
Parameter Estimation for Interactive
Visualisation of Scientific Data

Albrecht Schmidt, Michael H. Böhlen

February 10, 2004

TR-4

A DB Technical Report

Title Parameter Estimation for Interactive Visualisation of Scientific Data

Copyright c© 2004 Albrecht Schmidt, Michael H. Böhlen. All rights re-
served.

Author(s) Albrecht Schmidt, Michael H. Böhlen

Publication History February 2004. A DB Technical Report.

For additional information, see the DB TECH REPORTS homepage: 〈www.cs.auc.dk/DBTR〉.

Any software made available via DB TECH REPORTS is provided “as is” and without any express or
implied warranties, including, without limitation, the implied warranty of merchantability and fitness for a
particular purpose.

The DB TECH REPORTS icon is made from two letters in an early version of the Rune alphabet, which
was used by the Vikings, among others. Runes have angular shapes and lack horizontal lines because the
primary storage medium was wood, although they may also be found on jewelry, tools, and weapons. Runes
were perceived as having magic, hidden powers. The first letter in the logo is “Dagaz,” the rune for day
or daylight and the phonetic equivalent of “d.” Its meanings include happiness, activity, and satisfaction.
The second letter is “Berkano,” which is associated with the birch tree. Its divinatory meanings include
health, new beginnings, growth, plenty, and clearance. It is associated with Idun, goddess of Spring, and
with fertility. It is the phonetic equivalent of “b.”

Abstract

This paper presents a method for accelerating algorithms for computing common statistical operations
like parameter estimation or sampling on B-Tree indexed data in the context of visualisation of large
scientific data sets. The method builds heavily on technology that is already part of relation database
management systems and requires only small extensions. The technical goal is the following: Given
a massive set of scientific data like sensor data stored in a Relational Database Management System,
enable interactive exploration and visualisation of the data by exploiting the technology that already is
in place in the database back-end. The main underlying idea is the following: the shape of balanced
data structures like B-Trees encodes and reflects data semantics according to the balance criterion. For
example, clusters in the index attribute are somewhat likely to be present not only on the data or leaf
level of the tree but should propagate up into the interior levels. The paper investigates opportunities
and limitations of this approach for visualisation. The advantages of the method are manifold. Not only
does it enable advanced algorithms through a performance boost for basic operations, but it also builds
on functionality that is already present to a large degree in current RDBMSs; furthermore, it is fully
dynamic by avoiding redundancy: when the underlying source data change, the index and therefore the
estimations adapt accordingly. Furthermore, we show that the sample quality is data-independent and
never worse than a uniform sample if some basic prerequisites are ensured.

1 Introduction

There is considerable interest in using database management technology for scientific applications [36].
Deploying Relational Database Management Systems (RDBMSs) in these settings equips database users
with declarative query languages and database administrators with a plethora of tools useful for managing
large amounts of data. In line with researchers who seek to draw benefit from technology that was originally
designed to support managing administrative and business data, the authors of this paper show how to
exploit the most common database indexing method, namely the B-Tree [5], for accelerating visualisation
algorithms [21] in scientific applications.

In more detail, the application setting of our research is the following: Given a set of scientific data
such as raw sensor data or already pre-processed experimental data that are stored in a Relational Database
Management System (RDBMS), estimate properties of the data and render views of the data that are later
useful for visualising certain aspects of the data. Since this kind of application is often exploratory, i.e., users
are mostly interested in identifying regions of interest in the data, exact answers, which tend to be resource-
consuming, are not required. Rather, an approximate but early answer is usually not only sufficient but
desirable and allows more and immediate user interaction. Approximate answers are even more useful
when there exist error estimates or error guarantees for a query [16].

Databases in scientific processing tend to comprise massive data volumes that are often measured in peta
bytes [37]. At the same time, it is desirable to constrain users in the choice of queries as little as possible
and allow for querying according to a variety of criteria. Therefore, tools known from other approaches
to handling massive data like Data Warehousing [19] tend not to work in scientific settings since their
optimisation techniques like indexed views or pre-aggregation are very hard to adapt to new types of queries
as they are designed with a very specific set of queries in mind. This holds even more if exact results are
required. Additionally, trial queries and previews play a major role in interactive settings [16]; once a
region of interest has been identified users can refine their queries now against a much smaller part of the
database and thus use computationally more demanding algorithms. The algorithms presented in this paper
are designed to enable such an interactive querying paradigm. Our starting point is a sample of the original
source data set extracted from a B-Tree index.

For the better part of this article, we concentrate on the two topics of parameter estimation [33] and
sampling techniques which are an integral part of many visualisation algorithms. Broadly speaking, obtain-
ing good estimates of, e.g., densities, and samples enables advanced visualisation applications in a number

1

of ways. By being provided with the means for identifying regions of interest, users are equipped with the
tools necessary to determine starting points for browsing the data set. The output of an initial approximate
analysis can be the starting point for multi-resolution analyses, such as estimation of fractal dimensionali-
ties for further data analysis, or noise reduction, contour shells, contour surfaces [30], which would be too
resource-intensive to be executed on large datasets.

More formally, our application scenario is the following: Given a set D of tuples D i with a key Ki

which may be part of the data or a surrogate, we store the pairs 〈Ki,Di〉 in a B-Tree using the Ki as keys
and the Di as data. The main underlying assumption for all ideas presented in this paper is that the data
found on upper levels of a B-Tree, i.e., a subset of the Ki, can be used as a sample that is representative for
the complete data set. We will later show experimentally, and for special cases also analytically, that the
sample is indeed well-behaved in our application domain and that, especially on large data sets, this sample
can be obtained much faster than conventional methods which involve linear scans. With respect to the
well-behavedness of the sample we can put forward a probabilistic argument: the re-balancing algorithm
of the B-Tree is likely to provide good sampling (without replacement) with respect to upper levels of the
tree. Indeed, an investigation of bulk loading algorithms for B-Trees reveals that a very regular sample
is produced, i.e., every k-th Ki in the ordered 〈Ki,Di〉 is part of the sample (for some fixed k). For trees
that are the result of random insertions, our experiments indicate that independent of insertion order and
independent of the data properties the sample behaves like a uniform sample.

Depending on the actual application domain, different interpretations of the sample obtained are sensi-
ble. One could regard the Ki located on the upper levels as an approximation, compressed version, model
or even filter of the Di. Other viewpoints and interpretations are certainly possible and sensible in different
contexts. Furthermore, the sample can not only be used for data analysis but also be visualised straight away.
Scatter plots and approximate density plots [30] are natural candidates for interactive data exploration and
have proved useful as starting points for identification of regions of interest and of clusters. However, the
contribution of this paper is the interpretation of the sample as the result of a uniform random process and
the subsequent use as a equi-depth histogram.

Scientific data very often come as multi-dimensional data. However, B-Trees in their basic form index
only one-dimensional data, i.e., they only index a single attribute. Yet by using surrogate keys K i = f (Di)
researcher have extended the B-Trees to work on multidimensional data as well [26, 29]; the resulting
data structures are called z-kd-B-Trees or UB-Trees. [15] present an overview and classification of many
multi-dimensional data structures.

The structure of this paper is as follows: After reviewing some more related work we sketch the prelim-
inaries used in this paper. We then present the basic tree-traversal algorithm for extracting a sample. The
remaining sections of the paper outline the use of the data structure in our visualisation system 3DVDM
(3-Dimensional Visual Data Mining) [7] and analyse the algorithm performance, both in terms on resource
consumption and accuracy. The final section summarises the contributions of the paper and outlines direc-
tions of future research.

2 Related Work

The classic reference for the B-Tree is [5]; [29] extend this work for multi-dimensional data by linearising
the data space using a space-filling curve, the z-transform. For a discussion of implementation issues re-
lated to B-Trees, see [17]. Related Work can be divided in to several categories: Maintaining (approximate)
statistics of data is a recurring problem in data warehousing. For example, [27] present a method of main-
taining statistics extending the R-Tree with special, predefined aggregation information. [25] investigate
algorithms for random sampling from B+ Trees.

In the areas of parameter estimation, histograms, and statistics in databases there are many works avail-

2

able. [33] provides a very readable introduction especially to density estimation and histograms. In [1], the
authors present a proposal for data-dependent and space-efficient histograms. [24] and [23] are examples
of approaches to gather statistics mainly for query optimisation in relational databases. These latter ap-
proaches are static, i.e., the data set has to be re-scanned after updates. In contrast, since our method re-uses
the B-Tree, which changes shape as the data are updated, there is no need to ever scan the complete data
set. Consequently, it does not require additional memory resources. Furthermore, the quality guarantees
are data-independent. While [24] can also be used to sample data, [1] only consider histograms. These
approaches are also different in spirit since they are general mechanisms that require additional resources.
Our approach mostly re-uses existing data structures. An additional feature is that it does not introduce
aggregate values reflecting the data distribution in the interior nodes of the tree as introduced by [3] where
sampling from arbitrary pseudo-ranked B+-Trees is investigated.

There is also a plethora of work in visualising and browsing data sets that is relevant in our context. We
refer to [14] and [32] for overviews and also detailed coverage of a number of topics. We refer to more
related work when appropriate throughout the paper.

3 Preliminaries

This section recalls some of the basic definitions we need throughout this paper. We write X and Y for
arbitrary random variables, and K for a random variable containing key values and D for a random variable
containing data values, describing key/data pairs in dictionary data structures.

Definition 1 Let K be a discrete random variable and f (Ki) the corresponding probability function. Then
K : F(x) = ∑Ki≤x f (Ki) is called the density function.

The Ki that appear in the above definition are actually the same Ki that are inserted as keys into the
B-Tree. The following definition is adapted from [29]:

Definition 2 Let a1, . . . ,an be a tuple of bitstrings (i.e., strings consisting of the symbols 0 and 1) of length
m. Then the bitstring

zt(a1, . . . ,an) = a1,1,a2,1, . . . ,an,1, . . . ,a1,m,a2,m, . . . ,an,m

is called the z-transform of a1, . . . ,an, where ai, j indicates the j-th symbol of the bitstring ai. We call
a1,i,a2,i, . . . ,an,i a run of the bitstring.

Informally, the z-transform of a sequence of equi-length integers is computed by interleaving their bit
representations. Note that we restrict the tuples to be unsigned integers; see [29] for a discussion of why this
is sensible and how to handle other datatypes. Figure 1 displays an example of a two-dimensional UB-Tree

For this paper, we assume that the reader is familiar the B-Trees and their most important variants [9, 10].
However, for our purposes we slightly alter the basic definition of B-Trees [22] to capture more implemen-
tation features.

Definition 3 A B-Tree of order m is a tree that satisfies the following properties: (1) Every node has at most
m children. (2) Every node, except for the root and the leaves, has at least m/2 children. (3) The root has at
least 2 children (unless it is a leaf). (4) All leaves appear on the same level, and carry no information. (5) A
non-leaf node with i+1 children contains i keys. Furthermore, we assume that all keys and associated data
are of the same byte length.

3

70

0

7

Figure 1: Example two-dimensional UB-Tree

For our purposes a UB-Tree is a B-Tree into which tuples 〈 f (zt(Ki)),Di〉 are inserted. Furthermore, we
assume that the keys in a B-Tree index a file containing records 〈 f (Ki),Di〉. Following [33] we furthermore
define the following:

Definition 4 Let x0 be an origin, b a real number, the bin width, and n an integer, the number of bins. Then
the intervals [x0 +mb,x0 +(m+1)b)0≤m≤n−1 are called the bins of an equi-width histogram. Furthermore,

h(x) =
1

nb
(|Xi in the same bin as x|)

is called an (equi-width) histogram. If we allow b to be a function of m, then we call the intervals [x0 +
mb(m),x0 +(m+1)b(m+1))0≤m≤n−1 such that each interval contains (approximately) the same number of
Xi then we call

h(x) =
1
n
·

|Xi in same bin as x|
|width of bin containing x|

an equi-depth histogram.

Equi-depth histograms are used for selectivity estimation in query optimisation in [28]. When presenting
density information graphically, one often uses kernel-estimated density functions:

Definition 5 The kernel estimator with kernel K is defined by

f (x) =
1

nh

n

∑
i=1

K(
x−Xi

h
)

where h is the window width (alias smoothing parameter or bandwidth) and K a kernel function, i.e., a
function such that

∫ +∞

−∞
K(x)dx = 1.

Most of the plots in this paper use kernel estimation techniques for smoothing and removing bias from
example distributions. Furthermore, kernel estimation is useful for visualising and post-processing of sam-
ples obtained by the methods we describe in this paper.

4

50 70 − − 80 90 − −74 78 79 − 200 250 300 −3 10 23 −1 2 − −

1 74 − −

−1 3 50 74 80 200 −

Figure 2: Example B-Tree

| | |L 0

|| | | | | |L 1

Figure 3: Level-wise space partitioning implied by example B-Tree in Figure 2

4 Algorithms (U)B-Tree

This section presents algorithms to extract a sample from a B-Tree and describes the bulkloading of one-
and high-dimensional data in our framework. We also look at the accuracy of the sample for bulk loading
pre-sorted data. Note that we do not consider issues like data cleansing and other pre-processing which in
general are necessary for scientific data.

4.1 The One-Dimensional Case

In the case of one-dimensional data, i.e., data where a single key attribute is used as a primary key, the basic
data flow looks as follows:

source data → key extraction → insertion → traversal → interpretation

We first introduce the core ideas presented in this paper informally by considering the following example
and Figures 2 and 3.

Example 1 Let K be a random variable and

Ki : {1,2,3,10,23,50,70,74,78,79,80,90,200,250,300}

be observations. Inserted as 〈Ki, /0〉 into a B-Tree, they result in a tree of a shape similar to the one depicted
in Figure 2; the height of the tree is three. Thus, there are two interior levels: level 0 is the root page, level
1 the values stored just beneath the root. Figure 3 illustrates the shape of the tree by projecting the space
partitioning implied by the keys found on levels 0 and 1 on the domain axis. L0 denotes level 0, the root, L1
the first level, level 1, of the tree. The crosses in the lowest line are a scatter plot (see Section 5.2) of the
source data.

5

0 100 200 300

0.
00

0
0.

00
2

0.
00

4
0.

00
6

Density

N = 15 Bandwidth = 26.77

D
en

si
ty

L0
L1
LD

Figure 4: Kernel-estimated Probability Density Function

traverse p l c : page → int → int →{int}
p : current page
l : level in B-Tree to be read
c : current level in B-Tree {
case

c = l : return {keys located on p}
c > l : return /0
c < l :

let m = number of keys(p) in
return

⋃m
i=0(traverse(key[i] → page, l,c+1)

}

Figure 5: B-Tree traversal algorithm

We now can compute the Probability Density Function (PDF) implied by each level the tree (LD denotes
the data level). They are show in Figure 4. In this figure, the motivation for our work becomes clear: the
first level already exhibits parameters similar to those of the source data – even for a toy example with far
too few data points like this one.

In the following subsection we observe that for a suitably bulkloaded data set there exists an integer k
such that every k-th key extracted from the original data set D is present on a certain level of the tree. Later
in Section 6 we generalise this statement to trees obtained from random insertions. The key observation
is that the sample obtained by the traversal algorithm can be considered the result of unbiased uniform
sampling. It is thus suitable for a broad range of practical applications.

Pseudo-code for the traversal algorithm is depicted in Figure 5. The notation key[i] → page denotes the
disk page containing the successors of key[i] in the appropriate interval. Note that the output of the traversal
is sorted and that the algorithm is free of side-effects. Also, many implementation details like locking are
not included in the algorithm for the sake of presentation clarity.

6

4.2 Optimality for sequential bulk loads

The following corollary shows that the algorithm depicted in Figure 5 is optimal for certain important
special cases. In this subsection we assume that the behaviour of the B-Tree strictly adheres to all points
of Definition 3. We observe that when we bottom-up bulkload a B-Tree according to [20, 38] with data
sorted according to the keys, the sample of K as returned by the algorithm displayed in Figure 5 exhibits the
following property:

Corollary 1 For a bottom-up constructed B-Tree of height greater than one there exists an integer k i such
that every ki-th element of a sorted data set D is found on level i where i is a B-Tree level.

When we do not refer to a particular level, we also write k instead of ki. Intuitively, the corollary is true
because we can predict exactly which keys will be propagated up when a page overflows. Recall that we
assume that all keys are of the same size. This even holds for neighbour merging. When bulkloading sorted
data the data stream is effectively divided up into bins, each containing the same number of data. Thus,
when a leaf node overflows, exactly one node per bin is moved a level up. Assuming that the split algorithm
chooses the key to the propagated up by its index number, the process is data-independent and deterministic.

We now turn our attention to k of the above corollary. The minimum number of keys on level i is 2 · t i−1

if i > 1 and 1 if i = 1, the maximum number t i [10], t = m/2 being the minimum fan-out (which exists since
we assume constant key length and no compression). Using these bounds we can estimate the value of k on
level i:

⌊

|D|

t i

⌋

≤ k ≤

⌈

|D|

2t i−1

⌉

Furthermore, in Section 6 we present an implementation-dependent method for calculating k for sorted
bulkloads. We are not certain if this property still holds if advanced bulkloading algorithms with delayed
insertions like buffer trees are used [4]. The other extreme, when data are inserted and deleted randomly,
can be considered the worst case. In this case, we have to take into account a certain degree of fuzziness.
Later, in Section 6 we will try to illustrate this and present an experimental quantification which shows that
even then the sample can still be considered uniform. Note that we are solely reasoning about the positions
of the data, i.e., the fact that a Ki is a k-th element in the data set, independent of the data themselves. This
implies that our estimates hold for any data distribution.

5 Applications in Visualisation

In the previous section, we have seen how to draw samples with the help of B-Trees. In this section, we
focus our attention on our primary application context, the visualisation of large data sets such as those
typically occurring in scientific computing. For this section, we also assume that all data are normalised to
the unit interval.

5.1 The Multi-Dimensional Case

Data in visualisation applications are usually multi-dimensional rather than one-dimensional. Therefore it
is necessary to generalise the techniques discussed so far to the multi-dimensional case. Fortunately, it does
not differ greatly from the one-dimensional case with respect to bulkloading and the traversal algorithm and
requires only small extensions. However, the algorithms and the program flow have to be generalised when
data are to be bulkloaded and the result of a traversal is to be interpreted.

7

volume b n c : bitstring → int → int → float
b : bitstring encoding a z-value
n : number of dimensions of b
c : current step {

if length(b) = 0
then return 0
else {

let v = first run of b in /* see Definition 2*/
let v′ = rest of b in /* all of b but the first run */
let s = 2−c·n in
return vol(v) · s+(volume v′ n (c+1))

}
}

Figure 6: Computing the volume of a z-interval

Technically, the program flow in the case of high-dimensional data features two extra steps for encoding
and decoding that data:

source data → key extraction → z-encoding → traversal → z-decoding → interpretation

The encoding of the data is straight-forward by implementing the formula given in Section 3. Its time
complexity is merely linear in the size of the input. Decoding works in a similar manner. Since the for-
mula given in Definition 2 is lossless, it is possible to decode the data uniquely. The implementation is
straightforward as well [29].

Construction of an equi-width histogram. It is interesting to see how an equi-width histogram can be
constructed from a set of z-encoded data. Since most statistical packages operate on Euclidean data rather
than z-transformed data, it is frequently necessary in daily work to switch from one space to the other. To
construct the histogram, we interpret the sample as a set of intervals; since it is already sorted, this requires
no additional effort and is easily done by interpreting neighbouring pairs of points as start and end points
of intervals. The basic idea is now to compute the volume of the individual intervals and map them to
densities in the Euclidean target space. Suppose we are given a z-encoded point in n-dimensional space
a = a1,1,a2,1, . . . ,an,1, . . . ,a1,m,a2,m, . . . ,an,m. To calculate the histogram, we use the density information
encoded in the intervals as a starting point. To do this we need to know the volume of the interval [0̄,a),
i.e., the space described by the z-curve starting at zero and leading to a. Then we can identify a set of
hypercubes each of volume 2−kn with every run a1,k,a2,k , . . . ,an,k .

The algorithm for calculating the histogram shares some core ideas with the range query algorithm
described in [29]. In the following, let vol(b) denote the number of hypercubes covered by b. For two
dimensions, a lookup table could look as follows: {00 → 0,10 → 1,01 → 2,11 → 3}. Then the algorithm
in Figure 6 calculates the space occupied by the interval [0,b) in the z-space.

To calculate the space occupied by an interval [z1,z2) one applies the algorithm in Figure 6 twice
and computes volume(z2)− volume(z1). Now, being able to calculate the volume of a z-region, i.e., the
space bounded by two z-encoded points, one can calculate the densities implied by the keys in the B-
Tree. In general, it is impossible to know the exact number of keys in this region. However, we can
assume uniformity and thus arrive at reasonably accurate estimates. Note that if the data were inserted
in sort order, we even can compute the exact number of elements in the interval. In practise, we can

8

resort to the solution that we regard the keys we find on a level of the tree as a sample of the complete
data space and thus do all our calculations with respect to the sample space. To derive an n-dimensional
equi-width histogram, we first note that the z-encoding divides the n-dimensional space into disjunct sets
of hypercubes. Suppose now we are given an n-dimensional hypercube at the same resolution as the z-
transform, namely 2number of steps intervals along each axis. We then sort the sequence z1, . . . ,zm as if it was
all integers and traverse the resulting sequence interpreting adjacent z i,zi+1 as intervals [zi,zi+1). Then, we
calculate volume(zi)− volume(zi+1) and assign this fraction to every bin. From these intensities we can
then derive densities and histogram counts, whichever is desirable.

If, as in our case, the resolution of the histogram matches the resolution of the z-transform, the transfor-
mation is lossless. However, if the resolutions don’t match, it is necessary to make compromises to alleviate
the effects of discretisation. Since this topic has been investigated to great detail by the statistics community
we refer to the literature for a number of solutions like kernel estimation [33].

Note that the parameter k in Corollary 1 for high dimensional data may become rather large on levels
close to the root since the key length is usually linear in the number of dimensions and only few keys
may fit on a page. Unfortunately, for performance reasons one would prefer traversing as few levels as
possible since descending from one level to another (cf. the recursive call to traverse in Figure 5) may
involve random I/O and thus incur high costs. This implies that approximations and samples may not be
representative enough to enable informed reasoning and, at the same time, drawing more samples may
impede on interactivity. However, we remark that this a problematic area in general and that the problems
caused by large data volumes with little information in high-dimensional data management are not related
to our method in particular. We refer to [6] for a quantitative and qualitative analysis of the problem.

Figure 7: Approximate densities of Figure 1

In visualisation of scientific data sets, density estimation is an important but by no means the only
interesting topic. Frequently, estimation of further parameters like mean, standard deviation is required
either on a global or, more realistically, on a local basis. These results may then be used to remove outliers,
build synopses or estimate kernels. See [30] for a well-written textbook on density estimation and advanced
visualisation of scientific data sets. We should also mention that many of the problems we address in
this paper also play a role in Decision Support Systems (DSS) [18] and On-Line Analytical Processing
(OLAP) [19]. There are also database management systems that were designed with efficient data mining
support in mind, e.g., [8], which try to tackle data processing in scientific applications from novel angles.

9

0 10 20 30 40 50

5
10

15
20

(a) PDF of source data

20 30 40 50

5
10

15
20

(b) PDF in B-Tree root

10 20 30 40 50

5
10

15
20

(c) PDF in B-Tree level 1

10 20 30 40 50

5
10

15
20

(d) PDF in B-Tree level 2

0 10 20 30 40 50

5
10

15
20

(e) PDF in B-Tree level 3

Figure 8: Two-dimensional computed PDFs

10

(a) Zooming to two clusters (b) Zooming to a large cluster

Figure 9: Screenshots of the 3DVDM System

5.2 Computation of Density and Scatter Plots

In this subsection, we examine how to use the samples to obtain two basic types of visual representation:
density plots and scatter plots.

5.2.1 Density Plots

We use density plots which approximate the number of points in a histogram bin with colours. For example,
grey-scale density plots might encode the highest densities with the colour black and low-density areas with
white. Figure 8(a) displays an error-free density plot computed from a large data set without using B-Tree
sampling. In contrast, Figures 8(b)–(e) make use of our method. They were computed using samples drawn
from the root level and levels 1 to 3. Note how the plots converge to the above error-free plot indicating the
different approximations and precisions.

In our setting, there two basic ways to obtaining the input data to density plots. On the one hand, one
could take the sample obtained by our method and use it directly as input to a density approximation al-
gorithm. On the other hand, it is also possible to view the sample as a set of intervals and, based on this
knowledge, calculate densities directly. Which of these approaches is preferable, probably depends on the
specific application. In term of software complexity, especially for multi-dimensional data the interval ap-
proach requires some careful engineering but also adds some possibly useful knobs for tuning applications.
Figure 7 shows how the first method can be applied to the example in Figure 1. We assume that four points
fit on one B-Tree page.

5.2.2 Scatter Plots

In the case of scatter plots, we do not have so many choices since we are not interested in regions but in
points only. The only decision to take is whether to use the sample directly or use interpolation. The latter
approach has the disadvantage that we may actually plot points that are not part of the original data set.
Thus, for our applications we use the first interpretation.

11

Figure 9 shows two examples of scatter plots in 3DVDM [7]: Scatter plots are a very common tool
for visualising point data. Technically, in their basic form they use one point in the diagram for one data
point. It is thus natural for us to use the sample interpretation and not the interval interpretation. There are
a number of challenges to be met when one wants to produce good scatter plots, the most prominent being
overplotting, i.e., using so many data points that the diagram exhibits jittering and does not reflect the real
number of points. For an in-depth discussion of these and related issues see [30].

5.3 Parameter Estimation

Relational Database Management Systems offer a number of standard aggregate functions like min, max,
sum, count, and avg. It seems that avg is the most interesting one in our context since it subsumes sum and
count while min and max are not specific to our method.

Computing the Mean. In the following, we thus turn our attention to the computation of the arithmetic
mean. We mainly try to answer the questions: How fast can we expect the computation to converge? What
are the error bounds? Note that in the following, we again assume that values are normalised in the unit
interval. The common definition of the arithmetic mean is (n denotes the cardinality of the data set D):

µ(D) =
1
n

n

∑
i=1

Di

We now view a level i in a B-tree as a set of interval ranges

[K1,K2), . . . , [Ki,Ki+1), . . . , [Kmi−1,Kmi).

We write R j to denote the middle value of the interval range [K j,K j+1); and R+
j = K j denotes the start point,

whereas R−
j denotes the end point K j+1 of the interval R j. Thus, if R j = [R−

j ,R+
j) then R̄ j = (R+

j −R−
j)/2.

Recursive application of this rule can be used to compute the mean on a B-Tree level i denoted by L i. Thus,
we have

µest(D,Li) =
1
mi

mi

∑
j=i0

R j.

The error of the estimated mean now depends on the level i:

ε(µ ,D,Li) = |µ(D)−µest(D,Li)|

= |(
1
mi

mi

∑
j=1

mi

n ∑
Di∈R j

Di)− (
1
mi

mi

∑
j=1

¯R j)|

= |
1
mi

mi

∑
j=1

(
mi

n ∑
Di∈R j

Di − R̄ j)|

Let |R j| denote the length of the interval R j, i.e., |R j| = R+
j −R−

j . Then

≤
1
mi

mi

∑
j=1

1
2
|R j|

≤
1

2mi
≤ 1/mi (m as in Definition 3)

12

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

level

er
ro

r
2
20
50
100
200
300
400

Figure 10: Error for Different Fanouts

Figure 10 visualises the error estimate depending on the maximum number of children m of the tree. As
expected, it converges quickly thus demonstrating the potential of the method. We illustrate the convergence
with examples in Section 6.

5.4 Other Applications

According to [1], ‘a major disadvantage of histograms is the cost of building and maintaining them.’ The
samples extracted by our method can be viewed as histograms that are automatically updated. However,
note that in general settings some of our underlying assumption don’t hold anymore. Users may insist
on having prefix compression, variable-length keys, etc. – features that possibly impact the quality of the
histogram or sample. Without making basic assumptions about not only data distribution but also other data
characteristics like prefix-compressibility, it is hard to estimate the effects. Additionally, delayed deletions
and other optimisations may add further uncertainty. However, we consider a detailed analysis a topic for
future work.

A straight-forward application is removal of outliers. When an interval has a large volume compared to
the other intervals, it does not contain many points. In applications that are mainly interested in clusters,
these regions can be dropped immediately and need not be analysed.

6 Implementation and Experiments

This section describes some of the problems and opportunities we encountered while implementing the
method presented in this paper and while applying it. We also discuss some performance figures that
illustrate the behaviour in the system 3DVDM [7].

13

6.1 Implementation Issues and Techniques

We used Sleepycat’s Berkeley DB [34] to implement the level-wise traversal on an industrial strength B-
Tree. Since Berkeley DB does not provide this functionality natively, we had to add new routines to the
database kernel. However, we were able to design the new routines along the lines of already existing
functionality. In particular, it was not necessary to add any new data structures to Berkeley DB; the inner
workings remained unmodified. Since Berkeley DB is written in C, this language was also our implemen-
tation language.

We turned off prefix compression for two reasons: (1) Since prefix compressed relations only store the
part of a key that is needed to distinguish it from its neighbours in the tree (according to the comparison
function on the appropriate datatype), we would lose information that is absolutely necessary for our esti-
mation. (2) In extreme cases prefix compression can significantly increase the fan-out of the B-Tree so that
our algorithm would produce biased samples. While, in our experience, the effect of (2) is more or less
negligible on numerical data, it might significantly alter the well-behavedness of the estimation algorithm if
different physical encodings or other datatypes are used.

We went about extending Berkeley DB with the appropriate algorithms by rewriting the built-in lookup
function for B-Trees. It was also necessary to implement custom cache management to ensure that the
traversal consumes only minimal resources and does not cause unnecessary stalls for other processes. De-
pending on how many levels of the B-Tree are pinned in the disk-page cache, it might be advantageous to
apply techniques similar to those investigated in [31] to improve performance.

So far, we have assumed that the B-Tree is used as a primary index. This implies that the index is
sparse and cannot contain duplicate keys. Should we want to accommodate duplicates we would have to
switch to a dense index – a technique usually employed to implement secondary indexes. The interior
nodes of a sparse primary index would then not be suitable for our purposes since the sortedness of the
underlying file is usually used for implementing sparsity. So even if a there are a huge number of copies
of a key Ki in a sparse index, there would only be one instance of Ki in the interior nodes of the B-Tree.
However, our techniques also work with dense or secondary indexes without modification. Since both kinds
of indexes are usually implemented in an RDBMS (as well as in Berkeley DB) we do not discuss the case
of duplicate keys. However note that the building of a secondary index especially on non-sorted data may
incur significant storage overhead and performance penalties.

For bulkloading the index [38] we recommend using sorted data or nearly sorted data to avoid random
I/O. In the case of large amounts of data that exceed the size of the main memory it proved useful to pre-sort
the data; in the case of multi-dimensional z-transformed tuples the conversion can be done in chunks that fit
in main memory and, once residing in main memory, the tuples can be sorted according to the key values
and the comparison function.

Note that in our scenario we computed the keys Ki from the data Di rather than declaring a subset of the
Di as keys to make the process more flexible and allow for an easy integration of z-transformed keys. Most
modern database management systems such as DB2 [11], Oracle [13] and MS SQL Server [12] provide
support for function-based B-Trees. Since scientific data usually undergo extensive data cleansing and pre-
processing, the function computation in this step can be naturally included into the pre-processing phase of
the raw sensor data. So, even if a DBMS does not provide support for function-indexes an implementation
is still possible – at the cost that a tuple cannot be updated anymore using plain SQL [2]. However, since
scientific database are often read-only anyway this does not appear too severe a restriction. Nevertheless,
the tree-traversal algorithm itself is still a separate implementation issue.

14

0 5000 10000 15000

0.
00

00
0

0.
00

00
5

0.
00

01
0

0.
00

01
5

0.
00

02
0

density(x = d[, 1])

N = 100000 Bandwidth = 375.1

D
en

si
ty

L0
L1
L2
L3
LD

Figure 11: Kernel-estimated PDF

6.2 Experiments

All of the experiments were carried out on a Linux PC featuring Redhat 7.2, a Pentium III (Coppermine)
CPU running at 1 GHz, 512 MB of main memory, and an IDE Western Digital WD400BB hard drive.

The following table illustrates the cost of our method compared to sequential scan on a table comprising
more that one billion tuples (page size is 8KB, key size 10 bytes):

level B-Tree sample size sequential scan
0 <0.001s 32
1 0.01s 9424 4750s
2 120s 2949852

Because of the small sample size, level 0 is not really useful. However since the first level of the tree is
kept in cache, it is very cheap to obtain a sample of already nearly 9500 points. Accessing level 2 requires
random I/O making the additional step expensive but is still significantly cheaper than a sequential scan that
would be required by other sampling methods like [24].

For another experiment, we build on Example 1. Figure 11 shows the probability density functions
(PDFs) of the samples drawn from the different levels. The distribution is synthetically generated and fea-
tures extreme densities. For example, the slim middle peak on the data level (LD) has a standard deviation of
just 0.0001. The figure demonstrates both the limitations of sampling in general as well as the convergence
of our method. Note that the PDF has been smoothed by the kernel estimator displayed in the figure.

Figure 12 refers back to the density plots of Subsection 5.2.1. It exemplifies convergence in a two-
dimensional setting. Again, estimates are rough in the beginning but converge quickly.

15

level µ(X) σ 2(X) µ(Y) σ 2(Y)

L0 32.58 318.32 11.91 68.68
L1 26.53 374.42 10.03 36.82
L2 27.95 405.03 10.26 35.45
L3 28.16 396.95 10.54 38.04

data 28.00 392.99 10.45 37.83

Figure 12: Convergence for plots in Section 5.2.1

200 250 300 350 400

10
0

20
0

30
0

40
0

50
0

60
0

k

fr
eq

ue
nc

y

Figure 13: Histogram of k for random insertion and page size 8192

16

0
100

200
300

0e+00 1e+06 2e+06 3e+06 4e+06

k

frequency

F
igure

14:
Page

size
8192

unsorted
data

0
100

200
300

0 20000 40000 60000 80000 120000

k

frequency

F
igure

15:
Page

size
8192

sorted
data

17

6.3 Sampling Quality

In Section 4.2, we observed that if a B-Tree of equal length keys is bulkloaded with sorted data then there
exists an k such that every k-th key in the source data is included in the sample computed by our method.
We now investigate why this is so by studying our implementation; thereafter, we also try to see what effect
random insertions instead of sequential bulkloading have. This investigation is important since it underlines
the robustness of our method.

Bulkloading B-Trees with pre-sorted data [38] is done in a bottom-up fashion. From the sequence of
Di ordered subsequences of Ki are extracted and packed into disk pages. This process repeats recursively.
In our context, we identify disk pages with histogram bins. The bottom-up methods chooses one element
from every bin, usually the first one. Since, for every individual level of the B-Tree, the same number of
elements fit on one page, there exists a Ki for every level i such that each level contains every ki-th element
from the sorted input. Thus, it is even possible to come up with an analytical way of calculating the k i: let
ni be the number of keys that fit on a page on level i and let l be the number of levels in the tree. Then k l on
the lowest level equals nl , and in general

ki =
l

∏
j=i

n j.

Note that the ni may indeed be different on the different levels due to implementation strategies or
because it is desirable to adjust the page fill factor to the depth of a node. For a page size of 8 KB and a key
size of 10 bytes, we found nl , the leaf level, typically to be 339 and (ni)i<l to be 313 in the interior levels.
However, these numbers are implementation dependent.

We now look at the sampling quality for random insertions. Another perspective of looking at the n i is to
regard the choice of elements that go into the leaf level of the tree as a uniform sample. The interior level now
represent subsamples of uniform samples, and, thus, are in return uniform samples themselves. Exponential
distributions are used to model the distance between events with uniform distribution in time [35]; they are
often defined by their probability density function

F(x) = a · e−a·x.

Figure 13 displays a typical distribution of values of k on a page size of 8 KB and key size 10 bytes.
From the shape of the curve, we conjecture that we can model the indexes of the keys on a level as

a uniformly distributed random variable. Thus we can interpret the exponential distribution of k shown
in the above figure in the following way: For uniformly distributed random insertions of D, the distances
between the indexes of the Di feature an exponential distribution. Thus, the randomness of the insertions is
propagated up to the keys on interior nodes and levels of the tree. In this sense, we conclude that our method
again delivers good, unbiased uniform samples independent of the actual data distribution or insertion order.
A final remark on why we chose uniformly distributed random insertions: In terms of entropy, they are the
worst-case for B-Trees that are optimised for sequential bulkloads and thus present the greatest challenge.

The two figures that conclude this section are based on the following consideration: the number of keys
in the root page on the tree, greatly impacts how many levels we have to traverse to obtain a sample of a
certain size. If the root is likely to contain only few keys, we probably have to descend one level deeper
than we might expect. Note that the balance criterion of Definition 3 excludes the tree root.

To underline the viability of this approach, Figure 14 displays a histogram of the number of keys found
on the root page during random insertions. It also illustrates the stability of the B-Tree shape and indicates
that it, like textbooks tell us, rarely changes. Note that the spikes are logarithmically spaced. In contrast,
the effects of sequential bulkloads are displayed in Figure 15. Interestingly, sequential bulkloading makes
it more likely to have few keys on the root page. However, in both cases probabilities remain reasonable for
our purposes.

18

7 Conclusion

This paper presented a method that exploits the balance of B-Trees to estimate statistical parameters of a
data set by looking at only the upper levels of a B-Tree index. On large data sets the method can outperform
linear scan by more than an order of magnitude. We have shown that the sample is always uniform, even in
the worst case, and have used the method with great success in visualisation applications.

It is straight-forward to extend relational database systems with the concepts needed to implement our
algorithms. In terms of accuracy, we proved that for bulkloads of sorted data, the sample represented by
a B-Tree level is very regular in the sense that exists an integer k so that every k-th key is part of the
sample. For random insertions, we experimentally demonstrated that the sample is still of predictable and
good quality. We applied the method to a number of real-world and synthetic data sets, investigated the
features, properties and real-world performance, both in terms of resource consumption and accuracy. We
concluded with a review of details and surprises we encountered during the implementation. Additionally,
we remarked that our results may prove useful not only in visualising scientific data but also for more
standard applications like selectivity estimation, histogram construction.

In terms of future research, we plan to explore the duality of intervals vs. samples in more detail and
look at the robustness of the sampling vs. interpolation approach (cf. Section 5.2), especially in the multi-
dimensional case. It would be interesting to see whether density estimation algorithms that work on his-
tograms can be used with samples instead of interpolated intervals and what the impact on precision and
error estimation is. Furthermore, we plan to investigate the effect of the error bounds we showed in this
paper on more algorithms used in the 3DVDM system.

Acknowledgements

The authors would like to express their gratitude towards Gustavo Alonso, Manuel Arrayás Chazeta, Chris-
tian S. Jensen, Arturas Mazeika and Zbigniew R. Struzik for comments and discussions.

References

[1] A. Aboulnaga and S. Chaudhuri. Self-tuning Histograms: Building Histograms Without Looking at
Data. In Proceedings of the ACM SIGMOD International Conference on Management of Data, pages
181–192, 1999.

[2] American National Standards Institute. The database language SQL, 1986.

[3] G. Antoshenkov. Random Sampling from Pseudo-Ranked B+ Trees. In Proceedings of the Interna-
tional Conference on Very Large Data Bases, pages 375–382, 1992.

[4] L. Arge. Efficient External-Memory Data Structures and Applications. PhD thesis, University of
Århus, 1996.

[5] R. Bayer and E. McCreight. Organization and Maintenance of Large Ordered Indices. Acta Informat-
ica, 1:173–189, 1972.

[6] K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft. When Is “Nearest Neighbor” Meaningful? In
International Conference on Database Theory, pages 217–235, 1999.

[7] M. Böhlen et al. 3D Visual Data Mining. http://www.cs.auc.dk/3DVDM/, 2003.

19

http://www.cs.auc.dk/3DVDM/

[8] P. Boncz and M. Kersten. MIL Primitives for Querying a Fragmented World. VLDB Journal, 8(2):101–
119, 1999.

[9] D. Comer. The Ubiquitous B-Tree. ACM Computing Surveys, 11(2):121–137, 1979.

[10] T. Corman, C. Leiserson, and R. Rivest. Introduction to Algorithms. The MIT Press, 1989.

[11] International Business Machines Corporation. DB2 Product Family.
http://www-3.ibm.com/software/data/db2/, 2003.

[12] Microsoft Corporation. Microsoft SQL Server. http://www.microsoft.com/sql/default.asp,
2003.

[13] Oracle Corporation. Oracle9i Database. http://www.oracle.com/products/, 2003.

[14] U. Fayyad, G. Grinstein, and A. Wierse. Information Visualization in Data Mining and Knowledge
Discovery. Morgan Kaufmann, 2000.

[15] V. Gaede and O. Günther. Multidimensional Access Methods. ACM Computing Surveys, 30(2):170–
231, 1998.

[16] M. Garofalakis and P. Gibbons. Approximate Query Processing: Taming the TeraBytes. In Pro-
ceedings of the International Conference on Very Large Data Bases, pages 169–212, 2001. Tutorial
Notes.

[17] J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques. Morgan Kaufmann, 1993.

[18] J. Hellerstein, R. Avnur, and V. Raman. Informix under CONTROL: Online Query Processing. Data
Mining and Knowledge Discovery, 4(4):281–314, 2000.

[19] J. Hellerstein, P. Haas, and H. Wang. Online Aggregation. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, pages 171–182, 1997.

[20] T. Johnson and D. Shasha. The Performance of Current B-Tree Algorithms. ACM Transactions on
Database Systems, 18(1):51–101, 1993.

[21] D. Keim. Databases and Visualization. In Proceedings of the ACM SIGMOD International Conference
on Management of Data, page 543, 1996.

[22] D. Knuth. The Art of Computer Programming, volume 3, Sorting and Searching. Addison Wesley,
1998.

[23] G. Manku, S. Rajagopalan, and B. Lindsay. Approximate Medians and other Quantiles in One Pass
and with Limited Memory. In Proceedings of the ACM SIGMOD International Conference on Man-
agement of Data, pages 426–435, 1998.

[24] G. Manku, S. Rajagopalan, and B. Lindsay. Random Sampling Techniques for Space Efficient Online
Computation of Order Statistics of Large Datasets. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, pages 251–262, 1999.

[25] F. Olken and D. Rotem. Random Sampling from B+ Trees. In Proceedings of the International
Conference on Very Large Data Bases, pages 269–277, 1989.

20

http://www-3.ibm.com/software/data/db2/
http://www.microsoft.com/sql/default.asp
http://www.oracle.com/products/

[26] J. Orenstein and T. Merrett. A Class of Data Structures for Associative Searching. In Proceedings of
the ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, pages 181–190,
1984.

[27] D. Papadias, P. Kalnis, J. Zhang, and Y. Tao. Efficient OLAP Operations in Spatial Data Warehouses.
In Advances in Spatial and Temporal Databases, pages 443–459, 2001.

[28] G. Piatetsky-Shapiro and C. Connell. Accurate Estimation of the Number of Tuples Satisfying a
Condition. In Proceedings of the ACM SIGMOD International Conference on Management of Data,
pages 256–276, 1984.

[29] F. Ramsak, V. Markl, R. Fenk, M. Zirkel, K. Elhardt, and R. Bayer. Integrating the UB-Tree into a
Database System Kernel. In Proceedings of the International Conference on Very Large Data Bases,
pages 263–272, 2000.

[30] D. Scott. Multivariate Density Estimation. John Wiley & Sons, 1992.

[31] B. Seeger, P.-Å. Larson, and R. McFayden. Reading a Set of Disk Pages. In Proceedings of the
International Conference on Very Large Data Bases, pages 592–603, 1993.

[32] W. Sherman, A. Craig, M. Baker, and C. Bushell. Scientific Visualization. In The Computer Science
and Engineering Handbook, pages 820–846. CRC Press, 1997.

[33] B. Silverman. Density Estimation. Chapman & Hall, 1986.

[34] Sleepycat Software. Berkeley DB Data Store. available at http://www.sleepycat.com, 2003.

[35] M. Spiegel. Theory and Problems of Probability and Statistics. McGraw-Hill, 1992.

[36] E. Stolte and G. Alonso. Efficient Exploration of Large Scientific Databases. In Proceedings of the
International Conference on Very Large Data Bases, pages 622–633, 2002.

[37] A. Szalay, P. Kunszt, A. Thakar, J. Gray, and D. Slutz. Designing and Mining Multi-Terabyte Astron-
omy Archives: The Sloan Digital Sky Survey. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, pages 451–462, 2000.

[38] J. van den Bercken and B. Seeger. An Evaluation of Generic Bulk Loading Techniques. In Proceedings
of the International Conference on Very Large Data Bases, pages 461–470, 2001.

References including URLs are current as of 12 May 2003.

21

http://www.sleepycat.com

	Introduction
	Related Work
	Preliminaries
	Algorithms (U)B-Tree
	The One-Dimensional Case
	Optimality for sequential bulk loads

	Applications in Visualisation
	The Multi-Dimensional Case
	Computation of Density and Scatter Plots
	Density Plots
	Scatter Plots

	Parameter Estimation
	Other Applications

	Implementation and Experiments
	Implementation Issues and Techniques
	Experiments
	Sampling Quality

	Conclusion

