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Abstract

On-Line Analytical Processing (OLAP) is a data analysis approach to support decision-making. On
top of that, Exploratory OLAP is a novel initiative for the convergence of OLAP and the Semantic
Web (SW) that enables the use of OLAP techniques on SW data. Moreover, OLAP approaches ex-
ploit different metadata artifacts (e.g., queries) to assist users with the analysis. However, modeling and
sharing of most of these artifacts are typically overlooked. Thus, in this paper we focus on the query
metadata artifact in the Exploratory OLAP context and propose an RDF-based vocabulary for its repre-
sentation, sharing, and reuse on the SW. As OLAP is based on the underlying multidimensional (MD)
data model we denote such queries as MD queries and define SM4MQ: A Semantic Model for Mul-
tidimensional Queries. Furthermore, we propose a method to automate the exploitation of queries by
means of SPARQL. We apply the method to a use case of transforming queries from SM4MQ to a vector
representation. For the use case, we developed the prototype and performed an evaluation that shows
how our approach can significantly ease and support user assistance such as query recommendation.

1 Introduction

On-Line Analytical Processing (OLAP) is a well-established approach for data analysis to support decision-
making [14]. Due to its wide acceptance and successful use by non-technical users, novel tendencies endorse
broadening of its use from solutions working with in-house data sources to analysis considering external
and non-controlled data. A vision of such settings is presented as Exploratory OLAP [1] promoting the
convergence of OLAP and the Semantic Web (SW). The SW provides a technology stack for publishing
and sharing of data with their semantics and many public institutions, such as Eurostat, already use it to
make their data publicly available. The Resource Description Framework (RDF) [7] is the backbone of
the SW representing data as directed triples that form a graph where each triple has its semantics defined.
Querying of RDF data is supported by SPARQL [17], the standard query language for RDF.

To facilitate data analysis, OLAP systems typically exploit different metadata artifacts (e.g., queries)
to assist the user with analysis. However, although extensively used, little attention is devoted to these
metadata artifacts [23]. This originates from traditional settings where very few (meta)data are open and/or
shared. Thus, [23] proposes the Analytical Metadata (AM) framework, which defines AM artifacts such as
schema and queries that are used for user assistance in settings such as Exploratory OLAP. In this context,
analysis should be collaborative and therefore these metadata artifacts need to be open and shared. Thus,
SW technologies are good candidates to model and capture these artifacts.

A first step for (meta)data sharing among different systems is to agree about (meta)data representation,
i.e., modeling. As RDF uses a triple representation that is generic, the structure of specific (meta)data
models is defined via RDF vocabularies providing semantics to interpret the (meta)data. Thus, the AM
artifacts are modeled in [22] proposing SM4AM: a semantic metamodel for AM. Due to the heterogeneity
of systems, the metamodel abstraction level is used to capture the common semantics and organization of
AM. Then, metadata models of specific systems are defined at the model level instantiating one or more AM
artifacts. For instance, the schema artifact for Exploratory OLAP can be represented using the QB4OLAP
vocabulary to conform data to a multidimensional (MD) data model for OLAP on the SW [24]. QB4OLAP
further enables running of MD queries to perform OLAP on the SW [25]. However, the representation of
these queries to support their sharing, reuse, and more extensive exploitation on the SW is yet missing.
Thus, in the present paper we propose a model for MD queries and explain how it supports sharing, reuse,
and can also be used to facilitate metadata processing, e.g., for user assistance exploitations such as query
recommendations. In particular, the contributions of this paper are:
• We propose SM4MQ: A Semantic Model for MD Queries formalized as an RDF-based vocabulary of

typical OLAP operations (see [21]). The model captures the semantics of common OLAP operations at the
conceptual level and supports their sharing and reuse via the SW.
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• We define a method to automate the exploitation of SM4MQ queries by means of SPARQL. The
method is exemplified on a use case to transform a query from SM4MQ to a vector representation. The use
case shows an example of generating vectors (forming a matrix) as analysis-ready data structures that can
be used by existing recommender systems [2] and approaches to query recommendations (e.g., [6]).

• We developed a prototype and used a set of MD queries to evaluate our approach for the chosen
use case. The evaluation shows that SM4MQ significantly eases and supports the automation of query
exploitation by means of SPARQL.

The paper is organized as follows. The next section explains the preliminaries of our approach. Then,
Section 3 proposes the MD query model. Section 4 presents the proposed method and the related use case.
Section 5 discusses the use case evaluation results. Finally, Section 6 discusses the related work and Section
7 concludes the paper.

2 Background

In this section, we introduce the necessary preliminaries and a running example used throughout the paper.
First, we explain the MD model and the most popular OLAP operations. Then, we discuss the use of SW
and QB4OLAP for MD models. The formalization of QB4OLAP concepts and OLAP operations can be
found in [10] and in the present paper we provide the necessary intuition for understanding the proposed
query model. The running example is incrementally introduced in each of the subsections.

2.1 Multidimensional Model and OLAP Operations

The MD model organizes data in terms of facts, i.e., data being analyzed, and dimensions, i.e., analytical
perspectives [14]. Dimensions consist of levels representing different data granularities that are hierarchi-
cally organized into dimension hierarchies. Levels can have attributes that further describe them. Facts
contain measures that are typically numerical values being analyzed. Data conforming to an MD schema
are referred to as a data cube that is being navigated (e.g., data granularity is changed) via OLAP operations.
For instance, Figure 1 illustrates an MD schema created for the European Union asylum applicants data set
available in a Linked Data version of the Eurostat data1. In the data set, the number of asylum applications
as a measure, can be analyzed according to the age, sex, type of application (Asyl app), destination country
(Geo), country of origin (Citizenship), and month of application (RefPeriod) levels of related dimensions.
Moreover, the data can be aggregated from months to quarters and likewise to years, from country of origin
to continent, and from destination country to continent or government type as additional levels in related
dimensions.

To navigate a data cube, OLAP operations are used and different OLAP algebras have been proposed
[18]. In the present paper, we consider the set of OLAP operations used in [10] and [9] that are defined at
the conceptual level as discussed in [8]. The considered OLAP operations are described in the following.

The ROLL-UP operation aggregates data from a finer granularity level to a coarser granularity level in a
dimension hierarchy of a data cube. For instance, in case of the schema in Figure 1 data can be aggregated
from the month level to the year level for the RefPeriod dimension. Similarly, the DRILL-DOWN operation
as its inverse disaggregates data from a coarser granularity level to a finer granularity level in a dimension
hierarchy of a data cube. Furthermore, the DICE operation takes a data cube and applies a boolean condition
expressed over a level (attribute) and/or measure value over it. For instance, for the schema in Figure 1 a
user may be interested in number of asylum applications only for the years 2009 and 2010. Finally, the
SLICE operation removes a dimension or a measure from a data cube. For instance, a user may not be
interested in the age of the applicants and thus remove the related dimensions.

1http://eurostat.linked-statistics.org/
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Figure 1: Asylum Data set Schema (in DFM No-
tation [12])

ex:migr_asyappctzm

property:age
qb:component

qb4o:level

sdmx-dimension:refPeriodqb:component
qb4o:level

sdmx-measure:obsValueqb:component
qb:measure

property:geo
qb:component

qb4o:level

qb4o:Sum

qb4o:aggregateFunction

property:sexqb:component
qb4o:level

property:citizenqb:component
qb4o:level

property:asyl_app
qb:component

qb4o:level

Figure 2: Asylum Data set QB4OLAP Schema
Representation

2.2 The Semantic Web Technologies

As mentioned in the introduction, the SW technologies provide means for flexible (meta)data representation
and sharing. RDF, which is the SW backbone, represents data in terms of directed subject - predicate - object
triples that comprise an RDF graph where subjects and objects are nodes and predicates are edges. Subject
and predicate are represented with IRIs, i.e., unique resource identifiers on the SW, while objects can either
be IRIs or literal values. Furthermore, RDF supports representation of the data semantics via the rdf:type
property. In the context of sharing, the Linked Data initiative [13] strongly motivates interlinking of RDF
data on the SW to support identification of related / similar / same concepts. Finally, the RDF data can
be queried with SPARQL [17], the standardized query language for RDF, which supports their systematic
exploration.

To support the publishing of MD data and their OLAP analysis directly on the SW, two RDF vocab-
ularies were proposed, namely the RDF Data Cube (QB) and QB4OLAP vocabularies. As the former
vocabulary was primarily designed for statistical data sets, the latter one was proposed to extend QB with
necessary concepts to fully support OLAP. A detailed discussion on this is presented in [24] where it is also
explained how existing QB data sets can be enriched with the QB4OLAP semantics. Thus, in the present
paper we consider QB4OLAP for the representation of the MD data on the SW and Figure 2 illustrates
how the MD schema from Figure 1 can be represented with QB4OLAP. Note that for simplicity reasons we
represent only the finest granularity levels.

Once a data cube is published using QB4OLAP, the OLAP operations from the previous subsection can
be performed. However, a metadata model for representing these queries is yet missing. Such a model can
be created by instantiating the SM4AM metamodel (see [22] and [21] for the initial and extended SM4AM
versions, respectively). The metamodel represents the query AM artifact with several meta classes that
we explain next. First, the sm4am:UAList element is a complex element that combines atomic elements
that include data exploration actions (i.e., sm4am:DataExplorationAction with its sm4am:Manipulation-
Action subclass). Thus, the metamodel elements can be instantiated as an MD query that combines OLAP
operations and we present the details in the next section.

3 A Semantic Model for Multidimensional Queries

In this section, we define SM4MQ as an RDF-based vocabulary to represent the introduced OLAP opera-
tions. The model is created by instantiating the related SM4AM metamodel elements. It is built around
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Figure 3: A Semantic Model for Multidimensional Queries

the QB4OLAP model for representing an MD schema and explained with examples related to the running
example schema.

3.1 MD Query Model

Figure 3 illustrates the complete SM4MQ query model. Furthermore, the figure also shows how SM4MQ
relates to the SM4AM metamodel concepts and reuses concepts from the QB, QB4OLAP, and RDFS vo-
cabularies. The central concept of the model is sm4mq:Query representing a query. A query can be related
to a simply ordered set of OLAP operations (i.e., subclasses of sm4mq:Operation) via subproperties of
sm4mq:hasOperation. OLAP operations are organized in a simply ordered set as each of them directly
relates to the query and they are mutually ordered, e.g., the order of ROLL-UP and DRILL-DOWN oper-
ations is relevant to determine the final granularity of the data cube. Each operation relates to a data cube
schema (i.e., qb:DataStructureDefinition) via sm4mq:overCube and to a data set (i.e., qb:DataSet) to
which data belong to via sm4mq:forDataSet. This way, operations belonging to a single query can operate
over different schemata and data sets (inspired by the federated queries mechanism in SPARQL). In the next
subsections, we explain each of the OLAP operations. Note that we follow the formalization given in [9]
and we also enrich the model with additional information needed to facilitate sharing.

3.2 ROLL-UP and DRILL-DOWN Operations

Following the definition in [9], ROLL-UP (i.e., sm4mq:RollUp) is represented with a data cube schema
(i.e., qb:DataStructureDefinition), a dimension (i.e., qb:DimensionProperty), and a level to roll-up to
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Figure 4: ROLL-UP Instance Example

(i.e., qb4o:LevelProperty). In addition to these concepts, SM4MQ also represents the level from which
the roll-up is performed, its order in the query, and the dimension hierarchy (i.e., qb4o:Hierarchy) used.
The related properties are illustrated in Figure 3. In general, the roll-up from and hierarchy concepts can be
inferred from a sequence of OLAP operations, however their explicit representations makes the ROLL-UP
operation model self-contained such that it can be easily shared. The SM4MQ representation of the ROLL-
UP example from Section 2 of aggregating data from the month to the year level over the running example
schema is illustrated in Figure 4. The example shows the ROLL-UP instance and also includes the related
SM4MQ concepts (depicted in gray).

Following the definition in [9], DRILL-DOWN (i.e., sm4mq:DrillDown) is represented with a data
cube schema (i.e., qb:DataStructureDefinition), a dimension (i.e., qb:DimensionProperty), and a level
to drill-down to (i.e., qb4o:LevelProperty). In addition to these concepts, SM4MQ also represents the
level from which the drill-down is performed, its order in the query, and the dimension hierarchy (i.e.,
qb4o:Hierarchy) used for the same reasons as in the case of ROLL-UP. An example of DRILL-DOWN is
analogous to the ROLL-UP one and we omit it for space reasons.

3.3 DICE Operation

Following the definition in [9], DICE (i.e., sm4mq:Dice) is represented with a data cube schema (i.e.,
qb:DataStructureDefinition) and a boolean condition (i.e., sm4mq:Predicate) over a dimension (i.e.,
qb:DimensionProperty) or a measure (i.e., qb4o:MeasureProperty). We represent these two cases sepa-
rately for the atomicity of operations that also facilitates sharing. Thus, in SM4MQ we create two subclasses
for DICE, sm4mq:DimDice as DICE applied over a dimension and sm4mq:MeasDice as DICE applied
over a measure. The former one relates to a dimension, hierarchy, level, and optionally level attribute,
while the latter relates to a measure. For both cases we define the order and consider a set of relational
predicates that includes equals to (i.e., sm4mq:Equal), not equals to (i.e., sm4mq:NotEqual), greater than
(i.e., sm4mq:Greater), greater than or equal (i.e., sm4mq:GreaterEq), less than (i.e., sm4mq:Less), and
less than or equal (i.e., sm4mq:LessEq). Each specific relational operator is an instance of the sm4mq:-
Predicate class (similarly to the case of aggregate functions in QB4OLAP), and it is related to rdfs:Literal
used for the representation of the concrete values. The SM4MQ representation of the DICE example from
Section 2 where a user is interested in number of asylum applications only for the years 2009 and 2010 for
the running example schema is illustrated in Figure 5. The example shows the DICE instance and includes
the related SM4MQ concepts (depicted in gray).
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Figure 5: DICE Instance Example
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Figure 6: SLICE Instance Example

3.4 SLICE Operation

Following the definition in [9], SLICE (i.e., sm4mq:Slice) is represented with a data cube schema (i.e.,
qb:DataStructureDefinition) and a dimension (i.e., qb:DimensionProperty) or a measure (i.e., qb4o:-
MeasureProperty). Again, we represent these two cases separately for the atomicity of operations that
also facilitates sharing. Thus, in SM4MQ we create two subclasses for SLICE, sm4mq:DimSlice as SLICE
applied over a dimension and sm4mq:MeasSlice as SLICE applied over a measure. For both cases we
also define the order. The SM4MQ representation of the SLICE example from Section 2 where a user is
not interested in the age of the applicants and thus removes the related dimensions for the running example
schema (see Figure 1) is illustrated in Figure 6. The example shows the SLICE instance and also includes
the related SM4MQ concepts (depicted in gray).

4 Exploiting SM4MQ

In this section, we discuss the benefits of having a semantic model for MD queries. First, we discuss why
modeling and capturing of the MD query semantics is essential for their exploitation. We then propose a
method on how SM4MQ semantics can serve to automate the exploitation of SM4MQ queries by means of
SPARQL. We also present a use case that shows how can the method be used to define the query transfor-
mations from SM4MQ to a vector representation.

4.1 Modeling and Semantics

We first explain the challenges behind the current state of the art to represent queries and explain how
SM4MQ overcomes them. MD queries in existing approaches are typically stored in query logs [23]. From
logs, queries are parsed to extract semantics needed for further processing. The parsing is dependent on
the particular technology used (e.g., SQL) where different patterns need to be applied to identify OLAP
operations introduced in Section 2. Once identified, the OLAP operations are represented with internal
data structures and any processing of the queries is directly dependent on these internals. In the context of
Exploratory OLAP [1] and next generation BI systems [23], this situation leads to several challenges:

1. Repetitive model designing of MD queries – Instead of considering query metadata as a first-class
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citizen and conforming them to a dedicated model, repetitive efforts are invested into designing ad-hoc
query representations for each system.

2. Repetitive adjustments for exploitation – The use of hard-coded and ad-hoc query models hinders the
use of existing algorithms for their exploitation. As the internals on query representation are typically not
available, existing algorithms need to be adjusted to each system-specific query model.

3. Burdensome query sharing – Overlooking of query modeling obstructs query reuse among different
systems. This becomes especially relevant, considering Exploratory OLAP and public data sets on the SW
where not only data but also queries can be shared among the users. Moreover, once modeled, queries can
be made publicly available so that users can exploit them for different purposes.

4. The need for IT people support – Working with internal query representation requires technical skills
that are not characteristic of OLAP end-users. Thus, preparing these queries (e.g., extracting the relevant
semantics) requires the support of IT people. In the OLAP context, the data preparation by means of a
correct ETL process may take up to 80% of the entire DW project as reported by Gartner[20]; illustrating
the enormous efforts even from trained professionals.

The SM4MQ model for MD queries captures the MD semantics at the conceptual abstraction level using
the SW technologies. Thus, it overcomes the previous challenges in the following way:

1. SM4MQ is a model of MD queries covering the OLAP operations specified in Section 2 that are
commonly accepted and used in OLAP systems. Furthermore, the use of RDF makes it flexible to be
extended with additional operations. Moreover, it can be linked with other RDF-based models using Linked
Data principles (see Section 2).

2. Being an RDF-based model, SM4MQ provides a common semantics which exploitation algorithms
can query in a standardized way via SPARQL.

3. The conforming of queries to SM4MQ directly supports their sharing via Linked Data principles, i.e.,
publishing on the SW in the RDF format. This way, different systems can make their queries available and
reusable.

4. The semantics of MD queries captured at the conceptual abstraction level is understandable even for
non-technical OLAP end-users [10, 24]. It can automatically be transformed into different data structures
(e.g., vectors) via SPARQL and thereby benefit from algorithms working over the related structures (e.g.,
computing cosine similarity between vectors).

Once MD queries are represented with SM4MQ, we can use off-the-shelf tools (i.e., triple stores) to
store and query them in a standardized way via SPARQL.

4.2 Automating SM4MQ Exploitation

Instead of extracting and parsing queries like in typical settings, SM4MQ supports automation of query ex-
ploitations as their RDF representation can be directly retrieved via SPARQL. Using this benefit, we propose
a method that automates the transformation of queries from SM4MQ to other query representations. We also
provide a use case where we exemplify our claims by transforming SM4MQ queries into analytical vectors
that can be used to perform advanced analysis such as query comparison and undertake recommendations.
Vector-based representations have been typically used to compute similarities (e.g., the cosine similarity)
that have been widely used in recommender systems [2]. Hence, several of the state of the art query recom-
mendation approaches such as [6] use vectors to represent queries and compute similarities (see [3]). Next,
we explain the method (sub)tasks and exemplify each task on our use case.
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Task 1. Choosing the analytical structure is the initial task where the target data structure needs to
be chosen. The analytical structure then directly determines the following tasks that define its analytical
features and populate the analytical structure. An analytical feature is a set of one or more model elements
(i.e., nodes or edges) representing a model characteristic, e.g., an operation used in a query, that is relevant
for the desired analysis such as comparison of queries.

Use Case. We focus on a vector representation as an analytical structure.
Task 2. Defining analytical features identifies the elements of a given model (e.g., SM4MQ) that

should be considered as analytical features. As an analytical feature can involve one or more model ele-
ments, it can either be atomic, i.e., consisting of one model element, or composite including two or more
model elements. We next explain the two subtasks of Task 2.

Task 2.1. Selecting model element(s) to form analytical features is the task where one or more model
elements are selected to form an atomic or composite feature, respectively. It is performed for each analyt-
ical feature. Here, a single or several connected elements of the model are selected to be considered as an
atomic or a composite feature, respectively.

Use Case. Analytical features will be a part of the vector representation, i.e., they will be represented
with vector elements. As the whole vector will represent a query, sm4mq:Query is not an analytical
feature. Instead, the analytical features to be defined are different OLAP operations, i.e., the subclasses of
sm4mq:Operation, with their successor nodes (e.g., schema elements such as level). Thus, each OLAP
operation is a composite analytical feature. Considering that all the queries are run over the same data cube,
the data set and schema elements are omitted, as well as the operation order.

Task 2.2. Defining the level of detail for each analytical feature relates to the model elements forming
analytical features. For each analytical feature, the level of detail needs to be defined for each of the model
elements forming that feature. There are two possible levels of detail. One is the basic level of detail,
meaning that the model element in an analytical feature should be considered without its instances. The
other option is the comprehensive level of detail where a model element in an analytical feature should be
considered together with its instances.

Use Case. In a vector representation, this means that a model element with the base level of detail takes
a single vector element, e.g., if an operation is used or not. Accordingly, in case of a model element with
the comprehensive level of detail, there is a vector element for each instance of the model element, e.g., one
vector element for each possible dimension that can be used in an operation. This way, a vector length is
defined by vector elements needed for the model elements in each analytical feature.

As an example, we next define the level of detail in case of the ROLL-UP operation as an analytical
feature. Here, there should be a vector element indicating if there is any ROLL-UP in the query (i.e., the
basic level of detail) and for each dimension used in one or more ROLL-UPs there should be a sequence of
vector elements (due to the comprehensive level of detail) including: an element identifying the dimension,
an element for each dimension hierarchy, an element for each possible from-level, and an element for
each possible to-level. Note that the aggregate function used in ROLL-UP is defined by the data structure
definition and thus the same for all queries. For example, Table 1 illustrates a part of the vector instance for
the running example schema related to the ROLL-UP operation from Figure 4. The non-zero values shown
from the first vector element at the left specify that it is a ROLL-UP operation, over the dimension D1 and
hierarchy H1, from the RefPeriod level to the Year level.

Task 3. Populating the analytical structure focuses on taking a query instance in SM4MQ and popu-
lating the chosen analysis-ready data structures. This task depends on the analytical feature definition from
the previous task and can be automated with SPARQL query templates. It consists of the two subtasks that
we explain in the sequel.

Use Case. This task refers to the population of all vector elements.
Task 3.1. Retrieving model instances is the task where template SPARQL queries are defined to au-

tomatically retrieve the model element instances related to the analytical features. There are two types of
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Table 1: A Roll-up Piece of Vector Instance
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templates. The first type retrieves all instances of the model elements that are nodes and belong to one or
more analytical features. The related SPARQL query is shown in Query 1. Note that variables between two
’?’ are parameters that should be replaced with the related IRIs, e.g., node IRIs in the previous case. This
way, all instances of model elements related to either atomic or composite analytical features are retrieved.

Query 1 Retrieve Model Element Instances
1 SELECT DISTINCT ?i
2 WHERE {
3 i? rdf:type ?nodeIRI? . }

Query 2 Retrieve Roll-Ups
1 SELECT DISTINCT ?r ?d ?h ?fromL ?toL
2 WHERE {
3 ?q? rdf:type sm4mq:Query ;
4 sm4mq:hasRollUp ?r .
5 ?r rdf:type sm4mq:RollUp ;
6 sm4mq:ruDimension ?d ;
7 sm4mq:ruHierarchy ?h ;
8 sm4mq:ruFrom ?fromL ;
9 sm4mq:ruTo ?toL . }

The other template type retrieves the instances of graph patterns that include both nodes and edges
related to composite analytical features. This way, all model instances that are used in composite analyt-
ical features are retrieved. For instance, Query 2 retrieves the model elements related to ROLL-UP (as a
composite analytical feature) of a particular query, where the ?q? parameter is the query IRI.

Use Case. Benefiting from the SM4MQ model, this task can be automated with Algorithm 1. The
algorithm takes a metadata graph containing the SM4MQ queries and QB4OLAP schema for a data set and
returns the matrix populated with vectors of all the queries. For simplicity of explanation we consider that
the graph contains metadata for a single data set. In lines 2 and 3, the algorithm first retrieves queries and
schema triples and this can be automatically performed with SPARQL queries based on the SM4MQ and
QB4OLAP semantics. Then, line 4 initializes the matrix, i.e., defines the number of columns, based on the
schema (see above for the vector instance structure). The rest of the algorithm belongs to the following task
and is explained in the sequel.

Task 3.2. Computing values for each analytical feature is the final task that takes the model instances
previously retrieved and processes them according to the defined analytical features to populated the chosen
analytical structure. This processing can be simple and generate values 1 or 0 to show if a model element
instance has been used or not in an analytical feature, or be a customized function.

Use Case. To populate vector elements, we apply a simple computation and consider that the values of
vector elements are 1 or 0 (meaning either the presence or absence of that element). Using this logic, lines
5 to 13 of Algorithm 1 populate the matrix as follows. For each query, a vector is created again based on
the schema (see line 6), populated according to the OLAP operations used in the query (see lines 7 to 12),
and added to the matrix (see line 13). The nested functions in lines 7 to 12 run SPARQL queries and return
specific OLAP operations for an MD query. An example of a SPARQL query for q .getRollUps() used
in line 7 is illustrated in Query 2. Finally, line 14 returns the resulting matrix. Thus, benefiting from the
SM4MQ query modeling and semantics, the population of the matrix can be completely automated using
Algorithm 1. The populated matrix can be used for computing similarities (e.g., cosine similarity) between
vectors and other exploitations. In the next section, we present a prototype for our use case and discuss on
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practical benefits of our approach.

Algorithm 1: Populate the matrix of queries
Input: graph; // metadata graph with queries and schema
Output: matrix; // matrix representing queries

1 begin
2 queries = graph.getQueries();
3 schema = graph.getSchema();
4 matrix.init(schema);
5 foreach q ∈ queries do
6 vector.init(schema);
7 vector.addRollUps(q.getRollUps());
8 vector.addDrillDowns(q.getDrillDowns());
9 vector.addDimDices(q.getDimDices());

10 vector.addMeasDices(q.getMeasDices());
11 vector.addDimSlices(q.getDimSlices());
12 vector.addMeasSlices(q.getMeasSlices());
13 matrix.addV ector(vector);

14 return matrix;

5 Use Case Evaluation

To evaluate our approach for the specified use case, a prototype was developed and a set of 15 MD queries
was used to evaluate our approach. The prototype includes the MD querying module (MDM) for the query
generation and the to-Vector Transformation and Comparison module (VTC). MDM is a Java EE applica-
tion and for its frontend we use the JSP, CSS, HTML technologies, the JQuery library, and the Bootstrap
framework. For its backend we use Apache Tomcat v.7, Java Servlets and Apache Jena 3.1.0 for working
with RDF graphs. VTC is developed in Java using JDK 8, Apache Jena 2.13.0, and Windows 8.1 as OS.
Both modules use Virtuoso 7.

MDM provides a GUI that enables a user to generate MD queries. It automatically generates SM4MQ
query metadata as well as OLAP queries in Cube Query Language (CQL) [10] used by QB4OLAP explorer2

for querying of QB4OLAP data cubes [10]. The SM4MQ queries are stored in the SPARQL endpoint. Then,
VTC retrieves the (SM4MQ) query and (QB4OLAP) schema metadata, transforms queries into vectors
using Algorithm 1, and compares queries using the cosine similarity which is often used in this context as
discussed in [3]. Assuming the existence of a single data set and its metadata on the endpoint, VTC takes the
endpoint address as a parameter and based on the SM4MQ and QB4OLAP semantics automatically retrieves
the needed metadata.

One evaluation aspect of our approach for the selected use case is the size of the vector space, i.e.,
number of vector elements. As discussed in [2], for content-based recommender systems the pre-processing
phase includes the definition of vector features. In the case of the running example data set, the vector
defined by VTC is of size 180 and follows the structure (i.e., elements ordering) as defined in Section 4.
Thus, without SM4MQ and VTC, this task needs to be performed manually entailing the tedious analysis
of CQL algebra and exploration of data set schema. Once having the vector structure, the other evaluation
aspect considers the population of the vector structures. Benefiting from SM4MQ, VTC automatically
generates SPARQL queries to populate the vector for each query. Without SM4MQ and VTC, this task
entails creation of a parser for CQL queries that populates the manually defined vector structures.

Next, we show the degree of automation achieved in this process with the number of automatically
triggered SPARQL queries by VTC. First, for the running example data set, VTC automatically triggered

2https://www.fing.edu.uy/inco/grupos/csi/apps/qb4olap/queries
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32 SPARQL queries to retrieve its schema. The number of SPARQL queries in this context depends on the
schema structure, e.g., how many dimensions or hierarchies exist. Furthermore, in the context of queries, we
used a set of 15 SM4MQ queries and VTC automatically triggered 91 SPARQL queries related to SM4MQ
queries including one SPARQL query to retrieve all IRIs of SM4MQ queries and 6 SPARQL queries for each
SM4MQ query (one for each OLAP operation in SM4MQ). The execution of all the SPARQL queries took 2
seconds in average. Otherwise, if a user runs each SPARQL query manually using prepared templates and
takes only 2 seconds/query in average, it would take 246 sec. Thus, in this case VTC enables speed up of at
least 100 times just for this task.

Finally, VTC calculated cosine similarity between the (vector representation of) queries. In this context,
we used 15 queries related the running example data set. The queries cover the following scenarios of
comparing:

1. The same queries.
2. The queries that only differ in the filtering conditions.
3. The queries that only differ in the used granularities.
4. The queries that only differ in the used dimensions.
5. The queries that only differ in the OLAP operations used.
6. The queries that differ in both OLAP operations and granularities used.
7. The queries that differ in both OLAP operations and dimensions used.
8. Incrementally built queries.

Each scenario includes one or more queries and provides insights about how different changes in semantics
influence the similarities of the queries computed in this way. The query taken as a seed (i.e., Query 1) for
all other queries considers the total asylum applications submitted by the continent from which the applicant
comes for year 2012, by sex, time, age, citizenship, and destination country. Thus, starting from the initial
cube, this query applies ROLL-UP from month to year over the time dimension, ROLL-UP from country
of citizenship to the continent over the citizenship dimension, DICE to year 2012 over the time dimension,
DRILL-DOWN back to citizenship country, and finally SLICE over the application type dimension. The
results of the comparison of this query with other queries covering the scenarios are presented in Table 23.
For each query, we provide a brief description of how it differs from Query 1.

The comparison of queries is metadata-based, i.e., it considers the MD semantics of SM4MQ query
and QB4OLAP schema structure elements included in the vector structure. Thus, for example, Query 3
differs only in the predicate applied in DICE, disregarding the concrete filtering value. Next, in Query 4 we
may notice that just a change of ROLL-UP granularity still keeps the queries highly similar, while in case of
Query 5 the change of dimension used in an OLAP operation makes the queries more different. Furthermore,
Queries 6, 7, and 8 show that when introducing even more difference the similarity decreases as expected,
while keeping the trend that the dimension change has higher impact than the change of granularity. Finally,
Queries 9 to 15 follow the scenario of incremental adding of OLAP operations where Queries 9 to 12 use
already existing operations of Query 1 while Queries 13 to 15 add one or more additional operations to
Query 1. It is interesting to notice that SLICE makes less difference than DICE as it affects smaller part of
vector. This can be used for distinguishing between these to operations and, if needed, this can be readjusted
by vector redesign.

Overall, our experiments show that SM4MQ not only enables the sharing of queries on the SW but its
semantics can also be used to automatize the SM4MQ query transformation into an analysis-ready structure.
VTC calculated similarity between the queries and the results indeed reflected similarities from OLAP and
business perspectives. Thus, we confirmed that our approach also significantly eases the exploitation of MD
queries represented with SM4MQ.

3The queries can be found at http://www.essi.upc.edu/˜jvarga/sm4mq-page.html
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Table 2: Query Similarities
Scenario Query Similarity
1 1. The same query 1
1 2. Different query with the same structure 1
2 3. Different filtering predicate 0.95
3 4. Time granularity changed 0.95
4 5. Dice over the geo instead of time dimension 0.81
5 6. Drill-Down changed to Dice 0.78
6 7. i) Time granularity changed and ii) Drill-Down changed to Dice 0.73
7 8. i) Dice over the geo and ii) Drill-Down changed to Dice 0.58
8 9. Only first operation of Query 1 0.49
8 10. First two operations of Query 1 0.65
8 11. First three operations of Query 1 0.82
8 12. First four queries of Query 1 0.95
8 13. Query 1 + additional Slice 0.98
8 14. Query 1 + additional Dice 0.92
8 15. Query 1 + additional Slice and Dice 0.90

6 Related Work

Typically, traditional approaches consider MD queries in terms of OLAP algebras, i.e., formalization of
possible actions over a data cube. A thorough overview of such approaches is given in [18] where authors
argue that an OLAP algebra needs to be closed (i.e., each operation produces a data cube), minimal (i.e.,
no operation can be expressed in terms of other operations), and complete (i.e., covering all the relevant
operation). Thus, the algebras mainly focus on the correctness and satisfiability of queries in terms of
underlying MD schemata. Furthermore, considering [18] as a backbone state of the art, the authors of [16]
propose an approach for representing MD queries at the conceptual abstraction level by defining them as
OCL constraints over UML schema representing data cube. Such a solution is a step towards interoperability
of different platform specific models. However, the focus still remains on the validity of queries. On the
other hand, our approach focuses on representing queries as metadata to support their sharing and reuse by
means of SW technologies. As discussed in Section 2, SM4MQ is based on the OLAP algebra proposed in
[8] and [9].

Furthermore, different OLAP query recommendation approaches typically store queries in logs and
focus on their processing. According to a comprehensive overview found in [3], query in this context
are represented with their syntactic (SQL) representation, resulting data, as vectors of features, sets of
query fragments, or as graphs. The vector representation is used in several approaches, as for example in
[6]. Moreover, some other approaches like [5] again use algebraic query representation. However, query
representations are typically system specific that again hinders their sharing and reuse.

The modeling and representing of queries on the SW is just in its infancy. Just recently, in [19] the
authors proposed an RDF-based model for representing SPARQL queries. They have used their model
to represent a portion of queries over DBpedia and other public SPARQL endpoints with the following
suggested use cases: generation of benchmarks, query feature analysis, query cashing, usability analysis,
and meta-querying. Another interesting use case that can be added to the previous ones is the user assistance
(e.g., query recommendations). Moreover, [15] and [11] propose vocabularies to represent SPARQL and
SQL queries in RDF, respectively. Thus, there is a movement towards opening not only data but also
metadata such as queries so that they could be explored with SPARQL. However, although needed for the
context of Exploratory OLAP [1], an MD query model is still missing. By now, most of the efforts have
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been devoted to the schema modeling with vocabularies such as QB4OLAP (see [24]). Thus, the present
paper proposes an RDF-based model to support sharing and reuse of MD queries on the SW that as well
facilitates their exploitation.

7 Conclusion and Future Work

We have proposed SM4MQ, a Semantic Model for Multidimensional Queries. Using RDF and MD seman-
tics, SM4MQ is a step towards Exploratory OLAP and sharing and reuse of MD queries on the SW. We
also proposed a method to automate the transformation of the SM4MQ queries into other analysis-ready
representations via SPARQL. The method is exemplified with the use case of transforming SM4MQ into a
vector representation. To evaluate our approach, we have developed a prototype implementing the method
for the vector use case. The evaluation showed that SM4MQ supports automation of transformation tasks
that would otherwise require significant manual efforts (e.g., at least 100 times more just for SPARQL
queries). In our future work, we plan to work on the exploitation side of the queries, e.g., develop richer
transformations to support advanced user support techniques such as [4]. We also plan to apply our method
to other use cases and support analytical feature definition via high-level GUIs.
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