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Abstract

Recent advances in Semantic Web technologies have led to a growing popularity of the (Linked)
Open Data movement. Only recently, the Danish government has joined the movement and published
several data sets – formerly only accessible for a fee – as Open Data in various formats, such as CSV and
text files. These raw data sets are difficult to process automatically and combine with other data sources
on the Web. Hence, our goal is to convert such data into RDF and make it available to a broader range
of users and applications as Linked Open Data. In this paper, we discuss our experiences based on the
particularly interesting use case of agricultural data as agriculture is one of the most important industries
in Denmark. We describe the process of converting the data and discuss the particular problems that
we encountered with respect to the considered data sets. We additionally evaluate our result based on
several queries that could not be answers based on existing sources before.

1 Introduction

In recent years, more and more structured data has become available on the Web, driven by the increasing
popularity of both the Semantic Web and Open Data, which (unlike traditional for-purchase data sources) is
publicly available on the Web and free of charge. Several governments have been driving forces of the Open
Data movement, most prominently data.gov.uk (UK) and data.gov (USA), which publish Open
Data from departments and agencies within, e.g., agriculture, health, education, employment, transport,
and education. The goal is to enable collaboration, advanced technologies, and applications that would
otherwise be impossible or very expensive, thus inspiring new services and companies. While publication
of raw data is a substantial progress, the difficulty in interpreting the data as well as the heterogeneity
of publication formats, such as spreadsheets, relational database dumps, and XML files, represent major
obstacles that need to be overcome [12, 15, 18].

Thus, the Linked (Open) Data movement1 encourages the publication of data following Web standards
and along with links to other data sources to provide semantic context, easing the access and interpretation of
structured data on the Web. Publishing data as Linked Data (LD) [9,11] entails the usage of certain standards
such as HTTP, RDF, and SPARQL as well as HTTP URIs as entity identifiers that can be dereferenced using
a browser, making LD easily accessible on the Web, and thus highly usable.

In late 2012, the Danish government joined the Open Data movement by making several raw digital data
sets [2] freely available at no charge. These data sets span domains such as environmental data, geospatial
data, business data from transport to tourism, fishery, forestry, agriculture etc. To the best of our knowledge,
they are currently only available in their raw formats and have not yet been converted and made public as
Linked Open Data. We choose agriculture as the main use case, as it is one of the main sectors in Denmark,
with 61% of Denmark’s land surface being farmland, and thus there is significant potential in providing free
access to such data and enabling efficient answering of sophisticated (SPARQL) queries over it.

The goal of this paper is to make Danish governmental Open Data available as Linked Open Data and
evaluate the challenges in doing so. As a starting point, we choose some agricultural datasets, transform
them into RDF, and make explicit relationships among them using links. Furthermore, we integrate the
agricultural data with company information, thus enabling queries on new relationships not contained in the
original data.

This paper presents the process applied to transform and link the data, describes the challenges encoun-
tered and how they were met, and discusses how the experience can provide guidelines for similar projects.
We develop our own ontology, while still making use of existing ontologies whenever possible. A particular
challenge is deriving spatial containment relationships not encoded in the original datasets. The resulting
LOD data sets are available as a SPARQL endpoint: http://extbi.lab.aau.dk/sparql as well
as for download: http://extbi.lab.aau.dk/.

1http://lod-cloud.net/
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The remainder of the paper is structured as follows, Section 2 provides background and motivation,
Section 3 describes our use case datasets, and Section 4 discuss the main challenges. Then, Section 5 gives
an overview of our system architecture and Section 6 describes the process and its application to the use
case. Section 7 evaluates alternative design choices, while Section 8 concludes the paper and provides
directions for future work.

2 Background and Motivation

In the past couple of years, more and more Open Data has become available on the Web. Many communities
have invested great effort and many governments have joined the movement so that now various data sets
are available on the Web free of charge and accessible for everyone. The goal, especially for governments,
is to inspire novel applications and companies, which will eventually increase the wealth and prosperity of
the country. Making raw data available in various heterogeneous formats, such as CSV, JSON, PDF, and
XML, is convenient for the publisher but it is still relatively difficult to make use of it – especially because
the schema is rarely well documented and explained for non-experts. Furthermore, it is not possible to
evaluate queries over one or multiple of these data sets.

The quality of Open Data can be categorized by a “five star rating system” [11]:

? Data is available on the Web in whichever format but with an open license.
?? Data is available as machine-readable structured data i.e. Excel instead of image scan of a

table.
??? Data is available as ?? but in a non-proprietary format i.e. CSV instead of Excel
???? Data is available according to all the above, plus the use of open standards from W3C (RDF2

and SPARQL3) to identify things, so that people can link to it.
????? Data is available according to all the above, plus outgoing links to other people’s data to provide

context.

To make data given in a raw format as Open Data accessible to a broader range of users on the Web, it can be
transformed into Linked Open Data (LOD) [11]. LOD uses unique HTTP URIs to identify entities/things,
the usage of HTTP URIs of remote sources creates links between the datasets of multiple sources. Using
standards such as RDF as data format and SPARQL as query language enables efficient access to the in-
formation. Data published as Linked Open Data corresponds to 5-star data according to the above rating
system.

RDF allows to formulate statements about resources, each statement consists of subject, predicate, and
object – referred to as a triple. Extending the dataset and adding new data is very convenient due to the
self-describing nature of RDF and its flexibility. A triple indicates that there is a relationship between the
subject and object. Predicates are also defined by URIs and describe the nature of the relationship. A good
practice for choosing predicates is reusing existing ontologies and vocabularies available on the Web.

3 Use Case

Whereas several governments have joined the Open Data movement already several years ago, the Danish
government has joined in only recently in 2012 [2]. So, the Danish Open Data has so far only been available
in its raw format. Hence, our goal is to make it available as Linked Open Data so that a broad range of users
have the opportunity to find and use it. As a starting point for our efforts, we have found the agricultural
domain to be particularly interesting as it represents a non-trivial use case that covers spatial attributes and

2http://www.w3.org/TR/rdf-primer/
3http://www.w3.org/TR/rdf-sparql-query/



can be extended with temporal information. The agriculture industry plays an important role in Denmark,
66% of Denmark’s land surface is farmland4. By combining the agricultural data with business data, we can
process and answer queries that were not possible before as the information was neither freely available nor
efficiently queryable.

3.1 Datasets

Late 2012 the Ministry of Food, Agriculture, and Fisheries of Denmark (FVM)5 made geospatial data of
all fields in Denmark freely available – henceforth we denote this collection of data as agricultural data.
This combined with data about all Danish companies from the Central Company Register (CVR)6 allows
for evaluating queries about fields and the companies owning them. In the following, we will refer to the
collection of data from the CVR as business data. In total, we have converted 5 data sets provided by FVM
and CVR into Linked Open Data. We downloaded the data on October 1, 2013 from FVM [13] and direct
download from CVR. In the meantime, the direct file download from CVR has been replaced with a web
service.

3.2 Agricultural Data

The agricultural data collection is available in Shape format [5], this means that each field, field block, and
organic field is described by several coordinate points forming a polygon.

3.2.1 Field

The Field dataset has 9 attributes and contains all registered fields in Denmark. In total, this dataset contains
information about 641,081 fields. Each field has an ownerId that is unique for the owner of the field, an
owner may own several fields. To identify individual fields of the same owner, each field has a fieldIdentifier
that is chosen by the owner of the field. Other important attributes define the field’s polygon, the field’s area
in hectare, and the crop type.

3.2.2 Organic Field

This data set has 12 attributes and contains information about 52,060 organic fields. Hence, the attributes
are very similar to those of the Field data set. It has a few more attributes, among which the CVR attribute
is most interesting as it is unique for the owner of the field and references the CVR data set that we explain
in Section 3.3. The fieldBlockId attribute describes to which field block it belongs – we explain the concept
of a field block in the following paragraph.

3.2.3 Field Block

The Field Block dataset has 12 attributes for 314,648 field blocks and in its original use contributes to
calculating and regulating the funds the farmers receive in EU area support. Each field block is defined by
a polygon, identified by a unique identifier, and contains a number of fields. Other important attributes [14]
describe the area of a field block as grossArea, netArea, and taraArea. Additionally, field blocks have an
attribute that defines the year when the most recent aerial photo was taken of it.

4http://www.dst.dk/en/%20Statistik/emner/areal/arealanvendelse.aspx
5http://en.fvm.dk/
6http://cvr.dk/



Figure 1: Illustration of legal units and production units

3.3 CVR - Company Registry Data

As mentioned above, the CVR is the central registry of all Danish companies and provides its data in CSV
format. There are two datasets available that we refer to as Company and Participant.

3.3.1 Company

This data set has 59 attributes [4] and contains information about 603,667 companies and 659,639 produc-
tion units. The list of attributes covers a companies’ name, contact details, business format, activity, etc. The
company dataset contains all legal units in Denmark as well as their production units. A legal unit together
with its production units is called a company. Each legal unit has a unique identifier, which is also known
as CVR number, and each legal unit has at least one production unit. Figure 1 illustrates the relationship
between legal units and production units.

3.3.2 Participant

This dataset describes the relations that exist between a participant and a legal unit. A participant is a person
or legal unit that is responsible for a legal unit of the company dataset, i.e., a participant is an owner of a
company. The Participant data set describes 359,929 participants with 7 attributes. There are three types of
participants:

1. Persons who have a Danish CPR number,
2. Companies which have a CVR number, and
3. Entities that have neither CPR nor CVR number.

Figure 2 illustrates the relationship between legal units and participants. Participant 1 is a person (type 1)
who owns legal unit A. Participant 2 (type 2) is a legal unit that owns legal units B and C. As participant
2 is a legal unit, it is also described in the company dataset itself – indicated by the dotted line between
participant 2 and legal unit D. Participant 3 (type 3) owns legal unit E.

Figure 2: Relationship between legal units and participants
The five datasets mentioned above are connected through foreign keys and can be further connected

by spatial joins. Figure 3 illustrates these foreign key relationships as well as natively contained primary
keys. The Field dataset is connected to Field Block and Organic Field based on the spatial coordinates of



the polygons that define them. Section 6 describes in detail how we derived this spatial relationships and
how we represent it in the Linked Open Data that we created.

Figure 3: Compact schemas of the 5 datasets showing primary and foreign keys

4 Objectives and Challenges

Our work is driven and inspired by semantic heterogeneity and the lack of technical and structural integrity
of government data published in raw format. Hence, currently similar data is stored in very heterogeneous
ways and not explicitly related to sources with similar content – data is provided in various file formats,
different access protocols and query languages are used, etc. Furthermore, expert knowledge is often needed
to understand the data. So, combining multiple similar data sources and querying them efficiently is not only
possible at the moment with huge efforts by the user.

The main goal of our work in this paper is making such data available for a greater audience, integrate
the data sources by data cleansing and defining cross-references, developing and using ontologies to enhance
the structure with meaning, and using Web standards to allow easy access. In particular, to enable queries
that have not been possible before, we cleanse and link (Organic) Field data sets to the Company data set so
that we can query fields and crops of companies related to agriculture.

To achieve these goals, the particular challenges that we address in this paper are:

• Disparate data sources without common format
• Lack of unique identifiers to link different but related data sources
• Language (Danish)
• Lack of ontologies and their use

As mentioned in Section 3, in our use case data is available in different formats and in some cases does
not come with keys that we could use as identifiers. Further, there is only little cross-reference and links
between the data sets and no links to Web sources in general. Spatial relationships are even more difficult to
represent in the data and querying data based on the available polygons is a complex problem. Furthermore,
attribute names in the original datasets are mostly Danish, which makes language a non-trivial challenge
that makes linking accurately to external sources difficult.

To make the schema of the data understandable to a greater public and to organize the data accordingly,
it is necessary to develop an appropriate ontology that properly describes the structure of the data and
gives the structure meaning. Hence, on the ontology level our goal is to create an appropriate oenology
and using common predicates from existing ontologies, such as owl:sameAs, rdfs:subClassOf,
rdfs:subPropertyOf, dc:location. Furthermore, we want to establish links to other datasets
and ontologies by defining links to related entities and concepts.



Figure 4: System architecture

5 System Architecture

The system architecture is illustrated in Figure 4. It is organized in four layers: Source, Transformation,
Conceptual, and Presentation. The Source layer contains the data sources in their original, native format,
e.g., XML, CSV, free text, or even RDF. The Transformation layer then transforms the source data into RDF
format. A large part of the system is based on the Openlink Virtuoso universal server7, which we chose a)
due to its support for both native and RDBMS-based RDF storage, and its ability to ingest a wide range
of data types/formats, as required by our use case; b) for its integrated support for mapping tabular data to
RDF with built-in ontology generation and SPARQL Endpoint creation; and c) for its relative ease of use.
The transformed data is initially stored in the underlying storage in relational format using Virtuoso’s own
vtRDBMS. IRI classes are used for converting raw literal values from relational tables into URIs and vice
versa, RDF views specify how to rewrite SPARQL queries into SQL queries based on Quad (Map) Patterns
and IRI Classes. The Sponger is an “RDFizer” that (semi-)automates the extraction of source data and the
mapping of it into Linked Data. In the Conceptual Layer, the LOD repository/cache receives SPARQL
queries/updates and tries to match them with the cache. Queries with no cache hit or updates are passed
on to the Quad Store, which either executes the statements directly (if the requested data is available in the
Native RDF Quad Store) or passes the statements to the RDF views layer. If a query can be answered by the
quad store, Virtuoso provides the ontologies to specify and rewrite the query using inference in the given
ontology. Finally, the Presentation Layer provides a SPARQL endpoint interface, a Linked Data iFaceted
Browser Interface, and an interface based on the Sponger web service. SPARQL 1.1 queries and updates
are supported. The SPARQL endpoint is accessible via http://extbi.lab.aau.dk/sparql.

6 Data Annotation and Reconciliation

In this section, we outline the process that we followed to publish the datasets described in Section 3. The
complete procedure with its main activities is depicted in Figure 5. The initial step is to import the data into
the data repository (Import activity) – this is mainly based on scripts that need to be written in dependence
on the raw datasets that shall be imported. We refer to the raw data imported into the data repository as

7http://virtuoso.openlinksw.com/



imported data. All data in the data repository undergoes an iterative integration process consisting of three
activities:

Analyze: Gain an understanding of the data and create an ontology
Refine: Refine the source data by cleansing it and converting it to RDF
Link: Link the data to internal and external data

Data that has been through the integration process at least once is referred to as integrated data. Integrated
data may be published and thus become Linked Open Data that others can use and link to. In the remainder
of this section, we will discuss these individual steps in more detail, in particular regarding how we solved
the challenges discussed in Section 4 for our use case data. Although we made use of the tools offered by
Virtuoso (Section 5), the same results can be achieved by using other frameworks and tools.

Figure 5: Process overview

6.1 Raw Data Import and Analysis

The concrete method used for importing a dataset depends on the formats of the raw data and how com-
patible this format is to the one used in the data repository. The Import Script is the result of this initial
step.

The use case data introduced in Section 3, is available in different raw formats (Shape and CSV) – the
agriculture datasets in Shape format and the business data as CSV files. Before importing the data, the
attribute fields of the datasets are converted to UTF-8 and illegal characters are removed or escaped. Then,
the data is imported into the triple store, which in our architecture corresponds to the Virtuoso RDBMS
(Figure 4). We chose to import the data into a relational system first out of convenience because there are
formal standardized specifications available for this case [6, 7] and we could benefit from all the tools that
are provided for this problem [16] – a direct conversion into triples would also have been possible [8, 10]
but is less well supported and sophisticated.

File Description Size (in MB) Tuples
ABO 117 TOTAL Company dataset 315.2 1,263,306
ABO 117 TOTAL FAD Participant dataset 19.1 353,929
ABO 117 DELTA Company dataset changes 0.85 3,599
ABO 117 DELTA FAD Participant dataset changes 0.024 488

Table 1: Statistics for the Company Registry Data



6.1.1 Company Registry Data

As mentioned in Section 3, we used two datasets in this category: Company and Participant. Every day,
change sets to these datasets are published that contain updated data entries (companies and production
units) that are new, have been changed, or deleted. Table 1 shows an overview of the sizes of the datasets
that we considered; the sizes of the change datasets are the average over all datasets that we collected – in
total we considered 67 change datasets collected on October 1, 2013, i.e., these change datasets together
with the main dataset represent the state of October 1, 2013.

6.1.2 Agricultural Data

As mentioned in Section 3, the three datasets in this category are related based on their spatial shapes and
geographical locations. Hence, entities in one of these datasets can reference entities in other datasets if
they overlap in their geographic regions. As this information is not directly given in the data by use of
foreign keys, we needed to link them using a tool that can determine the spatial overlap. For this purpose,
we imported the Shape files into ArcGIS8, a geographical information system.

After ArcGIS had computed the spatial join, we removed the polygons from the data and only kept the
spatial coordinates (longitude and latitude) of a polygon’s centroid. In addition, we added another attribute
to the tables that represents the spatial relationship as a foreign key. For instance, the field table is extended
by an attribute representing a foreign key referencing the primary key of the field block table. The same
procedure is applied to the spatial relationships between fields and organic fields as well as organic fields
and field blocks.

6.1.3 Analyze

The analyze activity as shown in Figure 5 is the first activity in the iterative process that additionally involves
the refine and link activities. The goal of this step is to acquire a deeper understanding of the data and
formalize it as an ontology.

The data in our use case is mostly in Danish language. Hence, attribute names were translated to English
so that further processing and especially linking to other sources on the Web becomes easier. The formalized
ontology represents the understanding of all the data in the repository. If new aspects are discovered in future
iterations, then the ontology is updated and the following steps are repeated.

When constructing or improving an ontology, URIs must be chosen with care. The URIs must uniquely
identify each class or concept and should remain static so that external sources can link to the data. This true
for both the resources in the RDF ontology (classes and properties) as well as resources in the integrated
dataset (entities in the instance data). The URIs should be human readable when possible and be accessible
through HTTP as described in the Linked Data Principles.

In our use case, we prefix all our ontology-related URIs with http://extbi.lab.aau.dk/
ontology/ and start class names with an upper case character (class Field: http://extbi.lab.
aau.dk/ontology/agriculture/Field) and properties with lower case (property hasProductio-
nUnit http://extbi.lab.aau.dk/ontology/business/hasProductionUnit). It is also
important to create meaningful and human-readable URIs for entities in the instance data. We prefix such
URIs with http://extbi.lab.aau.dk/resource/ and create URIs by concatenating candidate
key values. An example URI of an entity for Aalborg municipality from the business domain, for instance,
is http://extbi.lab.aau.dk/resource/business/municipality/aalborg.

8http://www.esri.com/software/arcgis



6.1.4 Ontology

A crucial part of creating an ontology is to identify sets of attributes that uniquely identify a resource such
that a URI can be constructed – this is similar to determining candidate keys in relational database systems.
In general, we strive to use existing ontologies to base our own ontologies on. To do this, we make use
of predicates such as rdfs:subClassOf, rdfs:subPropertyOf, and owl:equivalentClass,
which can link our classes and properties to known ontologies.

Figure 6: Overview of the ontology for our use case
Figure 6 provides an overview of of the ontology that we developed for our use case with all classes

and properties. All arrows are annotated with predicates. The arrows with black tips represent relations
between the data instances. The arrows with white tips represent relations between the classes. In creating
the ontology we group data into classes and use candidate keys to create a unique URI for each instance of a
class. The Field is contained within a FieldBlock, which is expressed with the property agri:contains
and is determined by a spatial join of the data. OrganicField is a subclass of Field and therefore transitively
connects Field to Company. Field is also defined as being equivalent to the UN’s definition of European
fields from the AGROVOC [17] vocabulary. AGROVOC is a vocabulary covering descriptions and relations
for domains of food, nutrition, agriculture, fisheries, forestry, environment, etc.

In total, we make use of 4 external ontologies or vocabularies, respectively.

AGROVOC We have chosen to create and use our own classes for fields and crops even though
AGROVOC [17] already defines these, because the URIs used by AGROVOC are poor in human
readability. Instead, we define our own and link them to the definitions in AGROVOC using the
owl:equivalentClass predicate.

GeoNames and WGS The ontologies GeoNames [19] and WGS (World Geodetic System) [3] are used
as they offer spatial definitions. We do not link to concepts of WGS in our ontology but use some of
the properties it defines; specifically longitude and latitude of fields, organic fields, and field blocks.
GeoNames’ Feature class is a central part of our ontology that describes a spatial object. We also



link municipality names from our local data to names of places from the GeoNames geographical
database.

FOAF The last ontology we are using is FOAF (Friend of a Friend) [1], which we link the business data.
As in ontology Figure 6, Company is an rdfs:subClassOf-foaf:Organization.

6.2 Refinement and Linking

6.2.1 Refine

The Refine activity involves data cleansing and conversion of the imported data. The process is based on
the understanding gained in the Analyze activity and consists of data cleansing and conversion. Figure 5
illustrates the data cleansing process where imported data and ontologies are used to produce cleansed data.
The adaptations in this corrects the data, creates unique identifiers, and structures the data as defined by the
ontology.

In our use case, we implemented data cleansing by using views that filter out inconsistent data as well
as correct invalid key attribute values, inconsistent string, and invalid coordinates. In particular, we defined
one view for each class defined in the ontology, which eases the task of creating mappings.

After cleansing the data convert scripts are created that transform the cleansed data into RDF. In our use
case, we can use mapping tables to convert the data stored as relational tables to RDF dynamically during
runtime. For big datasets, this might cause runtime problems so that an alternative is to transform the data
into native RDF. The URI’s are created during process of mapping to RDF in Transformation Layer by IRI
Classes in which iri function converts a string into a URI(Figure 4).

6.2.2 Link

The Link activity also consists of two steps: internal linking and external linking, which converts the refined
data into integrated data that in turn might undergo another iteration or be published as the result of the
process. The Link activity materializes the relationships between concepts and classes identified in the
Analyze activity as explicit information (triples) in the data.

Internal linking means that we introduce triples that represent the foreign key (and spatial) relationships
illustrated in Figure 3 using the URIs that we created for the entities and classes. The example below shows
our internal linking of the Field and the FieldBlock classes using the geonames:contains predicate.

agri:contains rdf:type owl:ObjectProperty ;
rdfs:domain agri:FieldBlock ;
rdfs:range agri:Field ;
rdfs:subPropertyOf geonames:contains .

External linking involves linking to remote sources on instance and ontology level. On the on-
tology level, it is primarily the insertion of triples using predicates such as rdfs:subClassOf,
rdfs:subPropertyOf, and owl:equivalentClass that link URIs from our local ontology to
URIs from remote sources. We link places mentioned in our company registry data to equivalent places
in GeoNames [19] using triples with the owl:sameAs predicate – illustrated in Figure 7.

The overall process has provided us with analyzed, refined, and linked data; in total 8,657,607 triples were
created. In case the data of the integrated sources changes or we would like to add more sources, we simply
need to reiterate through the process (Figure 5). As import, cleansing, and conversion is mostly automated
via scripts, updates can be handled efficiently. The linkage of known concepts and data, however, needs to
be done manually in the first iteration and become part of the scripts for future iterations.



Figure 7: Example: external linking on instance level

7 Experiments

We run an OpenLink Virtuoso 07.00.3203 server on a 3.4 GHz Intel Core i7-2600 processor with 8 GB
RAM operated by Windows 7 Enterprise 64-bit SP 1. In the following, we first describe three alternative
design choices differing in the materialization of data. They represent tradeoffs between load time and query
runtime. We then, present the results of our experimental evaluation in these setups.

7.1 Materialization

The materialization strategies that we considered are: virtual, relational materialization, and native. Figure
8 shows the different paths that data is traveling on starting from its raw format and ending at the user
who issued a query. The solid lines represent data flow during the integration process whereas dashed lines
represent data flow at query time.

7.1.1 Virtual

In the virtual strategy we import the raw data into a relational database and perform data cleansing based on
SQL views (Section 6.2). The RDF mappings that translate the relational data to RDF are formulated on top
of these cleansing views. To increase performance, we create a number of indexes on primary keys, foreign
keys, and spatial attributes. In Figure 8, using this strategy data flows through the arrows marked with 1, 2,
and 3 at query time with no flow during load time.

7.1.2 Relational Materialization

In this strategy, we materialize the above mentioned SQL views as relational tables. We create similar
indexes as above but on the obtained tables. In Figure 8, data flows through arrows 4, 5, and 3 – with 4
during load time and 5 and 3 during query time.

7.1.3 Native RDF

In this strategy, we store the data natively in RDF, i.e., we extract all RDF triples from the materialized
views and mappings and load them into a triple store. In Figure 8, data flows through arrows 4, 5, and 6
during load time and arrow 7 during query time.

7.2 Performance Measurements

To test our setup, we created a number of query templates that we can instantiate with different entities and
that are based on insights in agricultural contracting gained from field experts. Some of them contained
aggregation and grouping (Aggregate Query Templates, AQT) others only standard SPARQL 1.0 constructs
(Standard Query Templates, SQT).



Figure 8: Data flow for the materialization strategies

Listing 1 shows an example AQT query that counts the fields based on the crop they produce. To limit
result size, we restrict the area that we are interested in based on a range around a pair of coordinates.

SELECT ?crop COUNT(*) AS ?cnt
FROM <http://extbi.lab.aau.dk/resource/agriculture>
WHERE {

?field agri:produces ?crop .
?field wgs:long ?long .
?field wgs:lat ?lat .
FILTER(?long > [x - 0.5] && ?long < [x + 0.5] &&

?lat > [y - 0.5] && ?lat < [y + 0.5]) .
} GROUP BY ?crop

Listing 1: AQT 1

For the virtual and relational materialization strategies we measured the load time for each step during
loading – the results are shown in Table 2. Table 3 shows the execution times for our query temples on
the three materialization strategies. Queries that could not be evaluated because they ran into timeouts
are marked by a dash. As we can see, the native RDF strategy is faster than the two other and relational
materialized is generally faster than virtual. There is obviously a notable overhead when using views and
mappings. On the other hand, the virtual strategy has very fast load time compared to the other strategies
since no data has to be moved or extracted – in fact, the cleansing is delayed until query time. The relational
materialized is one order of magnitude faster in load time than the native strategy as it again has less
overhead during loading.

We can therefore conclude that virtual strategy is well suited for rapidly changing data as it has minimum
load time, the materialized strategy represents a tradeoff between load time and query time and is suitable
for data with low update rates, and the native strategy decouples the RDF data from the relational data and
is very suitable for static data.

8 Conclusion and Future Work

Motivated by the increasing popularity of both Semantic Web and Open Data, and the recent availability of
interesting open government data from Denmark, this paper investigated how to make Danish agricultural
data available as Linked Open Data and what lessons could be learned from that. Specifically, the paper
chose the most interesting agricultural datasets among a range of options, transformed them into RDF
format, and made explicit links between the data items to represent the relationships. Furthermore, the
agricultural data was integrated with data from the public company register, thus enabling queries on new
relationships that were not contained in the original data. Doing this, the paper presented the process for
transforming and linking the data. It also describes the challenges encountered and how they were met.



Step Virtual Materialized Native
Data Cleansing 74.92 603.35 603.35
Load Ontology 1.01 1.01 1.01
Load Mappings 8.76 12.35 12.35
Dump RDF 0.00 0.00 4684.82
Load RDF 0.00 0.00 840.04
Total 84.68 616.70 6141.56

Table 2: Load times in seconds

Query Virtual Materialized Native
AQT 1 5.92 3.39 1.04
AQT 2 13.32 7.00 0.23
AQT 3 10.81 7.70 0.05
AQT 4 – – 0.14
AQT 5 – 20.37 0.86
SQT 1 – – 2.35
SQT 2 0.09 0.12 0.10
SQT 3 2188.85 1.81 0.40
SQT 4 6.57 2.35 1.63
SQT 5 – 23.79 3.29
Average 370.93 8.31 1.01

Table 3: Runtimes in seconds

Finally, it discussed how to generalize our experiences to provide guidelines for other projects. A new
ontology was developed, with reuse of existing ontologies where it was feasible. A particularly interesting
challenge was how to derive spatial containment relationships that were not encoded in the original datasets,
where existing LOD standards did not provide sufficient support. The resulting LOD data sets were made
available as a SPARQL endpoint and for download.

Several directions are interesting for future research. First, new LOD concepts and standards for eas-
ily and efficiently creating spatial and spatio-temporal relationships should be developed. Second, novel
LOD concepts and standards, including SPARQL support, for enabling business intelligence analytics over
Linked Open spatio-temporal data are needed. Finally, we will continue our work of publishing relevant
Danish government data as Linked Open Data.
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