for point si`j .
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Algorithm 1 FindIntersectione

1: function FINDINTERSECTIONe(Line segment L(s, e), Objects Oi, Oj)
2: Let R be a set (of intersection points);
3: Let Oi = �(ci, ri) and Oj = �(cj , rj);
4: fx =

ci.x+cj .x
2 fy =

ci.y+cj .y
2 ;

5: cosθ =
cj .x−ci.x
dist(ci,cj)

sinθ =
cj .y−ci.y
dist(ci,cj)

;

6: Construct the hyperbola h1 for Oi and Oj :
x2
θ

a21
− y2θ

b21
= 1, where a1 =

ri+rj
2 , c1 =

dist(ci,cj)
2 , and b1 =

√
c21 − a21

xθ = (x− fx)cosθ + (y − fy)sinθ
yθ = (fx − x)sinθ + (y − fy)cosθ

7: Suppose L is on straight line l1: a2x+ b2y + c2 = 0
8: Let Φ be the roots of the equation group consisting of h1 and l1:{

h1 :
x2
θ

a21
− y2θ

b21
= 1

l1 : a2x+ b2y + c2 = 0

9: for each φ ∈ Φ do
10: if φ is on L(s, e) then
11: R = R ∪ φ;
12: return R;

Algorithm 2 Nested-Loop
1: function NESTED-LOOP(Trajectory T)
2: for all line segment L ∈ T do
3: for i = 1 . . . n do . consider object Oi
4: for j = i+ 1 . . . n do . consider object Oj
5: I = FindIntersectione(L,Oi, Oj) (Algorithm 1);
6: Verify I and delete unqualified elements;
7: Evaluate PNNs for each interval and merge two successive ones if they have same PNNs;
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Figure 6: Trajectory Tree T(T ) and Ternary Tree Ψ(L2)

In Algorithm 2, suppose Step 5 can be done in a constant time β. Step 6 can be finished in O(log n).
Suppose T contains l line segments, then Nested-Loop’s total time complexity is O(l n2(log n + β)).
Nested-Loop is not efficient because it does not prune unqualified objects early in query evaluation but
exclude them by late verifications. Next, we present a Filter-Refinement query evaluation approach that
effectively prunes those unqualified objects that cannot be PNN for any point on the query trajectory.

2.3.2 Filter-Refinement Approach

In this section, we present a filter-refinement framework for evaluating TPNNQ. We assume an R-tree R is
built on the imprecise objects in O and it can be stored in the main memory, as the memeory capabilities
increase fast in recent years.

Suppose a query trajectory T is represented as a series of consecutive line segments, i.e., T =
〈L1, L2, . . . , Ll〉, we organize T using a binary trajectory tree T(T ). Each binary tree node Ti =
〈L1, ..., Ll′〉 has two children: Ti.left = 〈L1, ..., Lb l′

2
c〉 and Ti.right = 〈Ld l′

2
e, ..., Ll′〉. The trajectory

tree for T = 〈L1, L2, L3〉 is shown in Figure 6(a).
The data structure for each binary tree node Ti is a triple: Ti = 〈L,MBC , Guard〉. Specifically, L is

a line segment if Ti is a leaf-node and NULL otherwise, MBC is the minimum bounded circle covering
Ti or NULL for leaf-nodes, and Guard is an entry which keeps minimum and maximum distances to Ti.
The Guard entry can be either an R-tree node or an imprecise object. Note such Guard entries are not
initialized until processing TPNNQ is started. Since T contains l line segments, the trajectory tree T(T ) is
constructed in O(l log l) time.

The pseudo code for the filter-refinement framework is shown in Algorithm 3. It takes a trajectory tree T
and an R-tree R as input. The filtering phase is equipped with two filters. Trajectory Filter (line 3) retrieves
candidate objects from O such that only those objects that can be the closest objects to the query trajectory
T . All other imprecise objects are filtered due to their long distances to T . Segment Filter (lines 4–5) further
prunes unqualified candidate objects for each line segment Li ∈ T . Our previous work [15] elaborates on
how the two filters work with trees T and R. We skip the details here due to the page limit.

The refinement phase evaluates all the validity intervals and turning points for each line segment in T .
This phase is encapsulated in function TernaryDecomposition(.), to be detailed in Section 3. Finally,
all derived validity intervals are scanned once and consecutive ones are merged if they belong to different
line segments but have the same set of PNNs (line 7).

Example of TPNNQ Refer to Figure 7(a). A query trajectory T = {L1, L2, L3} is given, and an
R-tree is built on imprecise objects O = {a, b, c, d, e, f}. We use trajectory filter to derive T ’s trajectory
filtering bound, as shown by shaded areas in Figure 7(b). Objects {c, d, e, f} overlapping with the trajectory
filtering bound are taken as candidates. During the process, object d is set to be L2’s Guard, and stored in
the trajectory tree. The segment filter is applied for each line segment in T . Taking L2 as an example, the
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Algorithm 3 TPNNQ
1: function TPNNQ(Trajectory T , R-tree R)
2: let φ be a list (of candidate objects);
3: φ←TrajectoryFilter(T,R);
4: for all line segment Li ∈ T do . T = {Li}i≤l
5: φi ← SegmentFilter(Li, φ);
6: {〈L,R〉}i ← TernaryDecomposition(Li, φi);
7: {〈Ti, Ri〉}ti=1 ← Merge(∪li=1{〈L,R〉}i);

Figure 7: TPNNQ

10



segment filtering bound is shown as Figure 7(c), where f is excluded from L2’s candidates because f does
not overlap with the filter bound.

In the refinement phase, we call the routine Ternary Decomposition for each line segment to derive the
turning points. As shown in Figure 7(d), we find the u-bisector halves bd(c) and bc(d) intersects with L2 at
sd`c and sdac, respectively. Thus, L2 is split into three sub-line-segments [h, sd`c], [sd`c, sdac], and [sdac, t].
Meanwhile, the construction of a ternary tree Ψ(L2) starts accordingly, as shown in Figure 6(b). Its root
node has three children, each corresponding to a sub-line-segment. These refinement steps recur for each
of the three sub-line-segment. Finally, the process stops and a complete ternary tree Ψ(L2) is constructed
when no further split is possible.

Note that the degree of a ternary tree node is at most 3, since a line segment is split in-
to at most 3 sub-line-segments (guaranteed by Theorem 2). Subsequently, the query result for
L2 can be fetched by traversing the leaf-nodes of Ψ(L2). Therefore, we have TPNNQ(L2) =
{〈[h, sd`c], {d}〉, 〈[sd`c, sc`e], {c, d}〉, 〈[sc`e, sdac], {c, d, e}〉,
〈[sdac, t], {c, e}〉}. The results for L1 and L3 can be obtained likewise.

We proceed to present the refinement process that is done for each line segment in the query trajectory.

3 Refinement Process for A Line Segment in Query Trajectory

In the filter-refinement query evaluation framework, we do the refinement for each line segment Li in the
query trajectory T . In particular, we need to find turning points and validity intervals for a line segment Li.
We find them a recursive manner. At each iteration, we use a u-bisector to split the current line segment
into a number of sub-line-segments. We classify the sub-line-segments into different categories and derive
the specified pruning bound for each category in order to eliminate disqualified objects. The process repeats
until the current intervals can not be further split. Since the current line segment is decomposed into at most
3 parts due to the at most 2 intersections, we name our algorithm ternary decomposition. Essentially, the
process is equivalent to constructing a ternary tree Ψ(Li) for Li.

In the sequel, we introduce categories of pruning bounds in Section 3.1. Based on that, we design the
ternary decomposition algorithm in Section 3.2.

3.1 Pruning Bounds for Three Cases

A query line segment Li(s, e) can be divided by a u-bisector (Definition 3) into at most 3 sub-line-segments.
With respect to their positions in half spaces, there are three types of sub-line-segments: Open Case, Pair
Case, and Close Case. Refer to Figure 4 for the sake of easy presentation. Close Case means the sub-line-
segment is totally covered by Hi(j) or Hj(i). Open Case means the sub-line-segment is totally covered by
V (i, j), except that one of its endpoints is on bi(j) or bj(i). Pair Case means the sub-line-segment’s two
endpoints are on bi(j) and bj(i) respectively, and all its remaining points are in V (i, j). The three cases are
formally described in Table 3.

Table 3: Three cases for a line segment
Case Form Position
pair [si`j , siaj ] l ∈ V (i, j)
open [s, si`j ] l ∈ Hi(j)(or l ∈ Hj(i)) (s(e) is the

start(end) point of the line segment)
or [siaj , e] omitted

close [si`j , s
′
i`j ] l ∈ Hi(j) and si`j , s′i`j ∈ bi(j)
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Figure 8: Open Case and Pair Case

For Pair Case and Open Case, we can derive two types of pruning bounds. Suppose the u-bisector
between O1 and O2 split the query line-segment [s, e] into sub-line-segments: [s, s1`2], [s1`2s1a2], and
[s1a2, e], which are of Open Case, Pair Case, and Open Case, respectively. We show the pruning bound
derived for [s, s1`2] and [s1`2s1a2] in Figure 8 (a) and (b). The bounds are highlighted by shaded areas.
Note that any object Oi beyond the bounds are safely pruned for the corresponding sub-line-segments as it
cannot be closer to the The pruning bound of [s1a2, e] is similar to Figure 8(a), so it is omitted.

Close Case is a special case, when a line segment has two intersections and totally inside one half-
space, say Hi(j). It could be represented by [si`j , s

′
i`j ], which means the two end-points are on the same

u-bisector half bi(j). In this example, we know that [si`j , s
′
iaj ] must be in Hi(j), so Oj cannot be the PNN

for each point inside. We design their pruning bounds in the following.

Lemma 1 (Pair Case) Given two imprecise objects Oi and Oj , suppose their u-bisector bi(j) and bj(i)
intersect with a straight line at si`j and siaj . ∀q ∈ [si`jsiaj ], an object ON cannot be q’s PNN if ON has
no overlap with the pruning bound }(si`j , Oi) ∪}(siaj , Oj)

⋂
}(si`j , Oj) ∪}(siaj , Oi).

Lemma 2 (Open Case) Given an Open Case sub-line-segment [s, si`j ], ∀q ∈ [s, si`j ], an object ON
cannot be q’s PNN, if ON has no overlap with }(s,Oi) ∪}(si`j , Oi).

Lemma 3 (Close Case) Given an Close Case sub-line-segment [si`j , s
′
i`j ], ∀q ∈ [s, s′i`j ], an object ON

cannot be q’s PNN, if ON has no overlap with }(si`j , Oi) ∪}(s′i`j , Oi).

The proof of Lemma 1 is given in Appendix. As the proofs of Lemma 2 and Lemma 3 can be easily
derived from Lemma 8 (given and proved in Appendix), they are omitted due to page limit.

The Pair Case can also be considered as the union of two Open Cases. For example, a Pair Case
[si`j , siaj ] is equivalent to the overlap part of [s, siaj ] and [si`j , e]. Moreover, the Close Case can be
viewed as the union of [s, s′iaj ] and [si`j , e]. The three cases and their combinations cover all possibilities
for each piece (validity interval) of a query line segment Li. After the ternary tree Ψ(Li) is constructed for
Li, we can derive the pruning bound of a validity interval. It is the intersection of all its ascender nodes’
pruning bounds in the ternary tree Ψ.

3.2 Ternary Decomposition

The ternary decomposition constructs the ternary tree Ψ in an iterative manner, as shown in Algorithm 4.
At each iteration, we select two objects from the current candidate set φcur as seeds to divide the current
line-segment Lcur into two or three pieces. To split Lcur, we have to evaluate a feasible u-bisector, whose
intersections with Lcuri are turning points. Then, to find the u-bisector, we might have to try C(C−1)

2 pairs
of objects, where C = |φcur|. In fact, the object with the minimum maximum distance to Lcur, say O1,
must be one PNN. The correctness is shown in Lemma 4.
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Lemma 4 If S = {O1, O2, ...} are sorted in the ascending order of the maximum distance to the line
segment L, then O1 ∈ TPNNQ(L).

Algorithm 4 TernaryDecomposition

1: function TERNARYDECOMPOSITION(Segment L(s, e), Candidates set φ[L]cur)
2: Sort φ[L]cur in the ascending of maximum distance to L
3: for i = 1 . . . |φcur| do . consider object Oi
4: for j = i+ 1 . . . |φcur| do . consider object Oj
5: I = FindIntersection(L,Oi, Oj);
6: Verify I and delete unqualified elements;
7: if |I| 6= 0 then
8: Use I to split L(s, e) into |I|+ 1 pieces
9: for each piece of line segment Li do

10: Use Lemma 1, 2, and 3 to derive pruning bound Bi
11: φ

[Li]
cur ← Bi(φ

[L]
cur)

12: release φ[L]cur

13: for each piece of line segment Li do
14: TernaryDecomposition(Li, φ[L

i]
cur )

Accordingly, the turning points on Lcur are often derived by O1 and another object among the C candi-
dates. Therefore, the candidates are sorted first in the ternary decomposition. After that, Lcur is split into 2
(or 3) pieces (or children). For Lcur’s children Li, we derive a pruning bound Bi for Li and select a subset
of candidates from φcur (lines 9 to 12). Notice that for each leaf-node Li of the ternary tree Ψ(L(s, e)),
Li’s two endpoints must be s, e, or the turning points on L. If we traverse Ψ in the pre-order manner, any
two successively visited leaf-nodes are the successively connected validity intervals in L. Suppose we have
m turning points, we would have m + 1 validity intervals, which corresponds to m + 1 Ψ’s leaf-nodes.
Algorithm 4 stops when any pair of objects in φ[L]

cur does not further split L.
The complexity of ternary decomposition depends on the size of the turning points in the final result. A

ternary tree node Ti splits only if one or two intersections are found in Ti’s line segment. If no intersections
are found in its line segment, Ti becomes a leaf-node. Given the final answer containing m turning points,
there would be at most 2m nodes in the ternary tree Ψ(T ). At least, there are d1.5me nodes. So Algorithm 4
will be called (1.5m, 2m] times. suppose that line 5 in Algorithm 4 is done in time β and line 6 is in
O(logC), where C is the number of candidate objects returned by the filtering phase in Algorithm 3. As a
result, the complexity of ternary decomposition is O(mC2(logC + β)).

4 Supporting Arbitrary Shapes of Imprecise Regions of Objects

So far we have presented our solution for TPNNQ where all imprecise objects have circular imprecise re-
gions. It is however possible that imprecise objects take arbitrary shapes of imprecise regions, as illustrated
in Figure 1. To handle different shapes, an intuitive way is to enclose an object by a minimum bounding
circle (MBC in short), and then evaluate the query on the MBCs. This makes sense when the imprecise
regions can be well represented by MBCs. Otherwise, MBC can introduce considerable dead space, and
thus cause many false positives that degrade the query result quality. Hence, it is desirable to have a solution
that is more general, reliable, and deployable.

As a matter of fact, the proposed techniques in previous sections can be generalized to arbitrary impre-
cise region shapes. In particular, to apply the derived techniques (Lemma 1 2 3 and 4), we need to instantiate
distmax(.) (or distmin(.)) for each specific type of shapes. In addition, we need to consider two important
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aspects. First, the “2-intersection” fact should hold for other arbitrary. We need to guarantee this in order to
make the Ternary Decomposition (Section 3) still work. Second, the u-bisector’s form for arbitrary shaped
imprecise regions can be complex. We need to find the turning points (recall Algorithm 1) for the complex
case where the u-bisector’s math representation is not available.

4.1 Theories about the u-bisector

One important geometric property about the u-bisector half bi(j) is: half space Hi(j) is convex. This
property holds even if the imprecise region’s shape is concave and irregular. Next, we prove the property
formally.

Theorem 1 (Half Space Convexity) Given two imprecise objectsOi andOj , the half spaceHi(j) enclosed
by the u-bisector half bi(j) is convex.

Proof According to Midpoint Convexity Theorem [16], if two arbitrary points s, e ∈ Hi(j), whose mid-
point m = s+e

2 satisfies m ∈ Hi(j), then Hi(j) is convex.
Suppose that two precise points pi ∈ Oi and pj ∈ Oj satisfy:{

distmax(m,Oi) = dist(m, pi)
distmin(m,Oj) = dist(m, pj)

(1)

Also,
s ∈ Hi(j)⇒ dist(s, pi) ≤ dist(s, pj) (2)

Similarly,
dist(e, pi) ≤ dist(e, pj) (3)

Applying Lemma 10 (see Appendix) to Equations 2 and 3, we have:
dist(m, pi) ≤ dist(m, pj)

⇒ distmax(m,Oi) ≤ distmin(m,Oj) (Equation 1)

⇒ m ∈ Hi(j)⇒ Hi(j) is convex

The theorem is thus proved.

Based on Hi(j)’s convex property, a line segment L could have at most two intersections with bi(j).
Formally,

Lemma 5 Given two imprecise objects Oi and Oj , a line segment L(s, e) has at most two intersection
points with the u-bisector half bi(j).

Since Hi(j) is convex, the query line segment L is convex, their intersection l = L ∩Hi(j) must also
be convex. Since l is also a part of L, l is a line segment or ∅. If l = ∅, l has no intersections with bi(j).
Otherwise, l has at most two intersections with the u-bisector half bi(j), whereas l’s two end points are on
Hi(j)’s boundary.

Likewise, Theorem 1 and Lemma 5 hold for the Hj(i) and bj(i). Next, we show a more interesting
property about the number of intersections between a line segment L and the u-bisector as a whole.

Theorem 2 (Two-intersection Theorem) Given two imprecise objects Oi and Oj , a line segment L has at
most two intersections with the u-bisector that consists of bi(j) and bj(i).

14



Figure 9: Types of a line segment

Proof It is sufficient to show: if L intersects with bi(j) at two points, L ∩Hj(i) = ∅. In other words, we
need to prove for an arbitrary point t ∈ L ∧ t /∈ Hi(j), t /∈ Hj(i).

For circular imprecise regions, the theorem is true according to Lemma 11 (see Appendix). For non-
circular imprecise regions, we apply the site decomposition idea [17] to decompose Oi and Oj into two sets
of circles P andQ. The circles in P orQmay be of different sizes and overlap. An overall half-spaceHj(i)
is the intersection of all half-spaces Hj(q)(i(p)) where p ∈ P and q ∈ Q (see Lemma 9 in Appendix).

Let ui = {ui(p)}p∈P and uj = {uj(q)}q∈Q. For each pair of ui(p) and uj(q), we can prove t /∈
Hj(q)(i(p)) according to Lemma 11. Hence, we have:

∀q ∈ Q ∀p ∈ P, t /∈ Hj(q)(i(p))⇒
t /∈ ∩p∈P∧q∈QHj(q)(i(p))⇒ t /∈ Hj(i)

Thus, the theorem is true.

Theorem 2 tells that a u-bisector can split the query line segment into 3 sub-line segments at most,
no matter what shapes the imprecise regions of the two objects have and how complex the form of the u-
bisector is. Supported by Theorem 2, we proceed to show find to find intersections when arbitrary imprecise
region shapes are involved.

4.2 Finding Intersections Involving Arbitrary Imprecise Region Shapes

For arbitrary imprecise regions, whose u-bisector’s mathematical representation is not available, we design
an approximated method to find the intersections.

Given a line segment and two objects Oi and Oj’s u-bisector, there can be at most two intersections,
as revealed by Theorem 2. We thus classify the line segment into 4 different categories according to the
number of intersections, as shown in Table 4. Different cases correspond to different conditions. Referring
to the example shown in Figure 9, L1’s two endpoints are located inHj(i) and V (i, j), so L1 belongs to type
1. Also, L0 and L2 belong to type 0-A and 2-A respectively, according to the conditions listed in Table 4.
However, Lunknown0 and Lunknown2 are two “undetermined” cases. If we only know that one line segment’s
endpoints are in V (i, j), we can not tell if it is of type 0-B (e.g., Lunknown0 ) or 2-B (e.g., Lunknown2 ). We use
Lunkown to represent the case that a line segment’s two endpoints are in V (i, j). Thus, it is hard to detect
which type the Lunkown belongs to. We have developed Lemma 7 for type 0-B. Nevertheless, not all cases
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in type 0-B can be captured. For “undermined” types, we can recursively decompose the line segments,
until all the sub-line segments can be classified.

Table 4: Four types of a query line segment

Intersection Condition
count

0 A: L(s, e) ∈ Hi(j) or L(s, e) ∈ Hj(i) (Lemma 6)
B: L(s, e) ∈ V (i, j) (Lemma 7)

1 s(e) ∈ Hi(j)/Hj(i) and e(s) ∈ V (i, j)

2 A: s ∈ Hi(j) ∧ e ∈ Hj(i) or s ∈ Hj(i) ∧ e ∈ Hi(j)
B: s, e ∈ V (i, j) ∧ ∃q ∈ L, q ∈ Hi(j) or Hj(i)

Unknown can be either 0-B or 2-B

Lemma 6 A line segment L is in the region V (i, j) iff:

∀p ∈ L, distmax(p,Oi) > distmin(p,Oj)

∧ distmax(p,Oj) > distmin(p,Oi)

Proof According to the definition of half space:

p ∈ V (i, j)⇔ p /∈ Hi(j) ∧ p /∈ Hj(i)

⇔ distmax(p,Oi) > distmin(p,Oj)

∧ distmax(p,Oj) > distmin(p,Oi)

Thus,
L ∈ V (i, j)⇔

∀p ∈ L, distmax(p,Oi) > distmin(p,Oj) ∧
distmax(p,Oj) > distmin(p,Oi)

Lemma 7 A line segment L is in the region V (i, j) if:

distmax(m,Oi) > distmin(m,Oj) + length(L)

∧ distmax(m,Oj) > distmin(m,Oi) + length(L)

where m is the middle point of L.

Proof Let p be an arbitrary point on the line segment L, x be any location in Oi, and rm = length(L)
2 .

distmax(m,Oi) > distmin(m,Oj) + length(L)⇒
distmax(m,Oi)− rm > distmin(m,Oj) + rm (4)

We consider the left-hand side of Equation 4 first. Let y be a point of Oi such that distmax(m,Oi) =
dist(m, y). By triangle inequality, we have dist(p, y) ≥ dist(m, y) − dist(p,m) = distmax(m,Oi) −
dist(p,m). As m is the middle point of L, we have rm = length(L)

2 ≥ dist(p,m). We also have
distmax(p,Oi) ≥ dist(p, y). From these three inequalities, we have

distmax(p,Oi) ≥ distmax(m,Oi)− rm (5)

Likewise, for the right-hand side of Equation 4, we have:

distmin(m,Oj) + rm ≥ distmin(p,Oj) (6)
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Considering Equations 4, 5 and 6 altogether, we have:

∀p ∈ L, distmax(p,Oi) > distmin(p,Oj) (7)

Similarly, we can prove

∀p ∈ L, distmax(p,Oj) > distmin(p,Oi) (8)

According to Lemma 6, Equations 7 and 8 are sufficient to show L is in the region V (i, j).

Based on the four types of a line segment, we compute the intersection points approximately using
Algorithm 5. The idea of the approximation is to recursively split the query line segment until the current
line segment, which contains the type 1 intersection, is shorter than the precision threshold Tε. We thus
return the middle point of the line segment as an intersection.

During the decomposition, we classify the line segments into 4 types following Table 4. If the current
line segment is of type 1 or 2, it is decomposed for evaluating intersections. If it is of type 0, the branch
is stopped. Otherwise, it is of type Unknown, the line segment is also decomposed for clarification. The
complexity of Algorithm 5 is O(logTε |L|).

Algorithm 5 FindIntersection
1: function FINDINTERSECTION(Line segment L(s, e), Objects Oi, Oj)

Parameter: the precision threshold Tε
2: if L contains definitely 0 intersection then
3: return NULL;
4: else
5: m = s+e

2 ;
6: if length(L) < Tε then
7: if both s and e are in one of Hi(j), Hj(i) and V (i, j) then
8: if L contains definitely 0 or 1 intersection then
9: return m;

10: else if ¬(L contains definitely 0 intersection) then
11: return FindIntersection([s,m], Oi, Oj)∪ FindIntersection([m, e], Oi, Oj);

5 Selectivity Estimation for TPNNQ

Accurate selectivity estimation is crucial for query processing in database systems. In LBS, the service
provider transmits intermediate results (e.g. φ in Algorithm 3) to the clients through wireless channels.
In such a distributed scenario, the estimation can be used to measure the communication cost between the
two ends. Precise estimation also helps in efficient load balancing, if the service provider uses multiple
processing units for higher efficiency.

In this section, we study selectivity estimation for TPNNQ. We start from the simplest case where
the query is a point (Section 5.1). Further, we extend it to query line-segments (Section 5.2) and query
trajectories (Section 5.3). We consider the hexagonal lattice model [18] [19], as shown in Figure 10, where
each object has six neighbors whose centers are equidistant from each other, with distance d0

1. We assume
that the imprecise regions are equal-sized and circular shaped with a radius of r.

1The centers of uncertainty regions form the vertices of n hexagons, each of which has an area of
√
3d20
2

. Since |D| = n×
√
3d20
2

,

d0 =
√

2|D|√
3n

.
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Figure 10: Hexagonal Model
Figure 11: ∆-neighborhood

5.1 Result Size Analysis for Query Point

To derive the number of possible nearest neighbors for a given query point q, we need to estimate the
minimum maximum distance from q to all imprecise objects. We use dNN to denote that distance. Subse-
quently, the search region of PNN (q) is the circle centered at q with radius dNN . Objects that overlap with
�(q, dNN ) are qualified as q’s possible nearest neighbors [5].

If we connect the centers of two adjacent objects, the domain would be triangulated by dashed lines as
shown in Figure 10. Given query point q, it must be resided in a triangle. We denote it as ∆-neighborhood,
which consists of three objects, as shown in Figure 11. Among the three, there must be one object having the
minimum maximum distance dNN to q, since these three objects are closer than others outside. Different
locations in ∆-neighborhood correspond to different dNN s. In Figure 11, qmin’s dNN is O2’s radius, and
qmax’s dNN is the distance from qmax to O3’s center plus O3’s radius. Since dNN is changing over q’s
locations, the number of PNNs also varies. If we define the density ρ as the number of objects over a unit
area, then the number of PNNs can be measured by the density times the area of the search region. Thus,
we can get the expected number of PNNs. We first derive the E(|PNN |) for the shaded area (in Figure 11)
denoted as ∆shaded, and repeat 6 times to cover the entire ∆-neighborhood.

E(|PNN (q)|q∈∆-neighborhood)

=

∫
q∈∆ |PNN (q)|dq
|∆-neighborhood|

=
6 ·
∫
q∈∆shaded

|PNN (q)|dq
6 · |∆shaded|

=
6 ·
∫
q∈∆shaded

ρπd2
NN dq

6 · |∆shaded|

=

∫ d0
2

0

∫ x√
3

0 ρπ(
√
x2 + y2 + r)2dydx

1
2 ·

d0
2 ·

d0
2
√

3

= ρπ[

√
3d0(24r + 5

√
3d0 + 18r log2

√
3)

108
+ r2]

Also, since ρ and π are independent, by extracting them we can derive E(dNN ):

E(|PNN (q)|) = ρπE2(dNN ) (9)

In the sequel, we simply use dNN to represent E(dNN ).
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Figure 12: |PNN (L)|

Figure 13: |PNN (T )|

5.2 Result Size Analysis for Query Line Segment

If the query is a line-segment instead of a point, the search region would be the union of search regions for
all points on the line-segment. We show an example of the search region of line-segment L in Figure 12.
The number of L’s PNNs can be calculated as the product of density ρ and the search region’s area.

E(|PNN (L)|) = ρπ(2 · dNN · |L|+ π · d2
NN ) (10)

5.3 Result Size Analysis for Query Trajectory

Now we extend the estimation from query line-segments to query trajectories. Suppose trajectory T is
represented by {L1, . . . ,Ll}, where successive line-segments Li and Li+1 are connected by point si. Then,
T ’s search region equals to the union of all Li’s search regions, as shown in Figure 13. The union could be
well approximated by the summation of all line-segments ({Li})’s search regions subtracting all connecting
points ({si})’s search regions.

E(|PNN (T )|) ≈∑
Li∈T

E(|PNN (Li)|)−
∑
si∈T

E(|PNN (si)|) (11)

The analysis above can be extended to other object distributions as follows. We apply an equal-sized
histogram which splits the domain into m × m squares. For each square s, we assume the objects are
uniformly distributed inside. We count the number of objects N(s) of square s. Thus, the density ρ(s)

of s is collected by N(s)
|D|/(m×m) . We take the average density ρ̄ for all squares overlapping with the query

trajectory T 2, and substitute them into Equation 11 to get the estimation.

6 Experimental Evaluation

In this section we report on the experimental results on different datasets. Section 6.1 describes the rele-
vant settings. Section 6.2 gives a metric to measure to quality of query results. Section 6.3 presents the
experimental results.

2Other parameters such as d̄0 and r̄ are obtained similarly.
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6.1 Experimental Settings

Queries The query trajectories are generated by Brinkhoff’s network-based mobile data generator3. The
trajectory represents movements over the road-network of Oldenburg city in Germany. We normalize them
into 10K ×10K space. By default, the length of trajectory is 500 units. Each reported value is the average
of 20 trajectory query runs.

Imprecise Objects We use four real datasets of geographical objects in Germany and US4, namely
germany, LB, stream and block with 30K, 50K, 199K, 550K spatial objects, respectively. We also construct
the MBC for each object and get 4 other datasets with circular imprecise regions5. We use stream as the
default dataset. Datasets are normalized to the same domain as queries.

To index imprecise regions, we use a packed R*-tree [20]. The page size of R-tree is set to 4K-byte, and
the fanout is 50. The entire R*-tree is accommodated in the main memory.

All our programs were implemented in C++ and tested on a Core2 Duo 2.83GHz PC enabled by MS
Windows 7 Enterprise.

6.2 Query Result Quality Metric

As TPNNQ queries over imprecise objects, it is interesting to measure the query result quality. We adopt an
Error function based on the Jaccard Distance [21], which measures the similarity between two sets. Recall
that the query result of TPNNQ is a set of tuples {〈Ti, Ri〉}. It can be transformed into the PNNs for every
point on the query trajectory T , i.e., {〈q,PNNQ(q)〉}q∈T . Let R∗(q) = PNNQ(q) be the ground-truth
query result for a point q. We use RA(q) to represent the PNNs returned by algorithm A for the point q.
The Error for algorithm A on query T is:

Error(T , A) =
1

|T |

∫
q∈T

1− R∗(q) ∩RA(q)

R∗(q) ∪RA(q)
dq (12)

Here, |T | is the total length of trajectory T . If T is represented by a set of line segments T = {Li}ti=1,
the total length |T | =

∑t
i=1 |Li|.

Equation 12 captures the effect of false positives and false negatives as well. There is a false positive
when RA(q) contains an extra item not found in R∗(q). There is a false negative when an item of R∗(q) is
missing from RA(q). For a perfect method with no false positives and false negatives, the two terms R∗(q)
and RA(q) are the same, so the integration value is 0.

In summary, the error score is a value between 0 and 1. The smaller an error score is, the more accurate
the result is. On the other hand, if a method has many extra or missing results, it acquires a high error score.

6.3 Performance Results

The query performance is evaluated by two metrics: efficiency and quality. The efficiency is measured by
counting the clock time. The quality is measured by the error score defined in Section 6.2. To evaluate
the filter-refinement query evaluation framework (Algorithm 3), we list several competitors: Nested-Loop,
Sample, TP-S, TP-TS, and TP-TSe. The suffixes T and S refer to Trajectory Filter and Segment Filter,
respectively. Nested-Loop does not use any filter; TP-S does not use Trajectory Filter; TP-TS and TP-TSe

(Algorithm 3) use all the filtering and refinement techniques. Sample draws a set of uniform sampling points
3http://iapg.jade-hs.de/personen/brinkhoff/generator/
4http://www.rtreeportal.org/
5We handle other shaped imprecise regions in Section 6.3.4
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{q} from T . Then, for all q, PNNQ(q) is evaluated. The sampling interval, denoted by ε, is set to 0.1 unit
by default6.

As discussed, we either use FindIntersectione (Algorithm 1) to find exact turning points or FindInter-
section (Algorithm 5) to find approximated turning points. The superscript e indicates the exact intersection
calculation. So, TP-TSe derives exact turning points for circular regions, while TP-TS calculates approx-
imate turning points for arbitrary shaped regions. For FindIntersectione, we call GSL Library7 to get the
analytical solution. For FindIntersection, the default Tε is set to 0.01 unit.

6.3.1 Query Efficiency Tq

According to the results shown in Figure 14, the Nested-Loop method is the slowest among all. It elaborates
all the possible pairs of objects for turning points (but most of them do not contribute to validity intervals).
Next, Sample comes the second slowest. We analyze it in Section 6.3.2.

The other three methods have significant improvement over Sample and Nested-Loop. One reason is
because of the effectiveness of the pruning techniques, as shown in Figure 15. For all the real datasets,
the pruning ratio are as high as 98.8%. TP-S is less efficient, because some candidates shared by different
line segments in trajectory will be fetched multiple times. This drawback is overcome by TP-TS and TP-
TSe. Notice that gap would be bigger if the query trajectory consists of many tiny line segments. Also,
the combined traversal over R-tree in TP-TS and TP-TSe save plenty of extra I/O cost, compared to TP-S,
shown in Figure 16.

To get a clearer picture about the efficiency, we measure the time costs for Filtering and Refinement
in Figure 17. TP-TS and TP-TSe are faster than TP-S in both phases. In Filtering, the combined R-tree
traversal in TP-TS and TP-TSe save plenty of extra node access, compared to TP-S. The number of node
access is shown in Figure 16. In Refinement, TP-TS and TP-TSe are faster, since they has fewer candidates
to handle. The observation is consistent with the fact that TP-TS has a higher pruning ratio, shown in

6The sampling rate is reasonably high regarding to the trajectory’s default length. More details about sampling rates are
discussed in Section 6.3.2.

7http://www.gnu.org/software/gsl/
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Table 5: TP-TS vs. Sample (Error)

Datasets Sample TP-TS
ε = 0.01 ε = 0.1 ε = 1 ε = 10

german 0.00340 0.00457 0.01528 0.12310 6.62e-6
LB 0.00005 0.00029 0.00257 0.02672 5.90e-5

stream 0.00059 0.00090 0.00298 0.03962 6.06e-4
block 0.01872 0.02541 0.08516 0.44310 5.80e-4
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Figure 15. TP-TSe directly derives turning points by analytical solution, which is more efficient than TP-
TS.

We also test the query efficiency by varying the query length in Figure 18. The Sample method is slower
than others at least one order of magnitude. The costs of the other three increase stably w.r.t. the query
length. TP-TS and TP-TSe are faster.

6.3.2 TP-TS vs. Sample

Sample method is a straightforward solution to approximate the TPNNQ answer. However, this solution
suffers from the extensive R-tree traversals, since every sampling point requires accessing of R-tree. As
shown in Figure 16, Sample incurs at least one order of magnitude more node access than our methods.

On the other hand, Sample could incur false negatives, even with a large sampling rate. Because Sample
only considers sampled points on the trajectory, whereas TPNNQ is for all the points in T . To calculate
Sample’s error score, we have to infer the PNNs for a point q ∈ T not being sampled, as required by
Equation 12. With limited sampled answers, q’s PNNs can only be “guessed” by using its closest sampling
point p. In other words, PNNQ(q) has to be substituted with PNNQ(p). The efficiency is reflected in
Figure 19, where the sampling interval ε is varied from 0.01 to 10. We can observe that TP-TS outperforms
Sample in most of the cases. Sample is faster only when ε is very large (e.g. equal to 10 units). Then, is
it good if large ε is used? The answer is NO. In Table 5, when “Sample, ε = 10, block”, the error score of
Sample is as high as 0.443!

We demonstrate the error score of Sample and TP-TS in Table 5. The error of Sample is small when ε
is small, (e.g. equal to 0.01, block). However, the query time of that case is 100 times slower than TP-TS.
We would like to emphasize that even the error score is empirically tested to be 0 over large sampling rates,
there is no theoretical guarantee for Sample to contain 0 false negative. Compared to them, the error score
of TP-TS is much lower.

We also test the error score of simplifying the imprecise regions by precise points, as mentioned in the
introduction. For germany dataset, the error is as high as 0.76! In applications such as safety sailing, the
simplified solution could be harmful.
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6.3.3 Analysis of TPNN

Observed from Figure 20, the number of validity intervals increases with the size of the datasets. TP-TSe

has the same number of validity intervals, which means the approximate calculation is capable of deriving
the turning points within a limited precision Tε.

We also test our proposed analysis model in Figure 21. We split the domain into 25×25 squares and use
average parameters as input. The number of PNNs increase with the size of datasets. In all tested cases,
the error rate is within 5%, which shows a high accuracy of the selectivity estimation.

We test the error score of the TP-TS w.r.t. the increase of precision Tε. As shown in Figure 22, when
Tε < 0.1, the error score of TP-TS is quite close to the value of TP-TSe, which is 0. This offers us
flexibility in choosing the parameter Tε. When Tε > 0.1, the error score increases significantly w.r.t. Tε. In
our implementation, we set Tε to 0.01. It is possible to sacrifice some precision for a faster query execution.
However, the quality will decrease accordingly. More details are omitted due to page limit.

6.3.4 Objects with Different Shaped Imprecise Regions

We model the moving objects on a road network by an imprecise region, whose shape is a line segment.
For experiments, we reuse the 4 real rectangular datasets by using each rectangle’s two opposite corners
as two end-points of a line segment. Then, we test how the quality will be affected by representing the
line segment with its enclosed MBC or MBR(Minimum Bounding Rectangle). We also investigate how the
query performance varies for the three different shapes: circle, rectangle, and line segment.

The queries are implemented by TP-TS method. Figure 23 shows that the Tqs are similar for the three
shapes we have tested. Tq on the circular dataset is a little bit faster, as the max/min distance evaluation for
circular objects requires less distance comparisons than the other two.

However, the quality of a query evaluated over objects’ approximated MBCs or MBRs could decrease
significantly. In Figure 24, the approximated MBC’e error is as high as 0.15. The error of MBR is lower
than MBC because MBR has smaller dead space while enclosing a line segment. But the error is still too
large comparing to the result evaluated on the line segments. In real deployment, if the object could be well
represented by its MBC or MBR, we suggest to use MBC or MBR for better efficiency. Otherwise, the
shape of objects should be considered to achieve better query quality.

In summary, we have shown that TP-TS is much more efficient than Nested-Loop and Sample method-
s. It also achieves much better quality than Sample method. With the approximated algorithm for finding
intersections, the solution for TPNN can be extended to arbitrary shaped imprecise regions (tested by rect-
angular objects). For some simple shapes (e.g., circular objects), the exact intersections can be found by
TP-TSe with 0 error.
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7 Related Work

In this section, we review the related work on moving nearest neighbor queries (Section 7.1), as well as the
evaluation of trajectory nearest neighbor queries for imprecise location data (Section 7.2).

7.1 Moving Nearest Neighbor Query

Nearest neighbor (NN) query for moving query points is a well studied topic [22] [23] [24] [14]. Most
existing works focus on reducing the computational cost at the server. They fall into two major categories.

The first category does not require the user’s entire trajectory in advance [22] [23] [24], but processes
the query online (multiple times) based on the user’s moving location.

Song and Roussopoulos [22] propose sampling techniques to answer the moving NN query. They study
how to calculate the upper-bound distance within which the moving point does not issue a new query to the
server. Some others [23, 24] use validity region and validity time for the query answer of moving points.
Voronoi cells are used to represent the validity region. The query answer becomes invalid if the validity
time is expired or the user leaves the validity region.

The second category assumes that the user’s trajectory is known in advance. It evaluates the query
only once [14]. In particular, the route of the query point is split into sub-line-segments, such that the NN
answer within the same sub-line-segment remains unchanged. A perpendicular bisector ⊥(pi, pj) between
two points pi and pj is used to partition the trajectory query into two sub-trajectories, one being definitely
closer to pi and the other being definitely closer to pj .

The query trajectory in our TPNNQ setting, such as a flight route or a pipeline, is known in advance.
However, the exising technique [14] is not applicable to our problem on imprecise location data. As shown
in Figure 2, some segments like [s1, s2] can have multiple PNNs and it is challenging to derive them.

The bisector for imprecise objects has been addressed by a few works recently. They use bisectors for
specific shapes (circles [8] [9], rectangles [10]) to determine the dominance relationship between objects.
This paper distinguishes itself from these works in several important aspects.

First, the query studied in this paper is issued for a trajectory, but not for a single object. Second, the
u-bisector defined in this paper is extended to support arbitrary shaped imprecise objects. It is however
unknown how the existing bisectors [8, 9, 10] can be generalized for similar purposes. Third, our query
evaluation partitions the query trajectory into several segments each of which has its own answer set. In
contrast, these previous works [8, 9, 10] do not partition their query objects.

7.2 Trajectory Nearest Neighbor Query over Uncertain Data

Only a few works have addressed trajectory queries over imprecise data. Chen et al. [11] study the problem
of updating answers for continuous probabilistic nearest neighbor queries in the server was studied. Com-
putational overhead is saved if the query answers are within specific probabilistic bounds. Trajcevski et
al. [12] investigate the problem of efficiently executing continuous NN queries for uncertain moving objects
trajectories. Zheng et al. [13] study two variants of k-NN query for fuzzy objects. They return the qualified
objects satisfying a probabilistic distance threshold or a range of probability thresholds, respectively.

We use the imprecise region model in this paper. It allows us to know which object may be the closest
to a given trajectory. In contrast, the uncertainty model described in [11, 12, 13] contains a probability
distribution, which describes the chance that an imprecise object is located in each point in the imprecise
region. With this more complex uncertainty model, it is possible to quantify the probability that an imprecise
object is the nearest neighbor of any point in a given trajectory. Note such a problem is beyond the scope of
this paper and therefore we leave it for future research.
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Park et al. [7] study a similar problem as we do in this paper. They also use an imprecise region to
model the locations of an object and compute the object closest to a given query segment. However, they
only compute and return the definite nearest neighbors but ignore objects that may be the closest. This
simplification renders significant answer loss in the query result. Also, unlike our solution in this paper, the
techniques in [7] are specific to circular objects and are inapplicable to arbitrary shaped imprecise objects.

8 Conclusion

In this paper, we study the problem of trajectory possible nearest neighbor query (TPNNQ) over impre-
cise data. To overcome the low quality and inefficiency in simplified methods, we study the geometric
properties of u-bisector. Based on that, we design an efficient query evaluation approach that follows the
filter-refinement paradigm. We also generalize our solution to arbitrary shaped imprecise data. Further,
we propose theoretic analysis to estimate the TPNNQ query result size. We conduct extensive experiments
to evaluate our proposals. The results show that our query evaluation approach is efficient and scalable.
Meanwhile, our TPNNQ query result size estimation gives very good hints.
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9 *tech report’s appendix

Proof of Lemma 1.

Proof ∀p ∈ [si`jsiaj ], both Oi and Oj have chance to be p’s PNN. According to Lemma 8, a new object
ON cannot be Oi or Oj’s nearest neighbor if

ON
⋂

(}(si`j , Oi) ∪}(siaj , Oi)) = ∅, or

ON
⋂

(}(si`j , Oj) ∪}(siaj , Oj)) = ∅

So, the pruning bound is:

}(si`j , Oi) ∪}(siaj , Oi)
⋂

}(si`j , Oj) ∪}(siaj , Oj) (13)

Proof of Lemma 4.
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Proof Suppose p is a point on L, such that distmax(p,O1) = distmax(L, O1). If O1 is definitely one
PNN of p ∈ L, O1 must be one PNN of L. Thus, it is sufficient to show O1 ∈ PNNQ(p).

To show O1 ∈ PNNQ(p) is equivalent to prove distmin(p,O1) < distmax(p,Oi)(Oi ∈ Ccur). Then,
it is sufficient to show
distmax(p,O1) < distmax(p,Oi)(Oi ∈ Ccur),
as distmin(p,O1) < distmax(p,O1).

Notice that distmax(p,Oi) must be no less than distmax(L, Oi). So,

distmax(p,O1) = distmax(L, O1)

≤ distmax(L, Oi)(Oi ∈ Ccur)
≤ distmax(p,Oi)(Oi ∈ Ccur)

So, O1 definitely belongs to TPNNQ(L).

Lemma 8 Given two imprecise objects Oi, Oj and a line-segment L(s, e), Oj can not be p ∈ L’s PNN if
Oj does not overlap with }(s,Oi) ∪}(e,Oi).

Proof Oj is not p ∈ L’s PNN givenOi, if and only if p ∈ L is in half spaceHi(j). SinceHi(j) is convex,
if L’s two endpoints s and e are in Hi(j), p ∈ L is in Hi(j). Formally,

s ∈ Hi(j)⇔ distmax(s,Oi) < distmin(s,Oj)

⇔ }(s,Oi) ∩Oj = ∅
}(e,Oi) ∩Oj = ∅

}
⇔ Oj

⋂
}(s,Oi) ∪}(e,Oi) = ∅

So, the lemma is proved.

Lemma 9 (Imprecise Region Decomposition) Given imprecise objects Oi and Oj , if their imprecise re-
gions are decomposed into two sets of sub-regions P and Q, say ui = {ui(p)}p∈P and uj = {uj(q)}q∈Q,
Hi(j) = ∩p∈P∧q∈QHi(p)(j(q))

Proof For an arbitrary point t,

t ∈ Hi(p)(j(q))⇔ distmax(t, ui(p)) ≤ distmin(t, uj(q))

∀p ∈ P ∀q ∈ Q, t ∈ Hi(p)(j(q))⇔
maxp∈P {distmax(t, ui(p))} ≤ minq∈Q{distmin(t, uj(q))} (14)

t ∈ ∩p∈P∧q∈QHi(p)(j(q))

⇔ distmax(t, Oi) ≤ distmin(t, Oj)

⇔ t ∈ Hi(j) (15)

Thus, Hi(j) = ∩p∈P∧q∈QHi(p)(j(q)).

Lemma 10 Given two triangle ∆ABC and ∆A′′B′′C ′′, D and D′′ are two midpoints on BC and B′′C ′′,
respectively. If |BC| = |B′′C ′′|, |AB| ≤ |A′′B′′| and |AC| ≤ |A′′C ′′|, then |AD| ≤ |A′′D′′|.

Proof We show ∆ABC and ∆A′′B′′C ′′ in Figure 25 (a) and (c), respectively. Our purpose is to prove: if
c′ ≥ c and b′ ≥ b, then d′′ > d. In order to prove that, we increase the length of AB to get another triangle
∆A′B′C ′, shown in Figure 25 (b). Considering the edge length of the three triangles: (b) has one longer
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Figure 25: Proof of Lemma 10

Figure 26: Proof for Lemma 11.

edge than (a) (c′ ≥ c); (c) has one longer edge than (b) (b′ ≥ b). If d′ ≥ d is true, then d′′ ≥ d′ could be
derived similarly. Thus, d′′ ≥ d could be derived. So, to prove the lemma, we just need to prove d′ ≥ d.

Let β = ∠ACB and β′ = ∠A′C ′B′. According to the cosine law, we have

cosβ ≥ cosβ′ (16)

Then,

d2 = (a2 )2 + b2 − 2 cosβ · a2 · b
d′2 = (a2 )2 + b2 − 2 cosβ′ · a2 · b

}
⇒ d′2 − d2 = ab(cosβ − cosβ′) ≥ 0

d′ ≥ d

So, the lemma is correct.

Lemma 11 Given two imprecise objects Oi and Oj , whose imprecise regions are circles: Oi(Ci, ri) and
Oj(Cj , rj). A line-segment L(s, e) has at most two intersection points with the u-bisector: bi(j) and bj(i).

Proof Suppose Oi and Oj’s uncertainty regions are two circles centered at Ci and Cj with radius ri and rj ,
respectively. Since we have known L intersects with bi(j) (or bj(i)) at most two points. Then, to prove the
lemma, it is sufficient to show: if L intersects with bi(j) at two points, L does not intersect with bj(i).
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Suppose AB = L ∩Hi(j) and A,B ∈ bi(j). We extend AB to p. If we can show for arbitrary point p,
p /∈ Hj(i), the lemma is proved.

SinceA,B ∈ bi(j), we haveAAi = AAj andBBi = BBj . p is on the extended line ofAB. According
to Equation 1, to show p /∈ Hj(i), we just have to show distmax(p,Oj) > distmin(p,Oi), or ppj > ppi as
shown in Figure 26(a).

Then, we extend AAj , BBj to Cj and ppi to Ci. The polygon ACipCj is magnified to be Figure 26(b).
The problem is change to:

l1 − rj = l2 + ri
l3 − rj = l4 + ri

}
⇒ l5 + rj > l6 − ri

By applying cosine law to ∆ACjB and ∆ACiB:

cosα1 =
l21 + l27 − l23

2l1l7
, cosα2 =

l22 + l27 − l24
2l2l7

(17)

After calculation, we can have:
cosα1 − cosα2 < 0⇒ α1 > α2

We draw a point D on ACj satisfying AD = l2. Then, DCj = l1 − l2 = ri + rj . In ∆ADp and ∆ACip,
since α1 > α2, AD = ACi, we can have:

l′6 > l6 (18)

According to triangle inequality, in ∆DCjp, Cjp > pD − DCj . It is equivalent to l5 > l′6 − (ri + rj).
Together with Equation 18, we have:

l5 > l6 − (ri + rj)⇒ l5 + rj > l6 − ri

Thus, the lemma is proved.
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